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Abstract

The utilization of the Cairns distribution serves as a vital tool for characterizing the nonthermal attributes
commonly observed in space plasmas. In these intricate plasma environments, extensive measurements have been
conducted to monitor the fluctuations inherent in the perturbed electromagnetic (EM) field and the associated
Poynting flux, specifically concerning kinetic Alfvén waves (KAWs). Traditionally, these fluctuations have been
attributed to gyroradius correction terms within the framework of Maxwellian distributed plasmas. However, our
study introduces an innovative perspective grounded in kinetic theory coupled with the Cairns distribution, adept at
encapsulating the nonthermal nuances characterized by the index parameter Λ. Within the domain of the solar
corona, our investigation centers on the perturbed EM field ratios and the Poynting flux of KAWs, with a
foundation in the Cairns distribution function. It is noteworthy that the perpendicular components, although
deemed less significant due to the dominance of k⊥ over k∥, remain unquantified regarding their relative
insignificance. Similarly, the exploration of the imaginary part of the normalized EM field ratio has been a
relatively understudied domain. Furthermore, we delve into the nuanced assessment of the power rate Ix/Iz
characterizing the perpendicular and parallel normalized Poynting fluxes (Sx and Sz). Intriguingly, we discern that
large values of Λ, compared to their Maxwellian counterparts, manifest advantageous attributes, particularly
concerning the energization of the plasma over extended distances along the ambient magnetic field lines. The
analytical insights gleaned from this study find practical application in understanding phenomena within the solar
atmosphere, particularly shedding light on the significant role played by nonthermal particles in the observed
heating processes.

Unified Astronomy Thesaurus concepts: Solar coronal heating (1989)

1. Introduction

The solar corona, an ethereal and enigmatic region surround-
ing the Sun, represents a remarkable component of our star’s
atmosphere. Extending far beyond the visible disk of the Sun,
the corona is characterized by its extraordinarily high tempera-
tures, often exceeding 106 K (De Moortel & Browning 2015).
The perplexing existence of this counterintuitive high-temper-
ature corona above the photosphere has captivated the attention
of astrophysicists for nearly seven decades, giving rise to what is
now known as the “solar coronal heating problem.” We delve
into the historical context of this problem and explore recent
findings related to the role of perturbed electromagnetic (EM)
fields and Poynting flux phenomena of kinetic Alfvén waves
(KAWs) in the corona’s complex physics. KAWs have been the
focus of comprehensive investigations in space, particularly in
the solar wind and solar corona, as well as in laboratory settings
such as fusion reactors, and other astrophysical environments
(Cramer 2011; Wu et al. 2020). Researchers have explored
KAWs through a multifaceted approach encompassing exper-
imental studies, rigorous theoretical analyses, sophisticated
simulations, and practical applications in plasma heating and
particle acceleration. A wealth of valuable insights into this
intricate phenomenon can be found in the review articles
(for details, see Gekelman (1999), Stasiewicz et al. (2000),

Wu & Chao (2004), Keiling (2009), and Zhao et al. (2010)) and
references therein).
It is commonly known that space plasmas exhibit a range

of waves, among which KAWs hold particular significance
(Cramer 2011; Wu et al. 2020). The pioneering work of Hasegawa
& Chen (1976) established Alfvén waves, KAWs in particular, as a
standard reference in the field of space plasmas. KAWs are defined
as Alfvén waves with a perpendicular wavelength comparable to
the ion gyroradius. Observations from several spacecraft have
demonstrated that KAWs dissipate and contribute to plasma
heating during their propagation (Wygant et al. 2000, 2002; Lysak
& Song 2003; Gershman et al. 2017). These waves play a crucial
role in the transport, heating, and acceleration mechanisms within
space and astrophysical environments. Notably, the experimental
investigation of KAWs gained momentum with the establishment
of the Large Plasma Device (LAPD) at the University of California,
Los Angeles, in 1989. A series of experiments conducted on
KAWs in the LAPD revealed striking similarities to the
observations made by satellites in space plasma since 1990.
Extensive observations from spacecraft have consistently

demonstrated that space and astrophysical plasmas are
predominantly collisionless and exhibit deviations from
thermal equilibrium (Khan & Murtaza 2018 and references
therein). These nonthermal characteristics, usually deviating
from Maxwellian, are often observed in nonmonotonic velocity
distributions, an abundance of suprathermal particles, and high-
energy tails, particularly in space plasmas such as the solar
wind. To effectively model these deviations from the
Maxwellian distribution, various non-Maxwellian distributions
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have been proposed (Cairns et al. 1995; Pierrard & Lazar 2010;
Liu et al. 2014; Rubab et al. 2014; Zank 2017; Barik et al.
2020, 2024). Among these distributions, the Cairns distribution
(Cairns et al. 1995) offers a straightforward analytical choice.
Cairns et al. (1995) introduced this distribution to study the
energetic ion solitary structures in the upper ionosphere. The
distribution has been validated by consistent observations made
by the Freja (Bostrom 1992) and Viking (Dovner et al. 1994)
satellites. In the Cairns distribution function, the nonthermal
parameter Λ plays a vital role; it controls the nonthermal
properties of the plasma system, determining the population of
free electrons and shaping the distribution function. Impor-
tantly, the Cairns distribution serves as a good theoretical tool
to explain a wide range of nonthermal phenomena observed in
space plasmas (Verheest & Pillay 2008; Khan et al. 2018; Ayaz
et al. 2019, 2020). Therefore, we have chosen to employ the
Cairns distribution in this research due to its remarkable
applicability in the study of the solar atmosphere. Moreover,
considering the simultaneous existence of KAWs and non-
thermal particles in space plasmas, it is reasonable to anticipate
the impact of the Cairns distribution on the dynamics of
KAWs. Extensive scientific investigations have demonstrated
the influence of the Cairns distribution (or closely related
distributions) on the damping of KAWs (Liu et al. 2014; Khan
et al. 2020; Khalid et al. 2022). In our previous studies (Ayaz
et al. 2019, 2020), we specifically examined the role of the
Cairns parameter Λ in shaping the damping behavior of KAWs.
Our findings revealed that KAWs experience damping in the
presence of the perpendicular wavenumber (k⊥ρi), with the
spectral index Λ playing a significant role in conjunction with
k⊥ρi.

In general, the damping rate characterizes the rate of energy
conversion of a wave, such as KAWs under consideration, into
other forms, including plasma heating or particle acceleration.
However, the damping expression alone does not provide
sufficient insight into how the wave transfers its energy to the
plasma during propagation in space. This critical information
can be obtained through the examination of the Poynting flux
vector, which necessitates knowledge of the perturbed EM
fields associated with KAWs. The perturbed electric and
magnetic fields play a pivotal role in comprehending the
phenomena related to the Poynting flux of KAWs. Notably, the
study of KAWs has garnered significant attention, particularly
with the availability of spacecraft observations that directly
measure the perturbed fields (Wygant et al. 2000; Lysak &
Song 2003; Lysak 2023). The identification of KAWs in space
plasmas can be achieved theoretically by examining the ratio
and phase relationship between the two perturbed fields. In this
context, the damping rate serves as a useful tool for simplifying
the determination of the Poynting flux associated with KAWs.

To understand this puzzling scenario of KAWs in space and
astrophysical contexts, several mechanisms have been sug-
gested so far (see reviews in Lakhina 1990, 2008; Nishizuka
et al. 2008; Barik et al. 2019a, 2019b, 2019c). Previous studies
have primarily focused on the Maxwellian distribution,
attributing the fluctuations to gyroradius correction terms.
Khan (2019) investigated KAWs within the context of the
kappa distribution and highlighted the significance of small
values of the index κ compared to the Maxwellian case in terms
of energy transport by KAWs. It is found that the Poynting flux
vector of KAWs decays at a faster rate as the values of the
index κ increase. In recent studies by Barik et al. (2020, 2024),

KAWs have also been investigated using the κ distribution
together with Maxwellian. Intriguingly, these works reveal that
the excitation of waves solely by velocity shear leads to the
emergence of purely growing KAWs within the auroral region
of Earth’s magnetosphere. This finding not only sheds light on
the complex dynamics of KAWs in specific geophysical
contexts but also highlights their potential applicability across
diverse plasma environments. Indeed, the insights gained from
this research extend beyond the confines of the auroral region
to encompass other regions of the magnetosphere, the solar
wind, and the interplanetary medium. These findings under-
score the universal relevance of ion beam signatures, velocity
shear effects, and the presence of non-Maxwellian electron
distributions in shaping wave phenomena and plasma dynamics
throughout the vast reaches of space.
In the present investigation, we consider the Cairns

distribution function to study the behavior of KAWs in the
coronal plasma. Our investigation explores the influence of the
index parameter Λ on the perturbed EM field, the Poynting
flux, and the power delivery rate of KAWs in the solar
atmosphere. To the best of our knowledge, this is the first
report on these topics. The structure of the paper is organized as
follows. Section 2 presents the analytical model, Section 3
provides graphical demonstrations of the results, and Section 4
presents the corresponding discussion based on the findings.
Finally, the analytical results are concluded in Section 5.

2. Analytical Model

We derived the analytical expressions for the perturbed EM
fields (electric and magnetic) and the Poynting flux vector
associated with KAWs by considering the following assump-
tions: the plasma is collisionless and homogeneous, with
electrons and ions following the Cairns velocity distribution
function. Furthermore, the magnetic pressure is larger than the
thermal pressure (i.e., βp= 1), and the plasma supports low-
frequency waves, by which we mean the wave frequency is
lower than the ion gyrofrequency (ω<Ωi). In the geometry of
Figure 1, the wave is emitted from a source located at z= 0, the
ambient magnetic field (B0) is along the z-axis, the perturbed
field (By) is along the y-axis, and the electric field and
wavevector lie in the x–z plane. In this research, we are
investigating KAWs in the solar corona; particularly, we set the
simple geometry of obliquely propagating KAWs in the solar
flux tube loop shown in Figure 1 (right). As stated earlier, the
plasma is out of thermal equilibrium, i.e., nonthermal features
are present that are different from Maxwellian. To model such a
plasma system, we need a distribution function f0s(v), and our
chosen distribution is the Cairns distribution of the following
form:
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electrons or ions) having temperature Ts and mass ms. The
spectral index Λ having values Λ� 0 controls the nonthermal
features of the plasma system. For Λ= 0, Equation (1) reduces
to the Maxwellian distribution function.
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2.1. Dispersion Relations of KAWs

In the domain of kinetic plasma theory, from the Vlasov–
Maxwell equation, the dispersion relation for EM waves takes
the form (Lysak & Lotko 1996; Lysak 1998; Barik et al. 2023)
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where òxx and òzz are components of the permittivity tensor, k∥
and k⊥ are the wavevectors parallel and perpendicular to B0, ω
is the angular frequency, and c is the speed of light. We assume
that ω is a complex quantity, i.e., ω= ωR+ iωi with ωi= ωR,
where the subscripts R and i denote real and imaginary,
respectively.

The components of the permittivity tensors (òxx and òzz) in
cylindrical coordinates are related to the distribution function
through
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where the plasma and gyrofrequencies are n e m4ps s0
2w p=

and Ωs= qsB0/msc, respectively. In the above equations, Jn(ζs)
is the Bessel function with an argument ζs= k⊥v⊥/Ωs. In
Equations (3) and (4), we consider f0s(v) to be the Cairns
distribution (Equation (1)). Using f0s(v) in these two equations
and solving the parallel and perpendicular integrals with the
assumption that the ion gyroradius is smaller than the
perpendicular wavelength (i.e., k⊥ρi= 1), we get (Ayaz et al.
2019, 2020)
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(Fried & Conte 2015), where ξe,i= ω/k∥vte,i.
We are interested in the low beta plasma, and in the kinetic

limits, the parallel phase velocity of the wave is greater than the
ion thermal velocity but less than the electron thermal velocity,
i.e., ξe= 1 (electrons are hot) and ξi? 1 (ions are cold) (Lysak
& Lotko 1996). Under the above limits, Z 2ex¢ » - -( ) (
i e2 e e

2
x p x- ) for electrons and Z i e2i i i

2
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2
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for ions.
On further simplification by putting Z ex¢( ) and Z ix¢( ) in

Equation (6) and then employing Equations (5) and (6) in
Equation (2), we obtained the real and imaginary parts of ω for
KAWs as (Ayaz et al. 2019, 2020)
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Our analytical results (Equations (7) and (8)) are consistent
with Khan (2019), who used a kappa-distribution function and

Figure 1. Geometry of the system. (Left) Obliquely propagating KAWs. (Right) Fitted geometry in the solar flux tube loop of height h having a circular cross section
of radius a.
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obtained the following relations:
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These expressions (Equations (7) and (8)) and their counter-
parts (Equations (9) and (10)) reduce to the results of Cramer
(2011) and Barik et al. (2021, 2023),
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2.2. The Perturbed EM Fields

Making the usual assumption that the perturbed EM fields
are in the form of e i( k· r−ω t) (Lysak 1998), then Faraday’s law,
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Recalling Equations (5)–(9) and substituting ω= ωR+ iωi in
Equation (14), we get
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By the same token, Equation (13) can be written as
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After simplifications, the real and imaginary parts in
Equation (18) are
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2.3. Poynting Flux Vector of KAWs

The derived EM field ratios, i.e., Equations (12)–(15), are
used to find the expression for the Poynting flux vector of
KAWs. In general, the steady-state form of the Poynting
theorem demands (Lysak & Song 2003) ∇ · S=−P, where S
is the Poynting flux vector and P is the power dissipation
whose real parts are

*S E BRe 2 0m= ´( )

and

*J EP Re 2,= ( · )

where μ0 is the permeability constant and J B1

0
=  ´

m
( ) is

the current density.
In our specified geometric configuration (Figure 1), the

Poynting vector’s y-component (Sy) is naturally null, as the
waves exclusively propagate within the x–z plane. We can
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In the above Equation (20), the averaged x- and z-components
of the Poynting vector are
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respectively. KAWs having k⊥? k∥ can carry some energy
across the field lines, but usually that energy is small,
employing Sx= Sz (Lysak & Song 2003; Khan et al. 2020).
Due to their insignificant contributions in certain space
environments (plasma sheath, aurora, etc), the x-component,
i.e., Equation (22), is not taken into account. In this study, we
investigated KAWs in the solar coronal region; however, we
are considering both perpendicular and parallel components of
Poynting flux (Sx and Sz), as given in Equations (21) and (22).

In the literature, the Sz of KAWs can be written as
*S E BRe 2z x y 0m= ( ) (Lysak & Song 2003). In this case, the

power dissipation expression, employing the parallel compo-
nents *jz and Ez, can be simplified as
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Using the steady-state form of the Poynting flux theorem and
ignoring the contribution from Sx, we have
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where the solution for Sz is
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Here Sz(0) represents the parallel component of the Poynting
flux vector at the z= 0 location, while the other symbols have
their usual meaning. The solution for Sx is then obtained by
substituting Sz in Equation (22):
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Equations (25) and (26) allow us to quantify the conversion of
EM energy into thermal energy within the solar flares as the
waves propagate spatially from their origin at z= 0. Initially, at
z= 0, where the waves are excited, they possess a Poynting
flux of magnitude S(0). As the waves progress, this Poynting
flux experiences attenuation. Mathematically, this attenuation
arises from a negative ωi. Physically, it results from wave–
particle interactions in which plasma particles extract energy
from the waves, causing plasma heating.

3. Results

For the coronal plasma, we have chosen the following
parameters: the temperature T is >106 K, the density n0 is

109–1011 cm−3, the magnetic field B0 is 10–100 G (Zirin 1996;
Gary 2001), k⊥/k∥∼ 100–115 (Chen & Wu 2012; Singh &
Jatav 2019), and the plasma beta is n T B4p 0 0

2b p=
=3.6× 10−3= 1 (for B0= 50 G, n= 109 cm−3, T= 106 K).
We discern a noteworthy dependence of the nonthermal

parameter (Λ� 0) on the normalized EM field (Ex/vABy) of
KAWs (Figure 2) . Notably, in contrast to a Maxwellian plasma
(i.e., Λ= 0), the ratio of the normalized Ex/vABy exhibits a
conspicuous rise with increasing values of both Λ and the
perpendicular wavenumber (k⊥ρi). These variations in the EM
field concerning Λ and k⊥ρi corroborate the recent observations
presented in Lysak (2023). As anticipated from Equation (16),
this field ratio approaches unity for relatively small k⊥ρi,
subsequently increasing k⊥ρi is in agreement with the wave’s
transition toward an electrostatic character. An important
observation is that a wide spectrum of Λ values within the
nonthermal regime can capture intricate details of the EM field
fluctuations. These fluctuations have been routinely documen-
ted in space plasmas (Wygant et al. 2002; Khan et al. 2020).
Consequently, notwithstanding alternative factors such as
gyroradius correction terms, the nonthermal nature of the
system emerges as a significant contributor to the dynamics of
the EM field within KAWs. Intriguingly, we extend our
investigation to examine the impact of the imaginary part of the
normalized perturbed field E v BIm x yA( ) ratio on the wave
profile. As depicted in Figure 3, we discern that the magnitude
of E v BIm x yA( ) experiences augmentation for Λ> 0. While this
aspect has often been overlooked due to its perceived small
contribution, our inclusion of it stems from our focus on
studying KAWs within the context of solar coronal regimes.
The extent of this contribution’s smallness has remained
undetermined. We have addressed this analytically, as is
evident in Equation (17) and Figure 3, which illustrate the
amplification of imaginary EM field perturbations with
increasing Λ values.
Additionally, we see that the E v BIm x yA( ) is also influenced

by different magnetic field B values. In the strong B field of
100 G (i.e., the right panel), the magnitude of E v BIm x yA( ) is
increased compared to the weak B of 50 G (left panel). The
increase/decrease in the magnitude of the imaginary perturbed
EM field of KAWs in the solar corona under a strong and weak
magnetic field carries significant physical implications. The

Figure 2. Normalized Ex/vABy vs. k⊥ρi for different values of Λ. The curves
are generated based on Equation (16) with a fixed electron-to-ion temperature
ratio Te/Ti = 0.1.
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strength of the magnetic field directly influences the character-
istics and behavior of the wave, such as wave propagation,
wave–particle interactions, and energy transfer processes
within the plasma environment. In a strong magnetic field
scenario, the plasma exerts a greater influence on the motion of
charged particles and enhances wave–particle interactions, thus
causing more pronounced perturbations in the EM field. This
leads to an increase in the magnitude of the perturbed EM field
ratio of KAWs. This suggests that the energy associated with
the KAWs can be transported quickly over the distance.
Conversely, in regions where the magnetic field is weaker, the
influence on particle motion is reduced, resulting in lesser
perturbations and a decrease in the magnitude of the perturbed
field ratio. Therefore, the observed variation in the perturbed
EM field ratio with changes in the magnetic field strength
reflects the intricate interplay between wave dynamics and
plasma properties. In the work of Duckenfield et al. (2021), the
influence of B-field strength on the wave phenomena in the
solar corona is explored. It is presented that the direct
relationship between magnetic field strength effectively affects
the wave damping rate.

Looking at Equation (17), we see that the imaginary part of
the EM field ratio remains relatively small compared to the real
part for our chosen parameters. Prior studies by Lysak (1998),

Lysak & Song (2003), Khan et al. (2019), and Khan (2019)
primarily focused on wave dynamics outside the solar corona,
overlooking these subtle contributions. In contrast, our
investigation of the solar corona, particularly in warm plasma
scenarios, underscores the significance of even minor contribu-
tions. Drawing upon the work of Lysak & Song (2003), we
acknowledge that the Ex/vABy ratio’s small imaginary part may
appear inconsequential in the nearby Sun’s environment.
However, our meticulous analysis, especially of the Poynting
flux expressions, reveals a different narrative. We find that
KAWs exhibit pronounced damping for higher values of the
index Λ, compelling us to account for these nuanced
influences. This observation explicitly finds resonance in Polar
observations by Wygant et al. (2002), which provide empirical
evidence of the ion gyroradius effect amplifying the Ex/By

ratio. Understanding these effects assumes critical importance
in elucidating phenomena within space plasmas and astro-
physical environments. Furthermore, these results offer insights
into the role of field-aligned currents in solar flares, shedding
new light on this phenomenon.
Likewise, Ex/vABy, the imaginary part of the normalized

k⊥Ez/k∥Ex, is enhanced for different values of Λ and k⊥ρi
(Figure 4). When k⊥ρi increases, for large values of Λ, the
k k E EIm z x^ ( ) rises gradually as compared to the Maxwellian

Figure 3. Dependence of the normalized imaginary field E v BIm x yA( ) on k⊥ρi for different values of Λ. The plots are based on Equation (17) with the following
parameter values: vte = 1.34 × 109 cm s−1, vti = 1.95 × 107 cm s−1, and Te/Ti = 0.5. We have assumed B = 50 G in the left panel and B = 100 G in the right panel
to see how the magnetic field affects the magnitude of E v BIm x yA( ).

Figure 4. Variation of imaginary k k E EIm z x^ ( ) vs. k⊥ρi for different Λ. The curves are plotted using Equation (19) with the same parameter values that we used in
Figure 3. In both cases, when (left panel) B = 50 G and (right panel) B = 100 G, the normalized field ratio is enhanced for Λ > 0.
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distributed plasma. We also see that the magnitude of
k k E EIm z x^ ( ) is smaller than Ex/vABy and larger than

E v BIm x yA( ) for a given k⊥ρi values (Figures 2, 3, and 4). It
is shown that the difference between Maxwellian and
suprathermal regimes becomes prominent for larger values of
k⊥ρi. This amplification in k k E EIm z x^ ( ) with k⊥ρi and Λ in
KAWs within the solar corona denotes a noteworthy correla-
tion between multiple plasma parameters and wave dynamics.
This signifies a heightened sensitivity of the electric field
components to variations in k⊥ρi and Λ, suggesting potential
alterations in wave polarization. Such amplification implies a
more intricate and possibly unstable behavior in wave
characteristics, likely influencing energy dissipation or modify-
ing the energy transfer pathways in the corona.

In general, if the amplitude of the parallel electric field is
large enough to accelerate electrons to velocities above thermal
velocity, or even up to Alfvén velocity (vte< vA for low βp),
the particle distribution becomes unstable. This unstable
distribution shifts the resonant particles participating in the
wave–particle interactions, thus making KAWs unstable. This
unstable KAW can grow and play an important role in the
energy transport in solar coronal plasma. Even though there are
minimal variations in the nonthermal particles Λ, the wave
becomes significantly unstable and can carry a large amount of
energy in the solar corona. The EM energies of the damped/
unstable waves are converted into heat energy as the waves
travel across. As shown in Equation (19), the imaginary part of
Ez/Ex is directly related to the Landau damping rate Ψ, which
results from the resonance condition ω= k∥v∥. In the case of
KAWs, the ion dynamics shifts the resonance point toward the
tail of the electron distribution (Lysak & Lotko 1996). And, in
the tail, the resonant particles are large even for small values of
Λ, which means that the small values of Λ should increase the
magnitude of the imaginary part of the electric field Ez/Ex ratio
for a given k⊥ρi.

Studies such as Khan et al. (2020) delve into nonthermal
effects, i.e., kappa (κ), and plasma parameter influence on solar
coronal wave dynamics affirming the observed changes in

E EImk
k z x

^ ( ) in response to variations in k⊥ρi and Λ. These
investigations highlight the intricate relationship between k⊥ρi,
Λ, and the electric field components (Ex and Ez) in KAWs,

underscoring their pivotal role in comprehending wave
behavior within the solar corona’s dynamics.
In Figure 5, we see that the normalized Poynting flux

Sz(z)/Sz(0) falls off rapidly for larger values of Λ. As
mentioned earlier, the electric and magnetic fields of KAWs
carry EM energy stored in them; the question is how the
transfer occurs spatially when the waves move forward. This
information is contained in Sz(z)/Sz(0), which explicitly
depends on spatial coordinate z. It is obvious from Figures 5
that the Poynting flux decays rapidly for large values of Λ and
gradually for small values of Λ. All this is due to the Landau
mechanism. For large Λ, the EM energy of the wave is
converted to Landau resonant electrons, which dissipate the
wave quickly, thus accelerating the particle over a short
distance. This should be the case because, in the large Λ
situation, the energy is distributed over a large number of
nonthermal particles, which causes the wave to run out of
energy quickly. On the other hand, when the magnetic field is
changed (i.e., 100 G; the right panel), the dissipation trends of
the Poynting flux remain the same, but the distance over which
the wave transporting energy is significantly changed. Now the
waves transport the energy over a short distance (RSun) as
compared to its counterpart when B= 50 G for the same
variations in Λ and the other parameters. This implies that in
the strong B, the Poynting flux decays rapidly, making the
wave completely deliver its energy within a short distance.
As we have discussed, the Poynting flux decays at a

relatively fast rate in the case of a strong magnetic field, and a
notable disparity arises in the distance (RSun) over which the
wave transports energy under each scenario. In a weak
magnetic field, the wave exhibits a remarkable capacity for
energy transportation over an extensive distance, contrasting
with its behavior in a strong magnetic field. This discrepancy
aligns with our expectations, given that the stronger magnetic
field accelerates the wave’s damping rate within the solar flux
tube loop, thereby limiting its travel distance. This observation
is corroborated by Duckenfield et al. (2021), underscoring the
direct relationship between magnetic field strength and
damping effects. Moreover, the difference between Cairns
and Maxwellian becomes the same for a relatively larger
distance RSun. One might expect that the wave lingers on for a

Figure 5. The normalized Poynting flux Sz(z)/Sz(0) vs. distance RSun (which is in units of the Sun’s radius) for different values of Λ. We assumed ρi ≈ 82 cm,
k⊥ = 1.8 × 10−4 cm−1, h = 0.1 RSun, and k∥ = 1.8 × 10−6 cm−1, and the other parameters are the same as in Figure 3. In the left panel, B = 50 G, and in the right
panel, B = 100 G. The Poynting flux decays rapidly when either B or Λ increases.
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large number of nonthermal particles Λ, and a larger magnetic
field B can transport its energy faster over the distance. If the
nonthermality of the system affects the transport of energy—
which seems to be the case—then these results can play an
important role in the space plasmas.

Besides the variation of Poynting flux versus distance RSun,
we also evaluated Sz(z)/Sz(0) versus k⊥ρi for different values of
Λ as shown in Figure 6. We see that the Poynting flux
dissipates rapidly for Λ� 0 in the case of the strong magnetic
field (right panel). Furthermore, the difference in the curves is
visible only for moderate values of k⊥ρi. This observation is
consistent with Khan & Murtaza (2018), Khan (2019), and
Khan et al. (2020), where they show that at different values of
the perpendicular wavenumber k⊥ρi, a larger wave Poynting
flux is speculated to produce acceleration over a moderate
range of distance. This investigation is also presented in Shukla
et al. (2009). Moreover, Wygant et al. (2002) found that
Alfvénic Poynting flux is an important energy transfer
mechanism throughout the space plasmas.

In the 3D case, the normalized parallel Poynting flux
Sz(z)/Sz(0) is significantly affected by both k⊥ρi and the
normalized distance k∥z. Compared to Maxwellian (Figure 7,

left panel), the Poynting flux of KAWs having large
perpendicular wavenumbers decays at a faster rate with
distance when Λ> 0 (Figure 7, right panel). As the wave
propagates from one place to another, it decays rapidly based
on the wave–particle interactions (i.e., resonance conditions)
discussed in detail in the discussion section.
Figure 8 presents a depiction of the normalized perpend-

icular Poynting flux Sx(z)/Sz(0) of KAWs with varying values
of Λ. Notably, it becomes evident that Sx exhibits a moderate
decay when compared to its counterpart, Sz, particularly for
Λ> 0. The rationale behind this phenomenon lies in the
perpendicular component of the EM field associated with
KAWs, which is understood to carry energy along the field
lines at relatively lower rates, particularly in the limit where
k⊥> k∥. The density inside and outside of the flux tube loop is
generally different. The width of the tube loop is small
compared to its height. We suggest that the width of the tube
loop might be determined by the Sx component of the Poynting
flux vector. This component is the one making a full semicircle
loop. Due to its small contribution, this part (Sx) is usually not
considered in the existing literature.

Figure 6. The normalized Poynting flux Sz(z)/Sz(0) vs. k⊥ρi for different values of Λ. We assumed h = 0.05 RSun, and the other parameters are the same as in Figure 5.
In the left panel, B = 50 G, and in the right panel, B = 100 G.

Figure 7. The normalized Poynting flux Sz(z)/Sz(0) as a function of normalized distance k∥z and k⊥ρi. The 3D plots are generated using Equation (25) with the same
parameter values used in Figure 3. The color sidebar legends to the right show the corresponding values of the normalized Poynting flux of KAWs. In the left panel,
Λ = 0 (i.e., Maxwellian), and in the right panel, Λ = 0.5 (Cairns).
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In this study, we have addressed this gap through
mathematical calculations (see Equation (26)), the results of
which are visually presented in Figures 8 and 9, offering insight
into the magnitude of this effect. A second plausible
explanation for this observation is the relatively weaker
wave–particle interactions occurring in the perpendicular
directions and also the strong B field inside the tube loop.
The perpendicular component Sx gives information about the
energy transfer along the width of the flux tube. In comparison
to the normalized Sz, we see that the perpendicular flux (Sx)
dissipates rapidly even before reaching h= 1.5 RSun (i.e.,
Figure 8, right panel). In our specific geometry (Figure 1), the
electric field also contributes to the perpendicular Poynting flux
Sx together with the strong magnetic field; for instance, see
Equation (26). In the strong magnetic field regions, the Alfvén
speed increases, changing the resonance condition. In that
direction, the wave interacts with more resonant particles over
short distances, causing it to lose its energy rapidly. Our
research emphasis was thus centered on precisely quantifying
this aspect, which had remained unexplored within the existing
body of knowledge.

4. Discussion

Our research reveals that the perturbed EM fields and the
Poynting flux of KAWs experience notable alterations within
Cairns distributed plasmas. Compared to Maxwellian plasma,

our findings demonstrate that the electric and magnetic field
perturbations exhibit greater magnitudes in high-energy
environments characterized by large values of Λ. Additionally,
we observe a moderate decay rate in the resulting parallel and
perpendicular Poynting fluxes. These results hold across a wide
range of Λ and k⊥ρi values, providing insights into the
fluctuations of these two quantities. Such fluctuations based on
these parameters have been consistently observed and sup-
ported by spacecraft observations (Khan & Murtaza 2018;
Khan 2019; Khan et al. 2020 and references therein). Analysis
of data obtained from the Polar spacecraft (Wygant et al. 2002)
reveals frequent deviations of Ex/By from Alfvénic speed vA.
The possibility of this deviation, specifically in the Maxwellian
distribution, can be attributed to the nonnegligible correction
factor k⊥ρi. Our findings take a step further by proposing an
alternative possibility. We propose that the presence of the
inevitable spectral index Λ, even with a fixed k⊥ρi, adequately
explains the departure of Ex/By from vA.
The variations in the imaginary part of Ez/Ex in KAWs

depend on the nonthermal index Λ and k⊥ρi. This situation
can be attributed to the involvement of resonant particles
in wave–particle interactions. During the resonance condition
(ω= k∥v∥), the nonthermal particles, characterized by the index
Λ, significantly influence the energy transfer of KAWs in the
form of heat in the coronal plasma. In the designated
distribution function, the parameter Λ changes the number of

Figure 8. Variation of the normalized perpendicular Poynting flux (Sx(z)/Sz(0)) vs. distance (RSun) for different values of Λ. The curves are based on Equation (26)
with the same parameter values used in Figure 3. In the left panel, we assumed B = 50 G, and in the right panel, B = 100 G. We see that the perpendicular Poynting
flux is significantly affected by both Λ and magnetic field B.

Figure 9. The perpendicular Poynting flux Sx(z)/Sz(0) of KAWs as a function of normalized distance k∥z and k⊥ρi. The plots are generated based on Equation (26)
with the same parameter values used in Figure 3. The color sidebar legends to the right show the corresponding values of the normalized Poynting flux. The left panel
represents the Maxwellian case, i.e., Λ = 0, and the right panel represents Cairns distributed situations when Λ = 0.5.
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resonant particles. As mentioned earlier, the resonant points are
shifted toward the electron distribution tail due to the ions’
dynamics. According to Equation (19), the imaginary part
arises from the resonance condition when particles in the
distribution possess the same velocity as the phase velocity of
KAW (i.e., ω/k∥= v∥). In the case of KAWs, the phase
velocity of the wave is lower than the thermal velocity
(ω/k∥< vte). In the Cairns distribution, it becomes evident that
there is a greater abundance of resonant particles for larger
values of Λ, indicating that higher values of Λ are likely to
amplify the magnitude of E EIm z x( ) for a given k⊥ρi. More
detailed information on the significant role played by
nonthermal particles in the resonance condition is given in
the recent work of Barik et al. (2021).

In the expressions for the Poynting flux, it becomes evident
that the wave converts its EM energy to the Landau resonant
electrons, presenting numerous possibilities based on different
states indicated by the index Λ. In the nonthermal plasmas, as
opposed to Maxwellian plasmas, the wave exhibits a more
extensive conversion of EM energy to the Landau resonant
electrons across significant distances. This outcome is expected
since, in the regime of large Λ, the energy is distributed among a
larger population of resonant particles, resulting in a faster
decay of the wave. Consequently, higher values of Λ prove
advantageous for heating or accelerating plasma particles over
long distances, a phenomenon that could potentially be observed
in the solar flares, solar wind, and plasma sheet boundary layer.

In this extensive investigation, we also incorporated the
effects of the perpendicular electric field and the associated
Poynting flux vector Sx. While it is common practice to
disregard these contributions due to their apparent insignif-
icance, their exact magnitude has remained unclear. However,
our study delves into the behavior of KAWs in the context of
solar flares, where even these seemingly minor contributions
play a crucial role, potentially shaping the loop structures
observed. Notably, within the tube loop, the parallel component
of Sz holds significant importance, while the perpendicular
component Sx primarily influences the energy transfer along the
loop’s width. As depicted in Figure 8, our findings offer a clear
estimate of the magnitude of this perpendicular contribution,
shedding light on its actual significance.

In addition to our previous analyses, we delved into the
comprehensive examination of the total power transfer rate that
comes out and propagates across the flux tube loop. This
information might be explained by both the parallel Sz and
perpendicular Sx components of the Poynting flux vector. In
this situation, we substitute z= hθ in Equation (26) and then
integrate the angle θ from 0–π/2 to get
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In the above equation, h is height and a is the radius of the
cross section of the flux tube, which we assumed to be circular
as shown in Figure 1 (right panel). Similarly, Equation (25)
gives
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Equations (27) and (28) elucidate the computation of power
rates concerning Ix and Iz of KAWs within flux loop tubes. This
further gives the total estimate of the flux coming out of the

tube loop:
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Following Li et al. (2023), we take a to be in the range
(700–7000) km. In Effenberger et al. (2017), the height for 61
occult flare loops was examined. We follow that study and assume
a (0.05–0.1) RSun range for h. The same range of h was considered
in Li et al. (2023) to examine solar energetic neutral particles. The
comprehension of the aggregate energy transfer rate is pivotal for
gauging the extent of energy conveyance by these elements within
the loop configurations, vividly illustrated in Figures (10) and (11).
Notably, we discern a substantial augmentation in the power
delivery rate, Ix/Iz, with the variations of the perpendicular
wavenumber k⊥ρi at fixed h= 0.1 RSun; see Figure 10 (left panel).
We observed that for minor increments in the values of k⊥ρi, the
magnitude of the power transfer rate in the tube loop is
significantly enhanced. In the context of KAWs in the solar
corona, this phenomenon suggests that small changes in the k⊥ρi
can lead to substantial alterations in the efficiency and intensity of
energy transfer processes within the flux tube. Specifically, as k⊥ρi
increases, the power transfer rate experiences a pronounced
enhancement in the magnitude. Physically, this indicates that
KAWs with slightly higher perpendicular wavenumbers are more
effective at transporting energy along the flux tube, and they do so
at a faster rate. This heightened power transfer capability implies a
greater ability to propagate energy over larger spatial scales within
the solar corona. As a result, the waves can efficiently transport
energy and momentum outside the confinement region, thus
indicating how the wave transports power in a flux tube loop.
Consequently, this points to the capability of KAWs to effectuate
plasma particle heating over extended distances, which holds
profound implications for their role in heliophysics.
In the proceedings analysis, we considered h= 0.1 RSun

(∼35Mm); however, upon reducing h to h= 0.05 RSun, we see
that the power rate Ix/Iz is significantly affected as shown in
Figure 10 (right panel). This time, the magnitude of the power
rate is reduced, and the wave delivers energy at a moderately
slower rate. The power transfer rate of KAWs in the solar flux
tube loops reveals a significant height dependence. At a height
of h= 0.1 RSun, the power transfer rate is markedly enhanced
across various normalized wavenumbers, suggesting optimal
resonance conditions, stronger density, magnetic field gradi-
ents, and efficient wave–particle interactions conducive to
energy transfer. On the other hand, at h= 0.05 RSun, the power
transfer rate is significantly reduced, likely due to weaker
resonance conditions, lower plasma density, and diminished
magnetic field strength, which collectively impede the efficient
transfer of energy. These findings underscore the sensitivity of
KAW energy transfer to local plasma conditions and magnetic
field structures that are crucial for understanding coronal
heating and solar wind acceleration.
In general, the values of k⊥ρi directly influence the power

transfer rate of KAWs. Inside the flux loop tube, the magnetic
field strength is strong enough to make the wave deliver power
quickly for the given k⊥ρi. The impact can be elucidated
through the examination of large and small k⊥ρi that contribute
to and affect the power rate of KAWs. In case of large k⊥ρi,
KAWs exhibit characteristics distinct from shorter k⊥ρi. In
realistic observations, Alfvén velocity vA is higher in larger
k⊥ρi, implying that Alfvén waves can propagate power more
rapidly. This can contribute to a decrease in the magnitude of
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the power rate for certain wave modes. Large k⊥ρi often leads
to higher frequencies of the waves. In contrast, short k⊥ρi
results in lower vA and slower wave propagation. The power
rate of KAWs is reduced in shorter k⊥ρi because the wave
interacts with particles and is quickly damped out. Thus, the
magnitude of the power rate increases.

In the above situations, we evaluated Ix/Iz for different values of
k⊥ρi and h, where we assumed Λ= 0 (i.e., KAWs in the
Maxwellian distributed plasma). Our main focus is the effect of the
nonthermal particles Λ on the wave dynamics as shown in
Figure 11. We see that the magnitude of Ix/Iz is significantly
enhanced for Λ> 0, which gives information as to how the wave–
particle interaction occurs in the flux tube loop. It is obvious from
the figures that Λ plays a crucial role in the flux rate coming out of
the tube loop and propagating in the tube. Both the left and right
panels of Figure 11 are plotted for fixed B= 50G and B= 100G
with k⊥ρi≈ 0.05 and k⊥ρi≈ 0.04, respectively. We observe that

the power delivery rate is more prominent at a larger normalized
distance RSun. Compared to the more common Maxwellian
distribution (i.e., the black curves), the Cairns distributed KAWs
exhibit a notably faster power transfer rate for larger values of Λ.
The waves transport power quickly, suggesting that, in regions like
the solar corona, KAWs are more efficient in transporting greater
amounts of energy over distance beyond the confines of the flux
tube. The phenomenon can be attributed to the unique character-
istics of the Cairns distribution, where a higher Λ indicates an
increased population of nonthermal particles with higher kinetic
energies. These nonthermal particles interact with the waves,
leading to enhanced wave–particle resonance and energy transfer,
allowing for more effective energy transport processes.
From all these discussions, we observed that our investigations

unveiled a noteworthy effect of the nonthermal parameter Λ, the
perpendicular wavenumber k⊥ρi, the B-field effect, and the
different height h, resulting in a substantial influence in the power

Figure 11. Variation of Ix/Iz vs. z × (0.0005) RSun for different values of Λ. The other values are the same as we used in Figure 10. In the left panel, B = 50 G, and in
the right panel, B = 100 G.

Figure 10. Variation of Ix/Iz vs. normalized distance z × (0.0005) RSun for different values of k⊥ρi. The parameters B = 50 G, a = 7 × 107 cm,
k⊥ ≈ 8.5 × 10−4 cm−1, k∥ ≈ 8.5 × 10−6 cm−1, and Λ = 0 are kept constant. In the left panel, h = 0.1 RSun, and in the right panel, h = 0.05 RSun.
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rate of KAWs in the solar atmosphere. Of particular importance is
the investigation of the perturbed electric and magnetic fields for
the analysis of KAWs because spacecraft, as shown by
observations (Wygant et al. 2000, 2002; Keiling et al. 2002;
Lysak & Song 2003; Smith et al. 2011 and references therein),
have measured them directly, rather than determining the damping
rate, which further extended to the Poynting flux and power
delivery rate of KAWs. Our results suggest that higher values of Λ,
in comparison to a Maxwellian distribution, enhance the
effectiveness of energy transport by KAWs over extended
distances. These insights hold promise for understanding regular
fluctuations in EM field perturbations, the Poynting flux, and the
power deliver rate in various space plasma environments.

The findings of the present work underscore the heightened
efficiency of KAWs in heating and accelerating nonthermal
particles within the plasma. Such findings hold significant
implications for our comprehension of plasma behavior in a
diverse range of astrophysical and laboratory contexts
(Cramer 2011; Wu & Chen 2020). They can be applied to
various space environments where KAWs, characterized by
non-Maxwellian distributions, are prevalent.

5. Conclusion

In summary, our findings reveal the significant influence of
nonthermal particles, represented by the Cairns distribution with
parameter Λ, on the perturbations of EM fields, the Poynting flux
vector in the parallel and perpendicular directions, and the total
power transfer rate of KAWs. The analysis is centered on the
phenomena of the perturbed EM fields. We found that the real and
imaginary normalized EM fields, E v BRe x yA( ) and E v BIm x yA( ),
are significantly influenced by nonthermal particles Λ. We also
evaluated E EIm z x( ), which plays a crucial role in wave–particle
interactions for different values of Λ. These fluctuating EM fields
of KAWs are responsible for transporting the EM energy stored in
them. Specifically, our investigation into estimating the perpend-
icular Poynting flux vector and power delivery of KAWs
uncovered fascinating phenomena, demonstrating their efficient
energy transport through and out of the tube loops. We found that
the KAWs are dissipating at a faster rate for Λ> 0. Moreover, the
evaluation of the power rate for different parameters (Λ, B, k⊥ρi,
and h) gives detailed information about the heating phenomena of
KAW in the solar flux tube loop. We found that the magnitude of
the power delivered by KAWs is significantly influenced. The
analytical findings will find potential applications in heliospheric
physics, where nonthermal particles characterized by nonthermal
index parameters are often observed.

The current study is primarily centered on the isotropic
behavior of particles (electrons and ions), characterized by the
isotropic Cairns distribution. Future research endeavors should
systematically explore scenarios involving temperature aniso-
tropy to broaden the scope of our findings. The distinct behaviors
exhibited by particles in parallel and perpendicular directions
present an intriguing avenue for inquiry. Future research will
uncover how temperature anisotropy modulates the dynamics of
KAWs and their wave–particle interactions in the solar corona.
Furthermore, extending our inquiry to encompass the estimation
of the resonant velocity and the characteristic damping length of
KAWs holds significant promise. These estimations contribute to
gauging the distance the particles traverse, imparting energy to
the wave, and providing valuable insights into the spatial extent
over which the wave dissipates. Moreover, future investigations
could delve into the intricate realms of density inhomogeneity

and instability or the combination thereof. Incorporating these
aspects as extensions of the present work would provide a more
comprehensive understanding of the complex interplay between
plasma properties and KAW dynamics. These extensions promise
to advance our knowledge of KAWs in solar coronal plasmas,
paving the way for a more complete and nuanced comprehension
of wave–plasma interactions in astrophysical environments.
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