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Abstract

Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-
related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby
differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR–RT) evolutionary patterns,
reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed
a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with
Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions
were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses
of LTR–RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica
cv. ‘Gala’ and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our
study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family.
It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic
evolution.

Introduction
Transposable elements (TEs) represent mobile DNA sequences

pervasive across the genomes of most eukaryotes [1]. Their role
in shaping plant genomes is notably diverse and impactful. Suc-
cessive cycles of expansion and contraction in TE quantity serve

as catalysts for significant disparities in the overall genomic
architecture, even among closely related plant species [2]. TEs
constitute a predominant, and often the predominant, portion of
the entire plant genome [3, 4]. Moreover, TE activity contributes to
a wide spectrum of change in gene expression and functionality.
This ranges from subtle quantitative influences to substantial
diversification of gene regulatory networks (GRNs) and even the
emergence of entirely novel genes [5–8].

TEs within plant genomes exhibit a diverse array of struc-
tures and configurations [9]. The prevalent classification sys-
tem categorizes TEs based on transposition mechanisms and

enzymological criteria, broadly dividing them into two princi-
pal classes: Class I (retrotransposons, RTs) and Class II (DNA
transposons) [10]. Retrotransposons, within Class I, employ a
‘copy-and-paste’ transposition mechanism involving RNA inter-

mediates, while DNA transposons, under Class II, utilize a ‘cut-

and-paste’ method through DNA intermediates [11]. Class I ele-
ments, transcribed by RNA polymerase II (RNA Pol II), gener-

ate mRNA that is converted into cDNA by reverse transcriptase
(RT). This cDNA is then integrated at a new locus by an inte-
grase (INT) [12], facilitating genome expansions. Generally, Class
I elements are comprised of five orders, named long terminal
repeat retrotransposons (LTR–RTs), DIRS-like elements, Penelope-
like elements, LINEs (long interspersed nuclear elements), and
SINEs (short interspersed nuclear elements) [10]. Depending on
the distinct mechanisms of integration, Class I elements can be
divided into LTR retrotransposons and non-LTR retrotransposons
[1, 13]. Among the numerous superfamilies of LTR retrotrans-
posons, the most common are the Copia (RLC) and Gypsy (RLG)
superfamilies. However, some novel LTR retrotransposons belong
to the ‘Unknown’ superfamily (RLU) due to the deficiency of a
coding sequence [14]. Moreover, the families of LTR retrotrans-
posons (LTR–RTs) have been suggested as a taxonomic category
encompassing shared structural and functional characteristics,
as well as evolutionary connections [15]. Each family of LTR–RTs
is a clade of members that possess high DNA sequence simi-
larity (>80%) in their internal regions encoding proteins related
to transposition [10]. There are numerous families of LTR–RTs
found within plant genomes, e.g. Ale, Alesia, Angela, Bianca, Ikeros,
Ivana, SIRE, TAR, Tork, Athila, CRM, Galadriel, Ogre, Reina, Retand,
and Tekay [16, 17]. According to whether the retrotransposons
can transpose independently, retrotransposons fall into two types:
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autonomous retrotransposons and non-autonomous retrotrans-
posons. The latter include LINEs and SINEs, which are more com-
mon within animal genomes. Class II elements have four orders,
comprising TIR (terminal inverted repeats), Crypton, Helitron, as
well as Maverick. TIR elements and MITEs (miniature inverted
repeat transposable elements, defined as non-autonomous ver-
sions of TIR elements) have five familiar superfamilies, including
hAT (DTA), CACTA (DTC), PIF-Harbinger (DTH), Mutator (DTM), and
Tc1-Mariner (DTT) [10]. Additionally, because of their special trans-
position mechanism, Helitron superfamily (DHH) members have
been widely studied by scientists [10].

TEs can act as regulatory units, reshaping gene expression
upon insertion into specific loci, thereby potentially inducing
phenotypic variations. For instance, in Arabidopsis thaliana expe-
riencing proteotoxic stress, genes proximal to SINEs alter their
expression patterns, thereby rewiring stress-related gene reg-
ulatory networks [8]. The impact of TE insertions on pheno-
typic traits is evident in various plant varieties. In ‘Chardonnay’
grapes, an original insertion of a Gret1 LTR retrotransposon led
to a loss-of-function allele of the Vvmyb1A gene, resulting in
green fruit. Subsequent rearrangements in Gret1 converted green
fruit to red fruit in varieties like ‘Ruby Okuyama’ [18]. Similarly,
the insertion of a Gypsy-like LTR–RT named redTE upstream
of the MdMYB1 gene in apples distinguished red fruit color in
HFTH1 from yellow fruit color of GDDH13 [19]. Recently dis-
covered LTR–RTs, such as HODOR (high-copy ‘Golden Delicious’
repeat), have garnered significant scientific interest due to their
association with high DNA methylation levels [20]. Additionally,
a methylated MITE insertion (MITE-MdRF1) in the promoter of
MdRFNR1-1, when exposed to drought stress, is recognized by tran-
scriptional anti-silencing factors, thereby promoting MdRFNR1-1
expression [21]. Conversely, in a white-fruited Fragaria vesca wild
type, an insertion of a Gypsy LTR–RT into FvMYB10 truncated the
production of FvMYB10, impeding the anthocyanin biosynthesis
pathway [22]. However, the activity of TEs is predominately sub-
dued through epigenetic modification such as DNA methylation,
small RNA interference, and histone modification, crucial for
sustaining genome integrity [23, 24]. TEs can be rejuvenated under
biotic and abiotic stress by the derepression of silent epigenetic
conditions or through the action of transcription factors [25,
26]. This reactivation of TEs often leads to phenotypic plasticity
and aids in defense against detrimental natural selection by
regulating the expression of genes surrounding their insertion
sites.

The Rosaceae family boasts a cosmopolitan distribution; it
is characterized by a diverse morphology and holds substan-
tial economic and ecological significance. Known for its wide
range of genome sizes [27], this family encompasses numerous
renowned species of both financial and scientific importance,
including apples, pears, hawthorns, loquats, raspberries, Gillenia
trifoliata, peaches, strawberries, Dryas drummondii, and a variety
of ornamental flowers like roses, meadowsweets, and hawthorns
[28]. This diverse array of species within Rosaceae provides an
exceptional resource for comparative analysis. The availability
of genome and transcriptome datasets for Rosaceae [29, 30] has
facilitated extensive investigations into the genome evolution of
this family on a genome-wide scale. Notably, the abundance of
TEs in Rosaceae genomes varies significantly. For instance, TE
sequences represent ∼22% of the genome in strawberry (F. vesca)
[31], 29.60% in peach (Prunus persica) [32], 47.20% in G. trifoliata
[33], 57.30% in apple (Malus domestica GDDH13) [20], and 66.03%
in hawthorn (Crataegus pinnatifida var. major) [34]. This substantial
variation in TE content across Rosaceae genomes underscores the

dynamic nature of TE proliferation and their potential impact on
the genomic architecture of these diverse plant species.

In this study, we aim to conduct a comprehensive identification
and thorough characterization of TEs across 12 Rosaceae species.
We systematically compared the genomic composition, insertion
patterns, and functional impact on nearby genes attributed to
LTR–RTs across the Rosaceae species. This comparative approach
allowed us to elucidate the co-evolutionary relationships between
LTR–RTs and their host genomes. Furthermore, we conducted an
in-depth analysis of the transcriptional activity of LTR–RTs to
discern the specific genes influenced by highly expressed LTR–
RTs. Additionally, we performed differential gene expression anal-
ysis to pinpoint candidate TEs that might significantly impact
these differentially expressed genes (DEGs). Our comprehensive
approach aimed to unravel the intricate interplay between LTR–
RTs and the genomic landscape of Rosaceae species, shedding
light on their potential regulatory roles in gene expression and
evolutionary dynamics within this diverse plant family.

Results
Transposable element diversity within Rosaceae
Our study analyzed 14 representative and available genomes in
Rosaceae (Fig. 1), encompassing 12 species; note that we used
three cultivars for M. domestica (Fig. 1). These tested species exhibit
varying speciation times, spanning from 28 to 103 million years
ago (MYA) [28]. Notably, the Maleae lineage’s origin can be traced
back to a whole-genome duplication (WGD) event in an ancestor
closely related to Gillenia (x = 9) [32, 35–37]. The genome sizes of
the tested Rosaceae species examined in this study showcase
remarkable diversity: e.g. ∼825 Mb for C. pinnatifida (17 chromo-
somes) [34], ∼760 Mb for Eriobotrya japonica (17 chromosomes)
[38], ∼660 Mb for M. domestica (HFTH1) (17 chromosomes) [19],
∼510 Mb for Pyrus bretschneideri (17 chromosomes) [39], ∼295 Mb
for Rubus idaeus (7 chromosomes) [40], ∼280 Mb for G. trifoliata
(9 chromosomes) [38], ∼235 Mb for D. drummondii [41], ∼230 Mb
for P. persica (8 chromosomes) [32], and ∼220 Mb for F. vesca (7
chromosomes) [42].

Intact TEs contain complete structural features. For an intact
LTR element, this includes the left target site duplication, left
LTR, internal region producing reverse transcriptase, right LTR,
and right target site duplication. For an intact TIR element, it
contains the left target site duplication, left terminal inverted
repeat, internal region producing several transposase enzymes,
right terminal inverted repeat, and right target site duplication
[42]. We classified intact TEs into distinct categories: Copia LTR–
RT/Gypsy LTR–RT/Unknown LTR–RT, hAT DNA transposon/CACTA
DNA transposon /PIF–Harbinger DNA transposon/Mutator DNA
transposon/Tc1–Mariner DNA transposon, MITE, and Helitron DNA
transposon (Fig. 1B). Among the analyzed genomes, E. japonica and
D. drummondii exhibited the highest (65.15%) and lowest (33.47%)
TE content, respectively. Notably, E. japonica possessed the second
largest genome size (761.57 Mb), while D. drummondii had the third
smallest genome size (232.91 Mb) (Fig. 1C). To shed light on the
impact of intact TE numbers on genome expansion, we performed
a correlation analysis between various TE hierarchies and genome
size across 12 Rosaceae species. Our analysis revealed that the
number of retrotransposons displayed the strongest positive
correlation with genome size at the order level (Spearman’s
r = 0.98, P < 0.01) (Supplementary Data Fig. S1). At the family
level, the quantity of Ikeros Copia LTR–RTs demonstrated the
most robust positive correlation with genome size (Spearman’s
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Figure 1. TE distribution across 14 representative Rosaceae genomes. A The 14 Rosaceae genomes used in this study (phylogeny adapted from Xiang
et al. [28]). B Copy numbers (left axis) and total length (right axis) of TEs across all 14 genomes. The smaller boxes within the bars represent TE
superfamilies, each identified by a three-letter code based on a common TE classification system [10]. The segments are categorized into
Retrotransposons, DNA transposons, MITEs, and DNA Helitron transposons. The labels RLC, RLG, RLU, DTA, DTC, DTH, DTM, DTT, and DHH correspond
to Copia LTR–RT, Gypsy LTR–RT, Unknown LTR–RT, hAT DNA transposon, CACTA DNA transposon, PIF–Harbinger DNA transposon, Mutator DNA
transposon, Tc1–Mariner DNA transposon, and Helitron DNA transposon, respectively. C LTR assembly index (LAI), genome size, TE content, and TE copy
number for each species. Circle sizes reflect genome sizes, while degrees of shading indicate the TE content. D Spearman correlation matrix showing
the relationship between 16 LTR–RT families and genome size. Shades of darkness represent the strength of the correlation, with stronger positive or
negative correlations represented by darker levels of shading. Bold gray font represents P ≥ 0.05, while regular black font denotes P < 0.05.

r = 0.96, P < 0.05). Conversely, the abundance of SIRE Copia LTR–
RTs exhibited a relatively negative correlation with genome size
(Spearman’s r = −0.41, P < 0.05) (Fig. 1D).

Distinct activity of LTR–RTs in the nine Rosaceae
genomes
We conducted estimations of TE insertion times, revealing
distinctive activity patterns among Copia and Gypsy LTR–RTs
within Maleae, Gillenleae, Rubeae, Potentilleae, and Dryadeae
in Rosaceae genomes. Notably, the estimated burst, indicated by
median age, of Copia LTR–RTs occurred later than that of Gypsy
LTR–RTs in Maleae, Gillenleae, and Rubeae. In contrast, the burst
of Copia LTR–RTs preceded that of Gypsy LTR–RTs in Potentilleae
and Dryadeae (Fig. 2A and B). Moreover, the calculated insertion
times of Copia LTR–RTs are predominantly concentrated at 0 MYA,
indicating recent insertions, which are similar to most of those
Gypsy LTR–RTs, except for C. pinnatifida, G. trifoliata, P. persica, R.

idaeus, and D. drummondii. For these species, the insertion times
were concentrated on 1.3, 0.7, 0.7, 0.7, and 2.5 MYA, respectively.

The interplay between DNA removal and TE proliferation
constitutes a dynamic process that influences the evolution of
genome size, leading to either expansion or shrinkage. To compare

TE activity, we calculated the transposition rate, representing

the net increase in the total number of LTR–RTs within every
0.1 million years (MY) over a 10-MY period (Fig. 2C). Over the past
2.5 MY, the transposition rates of R. idaeus, P. bretschneideri, and G.

trifoliata have notably surged, while those of M. domestica, P. persica,

E. japonica, and F. vesca have moderately increased. Conversely, the

rates in D. drummondii and C. pinnatifida have remained relatively

stable. A similar trend was observed in the cumulative rate of
LTR–RTs within every 0.1 MY over a 10-MY scale across the nine
genomes (Fig. 2D).

DNA removal has been hypothesized to play a dominant role in
hindering TE proliferation-mediated genome expansion [43, 44].
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Figure 2. Distinct activity of LTR–RTs across Rosaceae genomes. A Distribution of insertion times for Copia LTR–RTs within nine species. B Distribution
of insertion times for Gypsy LTR–RTs across the same nine species. C Transposition rates of LTR–RTs in the nine species. This rate is defined as the
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intact LTR–RTs of LTR elements across the 14 Rosaceae genomes.

Intact LTR–RTs with a pair of identical direct repeats are specif-
ically favored for DNA removal via unequal homologous recom-
bination (HR) events because the two LTRs provide homologous
regions to initiate illegitimate recombination [45, 46]. Frequent
HR-mediated DNA removal may lead to a high abundance of
solo LTR remnants in the genome, which can serve as evidence
supporting the existence of an inherently efficient DNA removal
mechanism. Therefore, we compared the ratio of solo LTRs to
intact LTR–RTs among the 14 Rosaceae genomes (Fig. 2E). The

respective abundances of solo LTR and intact LTR–RTs were used
to evaluate the propensity of HR-mediated removal of active LTR
insertions in the 14 genomes. The ratios of solo LTRs to intact LTR–
RTs in P. persica, R. idaeus, F. vesca, D. drummondii, and G. trifoliata are
relatively low, ranging from 5.26 to 6.5. The ratios in M. domestica
(HFTH1), E. japonica, Malus sylvestris, Prunus mume, C. pinnatifida,
P. bretschneideri, and Malus sieversii are comparatively moderate,
ranging from 7.43 to 8.98. The ratios in M. domestica (GDDH13),
and M. domestica cv. ‘Gala’ are considerably high, ranging from
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11.32 to 11.46. It is worth noting that, in Maleae, the ratios of
solo LTRs to intact LTR–RTs in M. domestica (GDDH13), M. domestica
cv. ‘Gala’, M. sieversii, and P. bretschneideri are higher than those
in C. pinnatifida and E. japonica. This suggests that M. domestica
(GDDH13), M. domestica cv. ‘Gala’, M. sieversii, and P. bretschneideri
might possess a highly efficient, inherent molecular mechanism
to purge LTR–RTs, probably through HR-mediated DNA removal,
thus accelerating the processes of genome size shrinking. This
result is in line with the fact that genome sizes of C. pinnatifida and
E. japonica are much larger than those of M. domestica (GDDH13),
M. domestica cv. ‘Gala’, M. sieversii, and P. bretschneideri.

Functions of TE-proximal genes in nine Rosaceae
species
Gene expression patterns are intricately regulated by enhancers
and repressors, whether they are located nearby or at a distance.
Movement of genes mediated by TEs to new chromosomal con-
texts harbors the potential to alter gene regulation and reshape
the genome architecture [1]. To delve into the potential func-
tions of TE-proximal genes, we conducted Gene Ontology (GO)
enrichment analysis for genes adjacent to specific intact TEs. Our
analysis revealed distinct functional categories associated with
these genes, which can be classified into five primary types: plant
morphogenesis, substance binding, influence on enzyme activity,
metabolism and synthesis, and functional attributes (Fig. 3). This
categorization highlights the diverse roles played by TE-proximal
genes, shedding light on their potential impact on various biolog-
ical processes within the genome.

The functions attributed to TIRTE-proximal genes encompass
a diverse range, including effects on enzyme activity (27.97%),
substance binding (25.74%), plant morphogenesis (25.43%), and
metabolism and synthesis (18.59%), with a smaller fraction falling
under other functional categories (2.27%). In contrast, the charac-
teristics associated with genes proximal to young LTR–RTs (repre-
senting the top 50% of the total insertion time of LTR–RTs) exhibit
varying proportions, comprising others (37.61%), enzyme activity
(25.52%), substance binding (17.46%), and metabolism and syn-
thesis (15.51%), and a smaller percentage associated with plant
morphogenesis (3.91%). Conversely, genes proximal to old LTR–
RTs (representing the latter 50% of the total insertion time of LTR–
RTs) predominantly display attributes related to enzyme activity
(38.09%) and metabolism and synthesis (37.00%), with a smaller
fraction associated with substances binding (24.91%) (Fig. 3).

In G. trifoliata, genes adjacent to a TE exhibit an enrichment in
the GO term associated with plant morphogenesis (Fig. 3). Con-
versely, in R. idaeus and F. vesca, the enriched GO term is primarily
linked to enzyme activity. Eriobotrya japonica showcases genes
related to metabolism and synthesis, along with substance bind-
ing, while in D. drummondii genes are associated with metabolism
and synthesis, as well as enzyme activity (Fig. 3). Notably, M.
domestica, P. bretschneideri, C. pinnatifida, and P. persica exhibit genes
linked to four or more distinct functional types, highlighting a
broader functional diversity among the genes proximal to TEs
within these species (Fig. 3).

Spatiotemporally specific LTR–RT expression in
M. domestica cv. ‘Gala’
TE activity has the potential to significantly impact gene family
evolution, particularly through the actions of retrotransposons.
Retrotransposons have been identified as contributors to gene
family expansion by transporting neighboring genes and integrat-
ing them into different genomic locations during their transpo-
sition [47]. In our investigation into the activity of LTR–RTs, we

initially classified all intact LTR–RTs into two distinct groups:
‘domain-existent’ and ‘structure-intact’. This classification was
based on the integrity of coding regions associated with five
essential domains: capsid protein (GAG), aspartic proteinase (AP),
integrase (INT), reverse transcriptase (RT), and RNAse H (RH).
Domain-existent LRT–RTs are presumed to possess at least one
of these five domains, while structure-intact LTR–RTs are likely to
contain all five domains. Specifically focusing on M. domestica cv.
‘Gala’, we identified 222 specifically expressed domain-existent
LTR–RTs and 100 specifically expressed structure-intact LTR–RTs,
shedding light on the distinct expression patterns and potential
activity of these retrotransposon groups within this particular
apple cultivar.

We further classified the domain-existent LTR–RTs into distinct
clades based on sequence similarities using the maximum likeli-
hood (ML) method. Through this analysis, we identified a total of
eight Copia clades (Ale, Alesia, Angela, Bianca, Ikeros, Ivana, TAR, and
Tork), six Gypsy clades (Athila, CRM, Ogre, Reina, Retand, and Tekay),
and one LINE clade within all LTR–RT sequences in M. domestica
cv. ‘Gala’ (Fig. 4A). These clades exhibited considerable variation
in size, the number of elements ranging from 1 to 38 for the Copia
clades and from 2 to 42 for the Gypsy clades. This categorization
based on sequence similarities offers insights into the diversity
and distribution of distinct clades within the LTR–RT sequences
identified in this specific apple cultivar.

The expression profiles of transposed members within these
clades across different tissues provide a basis for estimating the
transposition activity of LTR–RTs (Fig. 4A). In M. domestica cv.
‘Gala’, when analyzing various tissues, including fruit, f lower
bud, terminal bud, leaf, and root, we observed that certain
LTR–RT expressions were tissue-specific. For instance, Ogre2-1,
Athila32-15, and Bianca30-sc, among others, exhibited tissue-
specific expression patterns. Conversely, other LTR–RTs, like
LINE2-7, and Retand3-11, showed no tissue-specific expression.
Furthermore, we visualized differentially expressed LTR–RTs at
specific time points after full bloom (17, 29, 36, 43, 50, 57, 64, 71,
85, 99, 113, and 127 days) in the fruit of M. domestica cv. ‘Gala’.
Certain LTR–RTs displayed temporal specificity, such as Athila40-
sc and Tekay10-7. However, some LTR–RTs, such as Ogre2-1
and Athila15-10, exhibited consistently high expression levels
without temporal specificity (Fig. 4B, Supplementary Data S4).
Moreover, our investigation delved into the potential impact of
adversity stress on LTR–RT expression differences. Analyzing
leaf cells of M. domestica cv. ‘Gala’ after co-culture with the Valsa
mali pathogen for varying durations (1, 3, and 6 h), we observed
differential expression of specific LTR–RTs, including Athila32-
15 and Ale12-7, under the stress conditions. Conversely, other
LTR–RTs, like Alesia3-5 and LINE4-13, showed no differential
expression under the same conditions (Fig. 4C, Supplementary
Data S4). Similar trends were noticed in the expression patterns
of structure-intact LTR–RTs, mirroring those of domain-existent
LTR–RTs (Supplementary Data Fig. S2). These findings highlight
the potential influence of tissue types, developmental stages, and
environmental stresses on the expression dynamics of distinct
LTR–RTs within the genome of M. domestica cv. ‘Gala’.

Distinct gene expression in M. domestica
cultivars ‘Gala’ and ‘Golden Delicious’ driven by
cultivar-specific transposable elements
The insertion of TEs within genomic regions can lead to diverse
impacts on gene expression. These elements might diminish gene
expression by interrupting the normal structure of a gene [48].
Conversely, they can also potentially elevate gene expression,
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Figure 3. Sankey diagram illustrating the inferred functions of TE-proximal genes. The width of connections between each vertical block represents
the gene count, delineating GO term classifications associated with TE-proximal genes, the number of genes adjacent to three distinct types of TEs,
genes categorized across nine species, and the GO term classifications of TE-proximal genes. TE-proximal gene GO terms are categorized into five
primary groups: morphogenesis, substance binding, enzyme activity, metabolism, and others. Each group encompasses various detailed GO term
descriptions representing specific gene functions.

given that TEs encompass various cis-regulatory elements capa-
ble of providing novel regulatory modules that activate gene
expression [49]. Here, we identified four domain-existent LTR–RTs
with notably high expression levels {log2 [transcripts per million
(TPM) + 1] ≥ 3.5} positioned adjacent to genes, where the distance
between the LTR–RTs and the genes was <5000 bp in M. domestica
cv. ‘Gala’ (Fig. 5A). However, in the syntenic region of chromosome

9 of M. domestica (GDDH13) we did not observe any TEs but instead
found a MITE (Fig. 5A).

To explore the association between TEs and DEGs, we con-
ducted a synteny analysis involving ‘Gala’ and GDDH13. Ini-
tially, we constructed synteny detection using all genes in ‘Gala’
and GDDH13. Subsequently, we identified sets of period-specific
highly expressed genes in ‘Gala’ fruit [log2(fold change) ≥ 1.5 of
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Figure 4. Spatiotemporally specific expression patterns of 222 domain-existent retrotransposons within the genome of M. domestica. A Highly
expressed retrotransposons in M. domestica genome. The heat maps represent the log2-transformed transcripts per million (TPM + 1) values of
retrotransposons across different tissues, including fruit, flower bud, terminal bud, leaf, and root. The phylogenetic tree classified the transposons into
different clades. B Expression patterns of these retrotransposons at various developmental stages of apple fruit. C Expression profiles of these
domain-existent retrotransposons during exposure to Valsa mali pathogen for 1, 3, and 6 hours, applied to apple leaves.

two adjacent periods] and period-specific non-highly expressed
genes in GDDH13 fruit [log2(fold change) < 1.5 of two adjacent
periods] from specific days. We then cross-referenced this infor-
mation with the synteny data and counted the number of TEs in
proximity to the DEGs in both cultivars. We categorized the posi-
tional relationships between TEs (not considering inside introns or
exons) and genes into three main types and 16 subtypes (Fig. 5B).

Type I and Type II classifications are based on the discrepancy
in the number of TEs near a DEG between the two cultivars,
while Type III signifies the absence of such differences. Among
the 5157 pairs of time-specific DEG pairs, 1173 pairs belonged
to Type I, 1083 pairs belonged to Type II, and 2901 pairs were
classified under Type III (including 1811 pairs categorized as
Type IIIα) (Fig. 5C). Additionally, we identified cultivar-specific
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Figure 5. TE distribution near genes in M. domestica. A Micro-synteny visualization exhibiting high-expression-level transcripts of domain-existent
LTR–RTs in M. domestica cv. ‘Gala’ and M. domestica (GDDH13). Highly-expressed-LTR–RTs (log2(TPM + 1) ≥ 3.5) were shown. B Classification scheme
illustrating the positional and quantitative relationship between TEs and DEGs. C Count of syntenic and period-specific genes in M. domestica cv. ‘Gala’
and M. domestica (GDDH13) (log2(fold change) ≥ 1.5 of two adjacent periods in M. domestica cv. ‘Gala’ fruit on days 29, 36, 43, 57, 71, 85, 99, 113, and 127;
log2(fold change) < 1.5 of two adjacent periods in M. domestica (GDDH13) fruit on days 28, 35, 42, 56, 70, 84, 98, 112, and 126). D Count of syntenic and
period-specific genes in M. domestica cv. ‘Gala’ and M. domestica (GDDH13) (TPM > 32 in M. domestica cv. ‘Gala’ fruit on days 29, 36, 43, 57, 71, 85, 99, 113,
and 127; TPM < 8 in M. domestica (GDDH13) fruit on days 28, 35, 42, 56, 70, 84, 98, 112, and 126).

highly expressed genes in ‘Gala’ fruit and cultivar-specific lowly
expressed genes in GDDH13 fruit. A total of 517 pairs of cultivar-
specific DEG pairs were identified, comprising 135 pairs of Type
I, 140 pairs of Type II, and 242 pairs of Type III (including 168
pairs classified as Type IIIα) (Fig. 5D). For a detailed view of the
syntenic DEGs and their proximal genetic elements, please refer
to the provided list (Supplementary Data S3).

Discussion
Comparative genomics has emerged as a powerful approach
to unravel diverse evolutionary events shaping plant evolu-
tion, including alterations in gene expression, chromosomal
rearrangements, and gene transposition. As the sequencing
of plant genomes continues, our understanding of genome
evolution across different species in the plant kingdom has
expanded significantly. Besides the ongoing polyploidization
of plant species, the activity of TEs stands as a crucial driver
contributing to the vast diversity observed in plant genome
sizes, especially among closely related species sharing a similar
evolutionary history [47]. The coding regions among closely
related plant species exhibit similarity; however, the distribution
and proportions of TEs, notably retrotransposable elements
residing in intergenic regions, display substantial diversity. Our
exhaustive TE analyses, comparing 12 Rosaceae species across
metrics such as number distribution, insertion age, transposition
preferences, functional domains, phylogenetic categorization,
and expression profiling, highlight the expression of LTR–RTs
in response to environmental shifts. Furthermore, our findings

suggest that differential gene expression may be a consequence
of TE insertions.

However, it is important to recognize the present limitations in
sequencing and TE annotation technologies, which might result in
incomplete identification of TEs in genomes enriched with repet-
itive sequences. Hence, our analysis primarily centered on intact
retrotransposons bearing identifiable paired LTRs or distinctive
domains, alongside transposons displaying clear structural char-
acteristics. This focused approach aimed to mitigate potential
errors arising from assembly inaccuracies. As updated versions of
reference genomes for Rosaceae organisms become available in
the future, conducting further analyses will offer an opportunity
to validate the conclusions drawn from this study.

Recent studies focusing on the Arabidopsis, Eutrema, Oryza, and
Helianthus genera have similarly highlighted the strong correlation
between retrotransposable element activity and the evolution
of genome size [47, 50, 51]. These investigations indicate that
estimated insertion times of LTR–RTs can serve as indicators
of evolutionary trends, elucidating whether plant genomes have
expanded or shrunk [50, 51]. Considering the rates of transposi-
tion, accumulation of LTR–RTs and the ratio of solo LTRs to intact
LTR–RTs in the nine Rosaceae genomes (Fig. 2), and assuming that
the rate of DNA loss countering TE insertions in D. drummondii
and C. pinnatifida reflects the general pace of genome evolution
in the Rosaceae family, it is highly plausible that the absence
of LTR–RT accumulation in F. vesca over the last 2 MY suggests
a significant decline in TE activity, thereby facilitating genome
shrinkage. In contrast, the P. bretschneideri genome displays fewer
LTR–RTs with young insertion ages, indicating a recent surge in
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LTR–RT proliferation and pronounced DNA loss within the past
2 MY, resulting in rapid genome shrinkage. Our findings illustrate
that by scrutinizing recent LTR–RT activity and the ratio of solo
LTRs to intact LTR–RTs we can infer patterns in genome size evo-
lution within a relatively short evolutionary timeframe in plants.

In this study, we focused on 12 closely related, fully sequenced
species within the Rosaceae family to explore the relationship
between genome structure and TEs. Initially, we anticipated find-
ing a similar number of intact LTR–RTs in P. bretschneideri, M.
domestica, C. pinnatifida, and E. japonica due to their shared evo-
lutionary trajectories. While determining the precise direction of
species evolution throughout an extensive history is challenging,
inferring the evolutionary trend based on the latest transposition
events of specific TE classes is feasible [47]. Surprisingly, our
observations did not align with this expectation. This disparity
suggests the possibility that P. bretschneideri and other Maleae
plants might have adopted distinct molecular mechanisms to
manage extensive TE transposition despite sharing a common
evolutionary history: P. bretschneideri appears to have employed
an active mechanism, swiftly removing deleterious LTR–RT inser-
tions through preferential DNA removal, whereas, M. domestica,
C. pinnatifida, and E. japonica seem to have employed a passive
mechanism, confining harmless and outdated Gypsy insertions
to gene-poor heterochromatin regions. These differing TE defense
strategies have led to the development of large genomes (such
as those observed in M. domestica, C. pinnatifida, E. japonica, and
R. idaeus), characterized by extensive centromere expansion, and
smaller genomes (notably in P. bretschneideri and F. vesca) undergo-
ing rapid genome downsizing.

TEs have been recognized to influence the expression of
various genes, significantly impacting plant evolution [49, 52].
In perennial fruit species, TE insertions adjacent to genes have
been found to affect numerous agronomic traits, including
parthenocarpic apple fruit [5], increased fruit size in apples [53],
red-skinned phenotype of apples [19], blood orange formation
[54], somatic embryogenesis in citrus [55], obstruction of fruit
development in grapevine [56], generation of somatic variations
in grapevine cluster shape [57], and response to drought stress
in apple [21]. In this study, we identified and selected 3903
genes adjacent to intact TEs and examined their potential
functions using GO enrichment analysis (Fig. 3). Given the ‘cut-
and-paste’ transposing mechanism of DNA transposons, all DNA
transposons are likely to be aged. Genes neighboring aged TEs are
predominantly associated with plant morphogenesis, enzyme
activity, and metabolic processes, whereas genes proximal to
young TEs are focused on resistance to adversity and substance
transport across membranes. Over the course of evolution,
species may eliminate aged TEs that compromise adaptability
to the environment through DNA removal or purifying selection,
while maintaining ancient TEs that play a foundational role
for adaptations, such as transcription factor binding sites
(TFBSs) and enhancer-like elements in genes. Conserved TE
sequences persisting at specific sites for extended periods are
often repurposed and warrant further investigation. Under harsh
environmental conditions, adversity stress is likely to trigger
TE activation, as most TEs remain silent in a genome through
epigenetic silencing [23, 24]. Consequently, a recently inserted
TE near specific genes might play a pivotal role in adapting to
challenging environmental factors.

Typical intact autonomous LTR–RTs involve several essential
proteins for transposition. While our analysis delves into the
variations of LTR–RT expression across different tissues, devel-
opmental stages of fruit, and various experimental treatments

(Fig. 4), the underlying mechanism governing the modulation of
LTR–RT expression under distinct conditions warrants further
investigation. Additionally, the actual expression of these LTR–
RTs in M. domestica cv. ‘Gala’ requires experimental verification.
Future validation may involve the adoption of new measurement
methods for assessing LTR–RT expression or the utilization of
updated versions of RNA-sequencing (RNA-seq) data. Reanalysis
using these advancements will be necessary to validate and rein-
force the conclusions drawn in the present study.

The insertion of TEs within and around genes has been known
to lead to allele-specific expression (ASE) [48]. Building on this
concept, we conducted a meticulous analysis of context elements
associated with syntenic DEGs in two dimensions: varying devel-
opmental stages and distinct varieties. Our investigation catego-
rized the positional relationships between TEs and syntenic DEGs
into the 16 types previously mentioned based on the number
of TEs neighboring the genes. We observed and classified 5157
pairs of syntenic DEGs in M. domestica cv. ‘Gala’ and M. domestica
(GDDH13) across different stages of fruit development, and simi-
larly categorized 517 pairs of syntenic DEGs in these varieties. In
total, 3695 pairs of syntenic and TE-proximal DEGs were identified
in this study, significantly contributing to future genomic research
and molecular breeding in apples. The innovative method devised
in this study for rapid quantification of LTR–RTs holds promise for
application in other plant species with high-quality genomes. Its
utilization is poised to accelerate our comprehension of the role
of TEs in plant evolution, crop domestication, and enhancement.

Conclusions
This study presents a comprehensive investigation into the
genomic evolution of 14 representative Rosaceae plants facilitated
by TEs. Specifically, the distinct evolutionary dynamics of LTR–
RTs reflect the different patterns of genome size changes in
Rosaceae species over the past million years. Genes adjacent
to recent TE insertions are associated with adversity resistance,
while those near previous insertions are functionally enriched
in morphogenesis, enzyme activity, and metabolic processes.
Expression analysis reveals diverse responses of LTR–RTs to
internal or external conditions. Additionally, 3695 pairs of
syntenic DEGs proximal to TEs in M. domestica cv. ‘Gala’ and M.
domestica (GDDH13) suggest that TE insertions may contribute to
varietal trait differences in these apple varieties. These findings
shed light on the pivotal role of TEs in plant genome evolution
within the diverse Rosaceae family.

Materials and methods
Identification of TEs in 14 genomes of Rosaceae
species
All reference genomes were downloaded from public reposito-
ries, including GDR, NCBI, and CNGB (Supplementary Data S1).
The Extensive de novo TE Annotator (EDTA), LTR_retriever, and
TEsorter were used to annotate and classify whole-genome intact
TEs and solo LTRs [16, 58–67]. The LTR assembly index (LAI) and
the insertion time of LTR–RTs were calculated by LTR_retriever
[64, 68]. These calculations were based on the Rosaceae mutation
rate, approximated at ∼4 × 10−9 mutations per site per year [69].

Gene Ontology enrichment of TE-proximal genes
GO enrichment analysis was performed using the R package
clusterProfiler (v4.2.2) [70], qvalueCutoff was selected as 0.2. As
mentioned above, TEs were divided into young LTR–RTs, old LTR–
RTs, and TIR TEs. We conducted a GO enrichment analysis on
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genes proximal to three types of TE across the nine species. The
top five GO terms, determined by the largest number of associated
genes, were utilized as input data for generating the Sankey plot.
The Sankey plot visualization was created using the R package
sankeyD3 (v0.3.2).

Quantification of TE expression
The apple genome (M. domestica cv. ‘Gala’) harbors a diverse
array of Class I order retrotransposons, and benefits from ample
transcriptome data available for analysis. To explore expression
variations within Class I retrotransposon families, we focused on
the apple genome as a model system. We gathered 21 distinct
expression datasets from NCBI, encompassing various tissues,
developmental stages of fruit, and responses to pathogens. These
datasets were consolidated, resulting in a comprehensive tran-
scriptome dataset of 61 samples (Supplementary Data S2). Utiliz-
ing pseudoalignment methods applied to RNA-seq data by Kallisto
(version 0.48.0) [71], we quantified the expressions of structurally
intact TEs across diverse conditions. The coding regions of struc-
turally intact TEs were retrieved using the gff2seq.py script from
TEsorter [58]. Both coding regions of TEs and genome-wide anno-
tated genes are used as the reference required in Kallisto.

Multiple sequence alignment and phylogenetic
analysis
The GAG, AP, INT, RT, and RH domains of identified LTR–RTs were
used for phylogenetic analysis. Sequence alignment analysis was
performed using MAFFT (v7.310) with default parameters [72]. ML
trees were constructed for the trimmed alignments with IQ-TREE
(v.2.0.3) using ModelFinder for the best-fitting evolutionary model
and UFBoot2 for branch support values [73–75]. The resulting
phylogenetic trees were visualized with iTOL [76]. To unravel the
evolutionary trajectory of retrotransposons in M. domestica, we
curated a dataset comprising 222 domain-existent retrotranspo-
son (including 100 structure-intact retrotransposon) sequences
exhibiting a minimum TPM value >1 across the various conditions
mentioned above. This dataset was utilized to reconstruct a novel
phylogenetic relationship within M. domestica cv. ‘Gala’.

Synteny analysis of genes
The synteny relationship of genes in ‘Gala’ and GDDH13 was
generated with the SynNet-Pipeline, which is available at https://
github.com/zhaotao1987/SynNet-Pipeline [77]. To visualize highly
expressed LTR–RTs and their proximal genes, we used JCVI to
achieve microsynteny visualization [78].

Statistical analyses
Correlation statistics were calculated using the stats package in
R. We used the R package rstatix (v0.7.2) for Spearman testing of
the number of TEs and genome sizes.
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