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Abstract

Plant–insect interactions are often influenced by host- or insect-associated metagenomic community members. The relative abundance
of insects and the microbes that modulate their interactions were obtained from sweetpotato (Ipomoea batatas) leaf-associated
metagenomes using quantitative reduced representation sequencing and strain/species-level profiling with the Qmatey software.
Positive correlations were found between whitefly (Bemisia tabaci) and its endosymbionts (Candidatus Hamiltonella defensa, Candidatus
Portiera aleyrodidarum, and Rickettsia spp.) and negative correlations with nitrogen-fixing bacteria that implicate nitric oxide in
sweetpotato–whitefly interaction. Genome-wide associations using 252 975 dosage-based markers, and metagenomes as a covariate to
reduce false positive rates, implicated ethylene and cell wall modification in sweetpotato–whitefly interaction. The predictive abilities
(PA) for whitefly and Ocypus olens abundance were high in both populations (68%–69% and 33.3%–35.8%, respectively) and 69.9% for
Frankliniella occidentalis. The metagBLUP (gBLUP) prediction model, which fits the background metagenome-based Cao dissimilarity
matrix instead of the marker-based relationship matrix (G-matrix), revealed moderate PA (35.3%–49.1%) except for O. olens (3%–10.1%).
A significant gain in PA after modeling the metagenome as a covariate (gGBLUP, ≤11%) confirms quantification accuracy and that the
metagenome modulates phenotypic expression and might account for the missing heritability problem. Significant gains in PA were
also revealed after fitting allele dosage (≤17.4%) and dominance effects (≤4.6%). Pseudo-diploidized genotype data underperformed
for dominance models. Including segregation-distorted loci (SDL) increased PA by 6%–17.1%, suggesting that traits associated with
fitness cost might benefit from the inclusion of SDL. Our findings confirm the holobiont theory of host–metagenome co-evolution and
underscore its potential for breeding within the context of G × G × E interactions.

Introduction
Sweetpotato (Ipomoea batatas) plays a significant role in addressing
global hunger and malnutrition; however, the impact of major
pests, such as whiteflies (Bemisia tabaci) and sweetpotato
weevils (Cylas spp.), is still a significant concern for farmers
[1]. While whiteflies do not directly target the harvestable part
(storage roots) of the crop like weevils do, they feed on phloem
sap, consequently reducing plant growth rate and yield [2].
Additionally, pathogen transmission that negatively affects yield
often occurs through wounding sites [3]. The investigation of
the metagenome is important for understanding multipartite
and multitrophic interactions that directly or indirectly modulate
host phenotypic expression. Beneficial microbes within the host-
associated metagenome can enhance plant growth and protect
plants from pathogens and pests. Earlier studies have highlighted
the host-adapted metagenome as a potential source of beneficial
organisms [4]. Identifying and/or selecting alleles that drive

the recruitment of these beneficial microbes can expand the
repertoire of the defense response, in addition to host resistance.

Investigating multiway interactions within metagenomic com-
munities provides insights into how plant defense pathways are
modulated. While high population pressure from foliar pests
can cause direct damage to plants and crop yield, low popula-
tion pressure can result in yield loss when the pests transmit
viral pathogens. In severe cases, viral infections transmitted by
these pests can result in yield losses ranging from 30% to 50%
and, in some instances, total yield losses of up to 99% [5, 6].
These viruses can consequently be transmitted vertically through
planting materials, seeds, and pollen [7]. These viruses have also
demonstrated the ability to predispose plants to fungal and bac-
terial infections that contribute to a further reduction in produc-
tivity. Of particular concern are insect vectors, such as whiteflies,
thrips, and aphids, that feed on the phloem and mediate a diverse
array of plant–viral pathosystems [8].
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Herbivorous insects have co-evolved with their plant hosts,
developed effectors that manipulate the host defense response,
and altered resource allocation patterns to their advantage.
On the contrary, when attacked by herbivores, the plant host
undergoes changes in resource allocation, such as compensatory
growth responses, which can impact other organisms that
obtain nutrition from the plant [9]. The plant has evolved to
recognize pathogens and trigger a defense response against the
invading organisms. Plant defense response to herbivory involves
dynamic and intricate systems, including hypersensitive response
(HR), production of toxic chemicals and volatiles, establishment
of structural barriers, and the attraction of predators. While
the mechanisms underlying HR and its physiological and
ultrastructural consequences are often assumed to be highly
conserved across higher plants and typically associated with
viral, bacteria, fungal, and oomycetes pathogens, HR can also
be triggered by insects [10]. The ethylene and jasmonic acid (ET–
JA) signaling pathway plays a pivotal role in mediating induced
plant defenses [11]. This crosstalk between ET-JA pathway can
give rise to the synthesis of volatile organic compounds (VOCs)
that function as airborne signals. These VOCs play a crucial role
in deterring herbivores, either by attracting their predators or
directly repelling them [12].

While an understanding of the genetic and mechanistic
basis for host resistance can facilitate solutions targeted toward
crop protection, breeding programs often depend on predictive
models for crop improvement. Traditional breeding methods
face limitations in achieving rapid breeding for polygenic traits
and the complex genetics of polyploid crops. By accounting for
allele dosage in polyploids, genomic prediction can accurately
and rapidly enhance selection and advance genotypes with
favorable alleles [13]. Genomic selection can expedite the process
by pinpointing individuals with higher rates of genetic gain for
specific traits. Factors that can enhance genomic prediction
accuracy include incorporating dominance effects across various
dosage models, selecting the best genomic model, and considering
factors such as population structure, microbiome modulation of
phenotypic expression, sample size, genetic architecture, and the
number of markers used [14]. The implementation of genomic
selection, a form of marker-assisted selection, is often restricted
by the host genotype, microbiome, and environment interactions
(GH × GM × E), i.e. the change in genotype response to a change
in metagenomic community composition and environment.
Studies have accounted for the latter two components during
genomic prediction by modeling the metagenome/microbiome
and environment as covariates [15].

Recent advancements in data acquisition and sequencing tech-
nologies offer unprecedented opportunities for investigating com-
plex traits and genes that control broad-spectrum and durable
resistance. While low- and high-throughput phenotyping of plant
diseases can be informative, they have inherent limitations, par-
ticularly in diseases that are asymptomatic or where symptoms
are highly variable and influenced by abiotic and other biotic
factors. Earlier studies have deployed phenotype-free assays to
assess the abundance of pathogens and pests using molecular
techniques such as quantitative or real-time polymerase chain
reaction (qPCR), enzyme-linked immunosorbent assay, and loop-
mediated isothermal amplification assay [16]. Although these
quantitative assays are often straightforward, sometimes cost-
effective, and target the pathogen of interest, the pathogen abun-
dance is not always correlated with disease symptoms since other
biotic factors also drive variation in disease symptoms, particu-
larly disease complexes.

In this study, we aim to overcome some of these limitations
by employing a quantitative reduced representation sequencing
(qRRS) assay to simultaneously measure the abundance levels
of pests of interest and the associated metagenomic community.
This approach offers similar sensitivity and precision as shotgun
metagenome sequencing but at a low cost [17]. Consequently,
it is amenable to metagenomic studies at a population-level
scale. The qRRS method offers a taxonomically comprehensive
profile and a more holistic approach to understanding disease
outcomes as a product of plant–pathogen–microbe interactions
[17]. This study focuses on the plant–insect interactions within
sweetpotato leaf metagenomes of biparental and diversity popu-
lations. The aims include (i) identifying community members that
modulate plant–pest interactions, (ii) understanding the genetic
basis for the sweetpotato–whitefly interaction, and (iii) evaluat-
ing the genomic prediction abilities for the abundance of the
pests while comparing various parameters (i.e. metagenome as a
covariate, level of genetic diversity, allele dosage, and relationship
matrices) within the various prediction models. The holobiont-
aware analysis is based on the premise that the host and the
core set of the metagenome exist as a single evolutionary unit
and community members modulate host phenotypic expression.
While traditional plant genomic approaches have predominantly
focused on the host genome, our study explores the holobiont
theory to enhance genomic predictions and accurately identify
genetic factors underlying traits.

Results
Variant calling
Using high-throughput quantitative reduced representation
sequencing (qRRS), we obtained genome-wide data of sweetpotato
individuals and component genomes of their leaf-associated
metagenomic community members. The median, mean, max-
imum, and minimum read depth in the biparental population
are 128, 118, 280, and 45, respectively, while they are 132, 107,
446, and 45, respectively, in the diversity population. The median,
mean, maximum, and minimum mapping rates in the biparental
population are 93.5%, 93.28%, 94.83%, and 90.8%, respectively,
while they are 93.89%, 93.54%, 94.51%, and 89.6%, respectively, in
the diversity population. A total of 252 977 (File S1) and 127 287
(File S2) variants (SNPs and indels) were used for both GWA and
genomic prediction in the diversity and biparental population
(49 334 after filtering for segregation distorted loci (SDL); File S3),
respectively. The proportion of dosage-based genotypic classes
varied from 5% to 42% in the diversity population and from 4% to
29% in the biparental population before SDL filtering and 3% to
42% after SDL filtering (Fig. S1). While nulliplex markers account
for the highest proportion of markers in the diversity population
(nulliplex: 42%), simplex markers accounted for the highest
proportion of markers in the biparental population (simplex: 29%
when SDL are included and 42% when SDL are excluded). The
distribution and density of markers across chromosomes had
similar trends between the two populations (Fig. S1).

Host–insect–microbiome interactions
The metagenome is comprised of taxa across a broad range of
taxonomic groups spanning viruses to eukaryotes (Files S4-S5).
This study focuses on insect species (B. tabaci, F. occidentalis, and
O. olens) that are well represented in each population (Fig. 1).
The leaf metagenome profiles were obtained for 767 accessions
(File S4) and 454 F1 progenies (File S5) from the USDA germplasm
representing global diversity and the biparental population,
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respectively. B. tabaci and O. olens were found in a total of 153
and 318 accessions in the diversity population, respectively,
while B. tabaci, F. occidentalis, and O. olens were found in a total
of 304, 315, and 340 F1 progenies in the biparental population,
respectively.

While the metagenomic profile was resolved down to the
strain level, the species level profile identified more taxa and
was used for further analysis. In the diversity population, 2503,
4028, and 1732 taxa were identified at strain, species, and genus
levels, respectively. In the biparental population, 1622, 2936, and
1304 taxa were identified at strain-, species-, and genus-level,
respectively. At the species level, after filtering for taxa that are
present in at least 5% of the diversity and biparental populations,
a total of 297 and 301 taxa were retained, respectively. Although
the metagenome is comprised of more taxa in the diversity
population, there are more taxa identified in the biparental
population after filtering for taxa that are found in at least 5%
of individuals in the population (Fig. 1). While the bacterial taxa
dominate (i.e. based on species diversity and relative abundance)
the metagenome in the biparental and diversity populations,
there were some differences observed in species composition.
The phylum Pseudomonadota (majorly Pseudomonas spp, followed
by Pantoae spp, and Sphiongomonas spp) quantitatively dominate
the diversity population metagenome, followed by viruses. In
the biparental population, the phylum Pseudomonadota and
Actinomycetota had approximately equal representation of the
species abundance, with both dominating the metagenome.
In the biparental population, where there is higher bacterial
species diversity (Fig. 1), Pseudomonas spp. remains one of the
two dominant species (including Curtobacterium). The biparental
population metagenome also had a higher proportion of fungal
and Arthropoda species but viral abundance was much lower in
the biparental population.

A total of twenty arthropods, comprising insects and mites,
were identified, with notable pests that cause significant yield
losses and quality reduction in infested sweetpotato [33]. B. tabaci,
F. occidentalis, Thrips urticae, O. olens, Cerceris rybyensis, and The-
cophora atra were consistently found across all populations, while
the remaining species were specific to one population (Fig. 1).
Bemisia tabaci, F. occidentalis and T. urticae, identified from the
sweetpotato leaf-associated metagenome, have been previously
reported in association with sweetpotato crops [33, 34]. Ocypus
olens, known for preying on spiders and other small insects, is
identified as a predator interacting with sweetpotato [35].

Multipartite and multitrophic interactions
involving B. tabaci
To minimize zero-inflation issues typically associated with
metagenome datasets, taxa appearing in less than 5% of samples
in a population were eliminated before performing CCLasso-
based correlation analyses. As expected in both the diversity
and biparental population, moderate and positive correlations
were revealed between B. tabaci and its endosymbionts, i.e.
Candidatus Hamiltonella defensa, Candidatus Portiera aleyrodidarum,
and Rickettsia endosymbiont of B. tabaci (Fig. 1A and File S6). The
correlations were slightly stronger in the diversity population
(Fig. 1; 0.50, 0.54, and 0.54, respectively) than in the biparental
population (Fig. 1B and File S7; 0.40, 0.41, and 0.40, respectively).
High and positive correlations (0.71–0.81) were found among these
endosymbionts but not with other insects and mites. Additionally,
B. tabaci, Candidatus Hamiltonella defensa, and Candidatus Portiera
aleyrodidarum had significant positive correlations (0.17, 0.16, and
0.17, respectively) with Albugo laibachii, an oomycote known to

induce host plant susceptibility to parasites by compromising the
plant’s defense response (Fig. 1; [36]).

A negative correlation was observed with two plant growth-
promoting bacteria, Mesorhizobium sp. (−0.16) and Azospirillium
sp. (−0.15), and B. tabaci. While B. tabaci and the virus (sweet-
potato leaf curl virus) it transmits were found in the sweetpotato
leaf metagenome (Files S6-S7), significant correlations underly-
ing the insect–viral interaction were not found by the CCLasso
network correlation analysis. However, a weak correlation (0.13)
was observed between B. tabaci and sweetpotato leaf curl virus
using the Spearman correlation analysis. Although probably indi-
rect interactions, noteworthy are the weak and negative correla-
tions observed between the endosymbionts of B. tabaci, Candidatus
Hamiltonella defensa (−0.17) and Candidatus Portiera aleyrodidarum
(−0.15), and Rhizobium sp., a bacterial genus known for promoting
plant growth and defense [37]. These metagenomic data and cor-
relations underscore evidence for multipartite and multitrophic
interactions between B. tabaci and various microbes that influence
the host plant’s defense response.

Sweetpotato genetic factors underlying
abundance of B. tabaci
A genome-wide association analysis (GWA) was performed to
understand the genetic basis and identify the candidate genes
and pathways that control the host–insect interaction between
sweetpotato and B. tabaci. To determine if other members of the
metagenomic community play a role in the host–insect interac-
tion, GWA was performed with and without the metagenome as
a covariate (Fig. S2). The metagenome was used as a covariate
in the linear mixed model and observed to reduce false positive
rates. Using the stringent Bonferroni threshold, all significantly
associated SNPs were identified only in the dominance models
(1-dom-ref, 2-dom-ref, and 3-dom-ref), while there were no signif-
icantly associated SNP in the additive model at both the FDR and
Bonferroni thresholds and regardless of fitting the metagenome
as a covariate (Fig. 2). The candidate genes were selected based on
their proximity to the most significantly associated SNP (lowest P
value) and were supported by two or more significantly associated
SNPs. The most significantly associated SNPs were all colocalized
within gene sequences (Table S1). The QQ-plot was also used
to select models that did not suffer from high false discovery
rates (Fig. S2). The candidate genes orthologs are involved in plant
defense response to herbivory. These genes include ACC oxidase
(1-aminocyclopropane-1-carboxylic acid oxidase), β-d-xylosidase,
lignin-forming anionic peroxidase, no pollen germination related
1 (NPGR1), and an armadillo repeat kinesin.

Impact of genetic diversity, metagenome, allele
dosage, and relationship matrices on PA
Various GBLUP models (i.e. GBLUP-A, GBLUP-AD, and GBLUP-D)
were run with pseudo-diploidized (2×) and 6× dosage genotype
datasets. A gBLUP model that used a metagenome-based Cao
dissimilarity matrix was also fitted in the mixed linear model for
prediction instead of the marker-based GBLUP models. The impact
of metagenome as a covariate and the level of genetic diversity
(diversity vs. biparental population) was also evaluated across all
the models. These analyses were performed to predict the relative
abundance levels of three insect species across the diversity (B.
tabaci and O. olens) and biparental (B. tabaci, F. occidentalis and
O. olens) populations. The holobiont-aware genomic prediction
models (gGBLUP: metagenome-enabled GBLUP), using members
of the metagenome that are correlated with the taxa of interest
as covariates, aims to capture the role of the metagenome/
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Figure 1. Sunbursts showing the species-level relative abundance of taxa in the leaf-associated metagenomes of the diversity (A) and DC biparental (B)
populations (from center to outer ring: phylum, genus, and species). For each population, taxa within the phylum Arthropoda (insects and mites) are
shown in the top right sunbursts of each panel, and a subset of the correlation network is shown to highlight significant interactions with Bemisia tabaci.

microbiome in the modulation of host–insect interactions. B.
tabaci and F. occidentalis are sap-sucking herbivores, while O. olens is
a predator that might indirectly interact with sweetpotato plants.

Using the metagenome alone (gBLUP), without the G-matrix,
moderate PA were achieved for B. tabaci (49.1% and 35.3% in diver-
sity and biparental populations, respectively) and F. occidentalis
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Figure 2. Manhattan plot showing results of dosage-sensitive genome-wide association analysis in the USDA sweetpotato diversity population. The
candidate genes underlying the sweetpotato-whitefly interactions are supported by two or more association SNP. The horizontal dashed lines indicate
the Bonferroni (upper line) and FDR (lower line) thresholds, respectively.

(40.9% in biparental population). The likely indirect interaction
between sweetpotato and O. olens was marked by low PA of 10.1%
and 3% in diversity and biparental populations, respectively. The
highest predictive ability in the diversity population was 69% and
35.8% for B. tabaci and O. olens, compared to 68% and 33.3% in the
biparental population, respectively (Figs 3 and 4). The PA based on
the metagenome-enabled GBLUP models was significantly higher
across all models for B. tabaci in both biparental and diversity
populations The improvement in PA ranged from 3.9% to 11%
in the diversity population and 0.4% to 1.8% in the biparental
population. The genomic prediction model for B tabaci in the
diversity population benefited more from the metagenome as a
covariate than in the biparental population. For F. occidentalis and
O. olens, there was no significant difference in PA across most of
the models when assessing the impact of the metagenome as a
covariate (Fig. 5).

For comparison between the pseudo-diploidized (2×) and
dosage (6×) models, the 6× dosage models consistently out-
performed the 2× models across most of the models and taxa
evaluated, except for a few cases with the additive model. The gain
in PA due to using 6× dosage genotype data was as much as 17.4%
(Fig. 5). For comparison between additive and dominance effects,
higher PA values were revealed for the GBLUP-D when using 6×
dosage data, but the contrary was the case for the 2× pseudo-
diploidized data. It should be noted that models that use the 2×
pseudo-diploidized models often produced lower PA, particularly
when modeling dominance effects (Figs 3–5). It should also be
noted that re-coding the 6× dosage data as 2× pseudo-diploidized
genotype leads to loss of dosage information, adding to lower PA
when modeling dominance effects in polyploids. In the biparental
population, the impact of filtering segregation distorted loci (SDL)
on PA was evaluated. PA was higher for all models when SDL was

included in the genotypic data used for computing the G-matrix.
Gain in PA due to including SDL ranged from 6.4% to 10.4%, 9.8
to 17.1, and 6% to 9.6% for B. tabaci, O. olens, and F. occidentalis,
respectively (with SDL: Fig. 3; without SDL: Fig. S3). To improve
confidence in candidate gene selection, we performed local LD
analyses for each significantly associated variant. The region
around the associated variant on Chr13, based on the 1-dom-ref
model, had relatively higher LD spanning multiple possible genes
(Figs S4–S8).

Impact of marker density on PA
To determine optimal marker density for genomic prediction
in sweetpotato, PA was estimated based on marker densities
ranging from 100 to 40 000 markers in both the diversity and
biparental population (Fig. 6). The analysis was limited to the
GBLUP-A model, 6× dosage data, and without metagenome as
a covariate. A similar trend was found in both populations as
PA increased with increasing marker density until it plateaued
at 10 000 markers. There was no significant difference between
marker density from 10 000 to 40 000 markers. The optimal marker
density at 10 000 markers provided 3% to 6.7% more PA than
the typical 2000- to 5000-marker density typically used in most
genomic prediction studies.

Discussion
In this study, we demonstrate the implementation of metagenome-
enabled genome-wide association analysis (GWA), metagenome-
wide association analysis (MWAS), and genomic prediction in
hexaploid sweetpotato. We utilize genome-wide data along with
species-level metagenomic profiles obtained simultaneously
from a Next-Generation Sequencing (NGS) based assay (qRRS).The
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Figure 3. Boxplot showing prediction abilities of abundance of Bemisia
tabaci and Ocypus olens in the sweetpotato USDA diversity population.
The means comparison, based on the Duncan multiple range test,
shows significant differences between models. The horizontal line
within each box indicates the median (value in each box), while the
diamonds indicate the mean.

background method, without the G-matrix, was also used for
prediction. Plant–pest interactions were evaluated by estimating
the abundance of insects from the relative abundance of DNA
present in the metagenome. We present key findings as follows (i)
based on correlation analysis of the compositional data, species-
level profiling found multipartite and multitrophic interactions,
some of which corroborate known interactions. These correlations
identified biologically relevant organismal interactions that
underscore host–metagenome co-evolution and modulate seem-
ingly unrelated traits, e.g. whitefly-rhizobia antagonism might be
relevant to herbivory resistance based on the nitrogen status in
the form of nitric oxide [38, 39]; (ii) candidate genes identified from
GWA implicate the ethylene-dependent plant defense response
pathway and cell wall modification as important for resistance
to the sap-sucking whitefly; (iii) holobiont-aware models reduce
GWA false-positive rates and can improve PA; (iv) modeling allele
dosage (6×) and digenic dominance G-matrix perform better
for prediction than pseudo-diploidized genotypes and additive
relationship matrix, respectively; and (v) optimal PA was achieved
at a marker density of 10 000 in both the diversity and biparental
populations.

The correlation network analysis enabled the identification of
endosymbionts directly or indirectly interacting with host plants.
Positive correlations with insects suggest potential synergistic
interactions. Bacterial symbionts have been shown to play
key roles in insect reproduction, immunity, and nutrition [40].
These interactions can extend to multiway interactions; for
example, Zhao et al. [41] revealed that viruses can manipulate
and reprogram plant immunity to improve the performance of the

Figure 4. Boxplot showing prediction abilities of the abundance of
Bemisia tabaci, Frankliniella occidentalis, and Ocypus olens in the
sweetpotato DC biparental population based on marker data that
includes segregation distorted loci. The means comparison, based on
the Duncan multiple range test, shows significant differences between
models. The horizontal line within each box indicates the median (value
in each box), while the diamonds indicate the mean.

insect vector but suppress the performance of nonvector insect
herbivores. Specific interactions can have unknown far-reaching
global consequences that drive other important host–microbe
interactions.

One of the major drawbacks of GWAS is that the analysis
often identifies spurious associations even after controlling pop-
ulation structure. Likewise, due to multipartite interactions, other
biotic factors can lead to spurious associations. We posit that
accounting for these multipartite and multitrophic interactions
can significantly reduce spurious associations. For example, sev-
eral studies have revealed antagonism between the jasmonic acid
(JA) and salicylic acid (SA) pathways, so that the host becomes
more susceptible to a group of organisms that are limited by the
downregulated defense response pathway [42]. Implementation
of a metagenome-enabled GWA reduced false-positive rates in
this study, as shown in the QQ-plot and Manhattan plots. Signif-
icantly fewer and well-defined regions of the genome retained
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Figure 5. Heatmap showing improvement in predictive ability (PA) based on models with and without metagenome as a covariate, 6× dosage vs.
pseudo-diploidized genotypic data, and GBLUP-D versus GBLUP-A. The positive values indicate a gain in PA, while the negative values indicate reduced
PA. PA values in the yellow text are not significantly different changes.

Figure 6. Effect of marker density on prediction ability for the DC bi-parental and the USDA diversity population. The genomic prediction model is
based on the GBLUP-A, 6× dose markers, and without metagenome as a covariate. The means comparison, based on the Duncan multiple range test,
shows a significant difference between marker densities.

associations after dropping spurious hits. This resulted in can-
didate genes that are more functionally relevant to the trait of
interest. We successfully pinpointed herbivory-limiting candidate
genes that were supported by multiple SNPs and based on the
stringent Bonferroni threshold. These candidate genes were only
found in the dominance models, downplaying the role of additive
effects in sweetpotato–whitefly interaction.

It is worth noting that association analyses (QTL or GWAS)
for resistance to sweetpotato insect pests are limited as most
sweetpotato disease studies have primarily focused on microbial
pathogens. Our study addresses this gap by providing a practical
and straightforward approach to estimating the level of pest
infestation. ACC oxidase plays a pivotal role in ethylene biosyn-
thesis, a hormone linked to plant stress responses. Research has
substantiated that ACC oxidase proteins play a crucial role in
enabling plants to respond to biotic stress by up-regulating the
production of ethylene [43]. Studies have also suggested an intri-
cate interplay between ET) and JA through the ET/JA-mediated
signaling pathways, which co-regulates the expression of genes
involved in plant defense [11]. β-d-xylosidase is an enzyme
that plays a crucial role in the breakdown of hemicellulose, a
component of plant cell walls. This corroborates knowledge about
cell wall thickness and lignification as the basis for the first line
of defense against feeding by herbivores [44]. The lignin-forming
anionic peroxidase catalyzes the formation of lignin polymers by
forming rigid cross-links between lignin, cellulose, and extension
in the secondary plant cell wall. The observed association

underscores the importance of lignin in plant defense mecha-
nisms by reinforcing cell walls and deterring herbivore feeding.
The Glutathione S-tansferase Tau gene plays critical roles in
detoxification, stress tolerance, and antioxidative defense in
plants [45]. Their involvement in plant–pathogen interactions
Armadillo repeat kinesin genes, versatile anterograde trans-
porters in plants, are believed to play roles in intracellular
transport and transport of organelles [46]. Chloroplast movement,
positioning, and accumulation at the site of infection have
been described as an effective defense response mechanism by
providing pathogen penetration resistance or acting as the main
source of ROS formation [47].

Following the evaluation of various parameters across genomic
prediction models, using the diversity population, metagenome as
a covariate, 6×-dose genotypes, and the dominance model were
superior to their alternative options. While the expectation is
that predictive abilities will be higher in a genetically less diverse
biparental population, our results consistently show similar PA.
It is expected that allele dosage will be critical for genomic
prediction in polyploids, particularly for traits where dominance
effects are important. While GBLUP-D produces higher PA than
GBLUP-A, the exception was the case for models based on pseudo-
diploidized 2× data. This is expected since a significant amount
of dosage information is lost during pseudo-diploidization of the
6×-dose genotypes. Consequently, this does not indicate that the
GBLUP-A outperforms GBLUP-D, rather, the pseudo-diploidized 2×
genotype data lacks the dosage information required to accurately
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model the dominance relationship matrix. The G-matrix used for
genomic prediction often models additive genetic effects due to
the challenges of incorporating dominance effects as a result
of factors, such as a high allele dropout rate. It is even more
challenging in polyploids where the number of alleles required
to produce a dominant phenotype is variable (i.e. 1–5 doses in
hexaploid sweetpotato). The allele dose-sensitive sequencing
(qRRS), dosage-based variant calling pipeline, and the model
by Slater et al. [29] have significantly improved our ability to
capture dominance effects in the G-matrix. This is particularly
important for breeding in polyploid crops. When dominance plays
a significant role in trait expression, modeling dominance effects
is desired since superior trait values are maintained in a higher
proportion in a population. This is particularly true when a single
dose of the dominant allele is required to express the dominant
phenotype.

As expected, higher PA were observed in B. tabaci and F. occi-
dentalis that form close interactions with the sweetpotato host.
The PA for GBLUP, gGBLUP, and gBLUP of O. olens were consistently
lower in both populations, indicating that this is an indirect
interaction with the host plant. Studies on oviposition behavior
revealed that B. tabaci and F. occidentalis insert their eggs into plant
leaf tissue, while O. olens don’t. Considering the size of O. olens and
the limited interaction with living plant tissue (interaction based
on predation of plant pests), O. olens is unlikely to leave a signifi-
cant amount of its DNA behind on the plant leaf. It is possible the
BLAST match of the metagenome reads is identifying a species
closely related to O. olens but whose sequences are absent in the
NCBI database. Besides improving genomic predictive ability, the
modeling of the background metagenome alone (i.e. without the
G-matrix) for predicting relative abundance highlights its key role
in modulating phenotypic expression.

Conclusion
Our findings confirm the holobiont theory of host–metagenome
co-evolution and that the concept can be applied to significantly
improve the accuracy of genomic estimated breeding values.
Using only variation in the host genome for genomic prediction,
predictive accuracy is typically limited by missing heritability
problems. Therefore, we propose that considering the variation
attributed to the host-associated metagenome could effectively
mitigate certain aspects of the missing heritability problem.There
is growing interest in the implementation of metagenome-
enabled genomic prediction [48]. While some traits may be
perturbed to a lesser degree by the metagenome, it is expected
that the approach will be amenable to agronomic traits such as
disease resistance, stress tolerance, nutrient acquisition in plants,
feed efficiency, obesity in animals, and methane production in
ruminants.

Materials and methods
Plant materials
A USDA diversity population representing global genetic diversity,
composed of 767 sweetpotato accessions, and a DC biparental
population, composed of 454 sweetpotato F1 progenies, were used
to determine the impact of high and low genetic diversity on
genomic prediction. The diversity population was also used to per-
form a genome-wide association analysis. The diversity popula-
tion accessions were obtained as tissue culture-derived plantlets
from the USDA, ARS PGRCU germplasm repository (Griffin, GA,
USA) and then maintained in a greenhouse at the USDA-ARS

Vegetable Laboratory (Charleston, SC, USA). The biparental popu-
lation was derived from a cross between DM04-001 (also known as
NCDM04-001) and Covington (DC biparental population). The DC
biparental population was obtained from germinated seeds and
maintained in a greenhouse at NC State University (Raleigh, NC,
USA). The parents, DM04-001 and Covington, of the DC biparental
population have contrasting characters. DM04-001 has high dry
matter, purple-reddish skin, and light-yellow flesh, while Cov-
ington has low dry matter, rose skin, and orange flesh high in
β-carotene.

DNA extraction, qRRS library preparation, and
sequencing
Young and fully expanded sweetpotato leaves were sampled from
the greenhouse plants and used for total genomic DNA extraction.
The lyophilized leaf tissue samples of the diversity population
were subjected to DNA extraction using a DNeasy Plant Mini Kit
(Qiagen), while fresh leaf samples of the biparental population
were frozen in liquid nitrogen and subjected to DNA extraction
based on a modified CTAB-based protocol [18]. DNA purity and
concentration were assessed with NanoDrop 2000 spectropho-
tometer (ThermoFisher). The samples were then quantified with
the Invitrogen Quant-iT™ PicoGreen™ dsDNA Assay and normal-
ized to 100 ng/ul. A GBSpoly NGS library preparation (a previous
version of the library preparation method now termed OmeSeq-
qRRS following protocol modifications) was previously described
by Wadl et al. [19]. The library preparation and sequencing were
performed to simultaneously obtain sequences for variant calling
and metagenome profiling. The normalized DNA samples were
double digested with CviAII and TseI and then ligated to barcoded
adapters with 6 to 9 bp variable length barcodes downstream of
6-bp buffer sequences. The sequence composition ensures that
the restriction recognition sites are not reconstituted. The pooled
samples were double-digested with the same enzymes (CviAII and
TseI) to remove chimeric fragments. Fragments were size selected
for 300 to 600 bp fragments using the Blue Pippin Prep System
(Sage Science), enriched with 18 cycles of PCR (NEB Phusion high-
fidelity polymerase, New England Biolabs), size-selected again for
300 to 600 bp fragments, and sequenced on the Illumina HiSeq
2500 system.

Demultiplexing, quality filtering, variant calling,
and metagenome profiling
As previously described [19], the Illumina NGS fastq data were
demultiplexed and quality filtered using the ngsComposer
pipeline [20]. The reads were consequently used for variant calling
using the GBSapp pipeline (https://github.com/bodeolukolu/
GBSapp). The dosage-based variant calling of the hexaploid (6×)
sweetpotato and variant filtering parameters were previously
described by Wadl et al. [19]. The reads were aligned against
the diploid Ipomoea trifida and Ipomoea triloba reference genome
assemblies (http://sweetpotato.uga.edu/; [21]). Only variants
derived from conserved sequences mapping to both genomes
were used for downstream analysis. Since sweetpotato is an
allo-autopolyploid, the GBSapp variant calling and filtering
pipeline uses the closest putative ancestral diploid progenitor (I.
trifida) and the most distantly related diploid within the batatas
species complex (I. triloba) as reference genomes. Consequently,
conserved sequences between I. trifida and I. triloba genomes are
expected to be likely found in other crop wild relatives and the
hexaploid sweetpotato genomes. Consequently, the dosage would
be expected to be 6× dose (6 haplotypes). The SNPs were anchored
to the I. trifida reference genome. Following variant filtering,
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252 977 (File S1) and 127 287 (File S2) variants were used for
downstream analyses in the diversity and biparental populations,
respectively. After filtering to exclude segregation-distorted loci
in the biparental population, a total of 49 334 variants were kept
(File S3). The variant filtering parameters include a read depth
threshold of 45 at each genotype call, a minor allele frequency
(maf) threshold of 0.05, and no more than 20% missing data across
variants and samples.

Using the same fastq files, metagenome profiling was
performed with the Qmatey pipeline (https://github.com/
bodeolukolu/Qmatey; [17]). The metagenome analysis in the
Qmatey pipeline involved an initial removal of host-derived
sequences (about 98% of reads that matched the diploid reference
genomes). The reads that did not map to the I. trifida reference
genome were then used for taxonomic identification and
quantitative profiling using the NCBI nt database. Details on
the Qmatey metagenome analytical workflow are described in
Adams et al. [17].

Holobiont-aware genome-wide association
analysis
Genome-wide association analysis (GWA) was performed with the
GWASpoly R package [22], using various dosage models (addi-
tive, 1-dom-ref, 1-dom-alt, 2-dom-ref, 2-dom-alt, 3-dom-ref, and
3-dom-alt models). The trait data were derived from the relative
abundance of B. tabaci, which was obtained from the metagenomic
profiles. The additive genomic relationship matrix, based on the
6× dosage variant data, was used to account for population struc-
ture and computed based on the VanRaden method [23] in the
AGHmatrix R-package [24]. To perform a metagenome-enabled
GWA, a CCLasso-based correlation analysis (correlation inference
for compositional data through Lasso; [25]) was performed and
a correlation coefficient threshold of ±0.1 was used to determine
taxa that should be included in the model. To minimize the impact
of high zero-inflated values typical of metagenomic datasets,
relative abundance values of zero for B. tabaci were considered
missing values, and associated samples with zero values were
excluded. Consequently, 153 sweetpotato samples were retained
for GWA. In the subsetted sample set, zero values were kept for all
other taxa (i.e. members of the metagenome that are correlated
with B. tabaci). The correlated taxa (a subset of the metagenome)
were used as covariates by performing a principal component
analysis (PCA) and then the first three principal components were
fitted as fixed effects in the GWAS linear mixed model, which is
specified as:

y = Wα + Xβ + Zu + ε,

where α is a c-vector of specified covariates (fixed effects) corre-
sponding coefficients including the intercept; β = vector consisting
of fixed effects of each SNP being tested; u = vector of the random
additive genetic background effects associated with the lines;
e = vector of residual effects, and W, X, and Z are the incidence
matrices that relate y to each of α, β, and u, respectively. The
relative abundance of taxa used is based on taxa that are corre-
lated with the taxa of interest following a CCLasso-based correla-
tion network analysis implemented within the Qmatey pipeline
[17]. The variances of the random effects are modeled as Var
(u) = 2KVg, where K = n × n matrix of pairwise kinship coefficients
that define the degree of genetic covariance between individuals
and Vg = genetic variance [26]. The REML estimates of variance
components were estimated following an efficient mixed-model

association algorithm method [27, 28], with the optimum com-
pression MLM and the P3D options. This clusters the lines into
groups to increase statistical power and computational speed [28].

Identification and annotation of candidate genes
The candidate gene selection was performed using the I. tri-
fida reference genome assembly [21] since the variants were
anchored to genomic positions in the I. trifida assembly, which
spans 462 Mb and contains 32 301 annotated high-confidence
gene models (http://sweetpotato.uga.edu/). I. trifida is the closest
known ancestral progenitor of hexaploid sweetpotato and the
genome has high conservation of synteny with hexaploid sweet-
potato. The variants were annotated and anchored to the I. trifida
reference genome.

Genomics prediction for sweetpotato-associated
insects
The genomic best linear unbiased prediction (GBLUP) method was
used for genomic prediction of relative abundance estimates for
three insect species (i.e. B. tabaci, Frankliniella occidentalis, and Ocy-
pus olens) in the diversity and biparental population. An extension
of the GBLUP method was also applied by using the background
metagenome as a covariate (gGBLUP: metagenome-enabled
GBLUP). The relative abundance data of the taxa predicted are
excluded from the metagenome data used as a covariate. A
metagBLUP (gBLUP) prediction model was also implemented by
using the metagenome-based Cao dissimilarity matrix instead of
the marker-based genomic relationship matrix (G-matrix) used
for GBLUP. While B. tabaci and O. olens abundance data were used
for analysis in both populations, F. occidentalis abundance data
was only used for analysis in the biparental population. Using
the AGHmatrix R-package [24], the additive, dominance, and
full autopolyploid (additive and nonadditive) model relationship
matrices were computed using the VanRaden, Vitezica, and
Slater methods, respectively [23, 29, 30]. For the gBLUP, the Cao
dissimilarity matrix was computed with the R-package vegan [31].

The metagenome covariate was modeled as fixed effects
(gGBLUP) in the same way described for the GWA model above.
After re-coding zero as missing values in the relative abundance of
B. tabaci and O. olens in the 767 samples of the diversity population,
153 and 318 sweetpotato samples were retained for genomic
prediction, respectively. After re-coding zero as missing values
in the relative abundance of B. tabaci, O. olens, and F. occidentalis
in the 454 samples of the biparental population, 304, 340, and
315 sweetpotato samples were retained for genomic prediction,
respectively. Genomic prediction was performed using the GAPIT
R-package [32] to estimate prediction ability (PA) based on a 5-
fold cross-validation method and 1000 iterations (replications) for
each of the models. The models are based on GBLUP-A, GBLUP-
D, and GBLUP-AD and use the additive, dominance, and full
autopolyploid (additive and dominance) relationship matrices,
respectively. Predictive abilities were compared among the three
models, between two dosage models (2× pseudo-diploidized
and 6×), and between models with and without metagenome
as a covariate. To test the effect of marker density on PA, 1000
iterations were performed using a GBLUP-A, without metagenome
as a covariate, and 5-fold cross-validation. The GBLUP prediction
model is described below:

y = 1nμ + Wα + Zu+ ∈

where y = vector of phenotypes (number of phenotypes × 1),
1n = vector of ones, μ = overall mean, W = incidence matrix of
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metagenomic covariates (when specified and described above in
GWAS model), α is a c-vector of specified covariates (fixed effects)
corresponding coefficients including the intercept, Z = the known
design matrix for genotypes (or background metagenome data
in the case of metagBLUP or gBLUP), and u = random. The model
assumes u ∼ N

(
0, σ2

aKorσ2
a+d+adK

)
with K = kinship matrix with

a (additive model), d (dominance model), ad (full autopolyploid
model), or Cao dissimilarity matrix in the case of gBLUP; and
that ∈∼ N

(
0, σ2

e I
)
. The PA was computed by performing a Pearson

correlation analysis between observed BLUPs and the genomic
estimated breeding values (GEBVs). A comparison of model
performance was performed using a one-way analysis of variance
and visualized with box plots.

Acknowledgements
We thank Ty Phillips for assistance with planting, maintenance,
and tissue sampling of the diversity population. The mention of
trade names or commercial products in this article is solely for the
purpose of providing specific information and does not imply rec-
ommendation or endorsement by the USDA. The USDA is an equal
opportunity employer. This study was funded by the USDA-NIFA
Hatch/Multistate Project W5157-TEN00539, the Bill and Melinda
Gates Foundation (grant ID OPP1052983 and OPP1213329), and the
Illumina Agricultural Greater Good Initiative grant.

Data availability
The NGS data (Illumina short reads) used for the USDA diversity
population are available on the NCBI (National Center for Biotech-
nology Information) SRA database (Bioproject ID: PRJNA880973),
while the NGS data for the DC biparental population will be
publicly available on the NCBI SRA database.

Conflict of interest statement
The authors declare no competing interests.

Supplementary data
Supplementary data are available at Horticulture Research Journal
online.

References
1. Sapakhova Z, Raissova N, Daurov D. et al. Sweet potato as a key

crop for food security under the conditions of global climate
change: a review. Plan Theory. 2023;12:2516

2. Guo C, Zhu Y, Zhang Y. et al. Invasion biology and management
of sweetpotato whitefly (Hemiptera: Aleyrodidae) in China.
J Integr Pest Manag. 2021;12:1–2

3. Okada Y, Kobayashi A, Tabuchi H. et al. Review of major sweet-
potato pests in Japan, with information on resistance breeding
programs. Breed Sci. 2017;67:73–82

4. Eyre AW, Wang OY, Dean RA. Identification and characterization
of the core rice seed microbiome. Phytobiomes J. 2019;3:148–57

5. Johnson AC, Gurr GM. Invertebrate pests and diseases of sweet-
potato (Ipomoea batatas): a review and identification of research
priorities for smallholder production. Ann Appl Biol. 2016;168:
291–320

6. Okonya JS, Mwanga RO, Syndikus K. et al. Insect pests of sweet-
potato in Uganda: farmers’ perceptions of their importance and
control practices. Springerplus. 2014;3:303

7. Pagán I. Transmission through seeds: the unknown life of plant
viruses. PLoS Pathog. 2022;18

8. Engelmann J, Hamacher J. Plant virus diseases: ornamental
plants. In: Mahy BWH, Van Regenmortel MHV, eds. Encyclopedia
of Virology. 3rd ed. Elsevier, Academic Press: Cambridge, 2008,
207–29

9. Wondafrash M, Van Dam NM, Tytgat TO. Plant systemic induced
responses mediate interactions between root parasitic nema-
todes and aboveground herbivorous insects. Front Plant Sci.
2013;4:87

10. Balint-Kurti P. The plant hypersensitive response: concepts, con-
trol, and consequences. Mol Plant Pathol. 2019;20:1163–78

11. Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of
crosstalk in hormone networks regulating plant defense. Plant J.
2021;105:489–504

12. Zhou S, Jander G. Molecular ecology of plant volatiles in interac-
tions with insect herbivores. J Exp Bot. 2022;73:449–62

13. Kroschel J, Mujica N, Okonya J. et al. Insect Pests Affecting
Potatoes in Tropical, Subtropical, and Temperate Regions. In:
Campos H, Ortiz O, eds. The Potato Crop. Springer: Cham, 2020,
251–306

14. Thavamanikumar S, Arnold RJ, Luo J. et al. Genomic studies
reveal substantial dominant effects and improved genomic pre-
dictions in an open-pollinated breeding population of Eucalyptus
pellita. G3 (Bethesda). 2020;10:3751–63

15. Tolhurst DJ, Gaynor RC, Gardunia B. et al. Genomic selection
using random regressions on known and latent environmental
covariates. Theor Appl Genet. 2022;135:3393–415

16. Venbrux M, Crauwels S, Rediers H. Current and emerging trends
in techniques for plant pathogen detection. Front Plant Sci.
2023;14:1120–968

17. Adams AK, Kristy BD, Gorman M. et al. Qmatey: an automated
pipeline for fast exact matching-based alignment and strain-
level taxonomic binning and profiling of metagenomes. Brief
Bioinform. 2023;24:bbad351

18. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small
quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11–5

19. Wadl PA, Olukolu BA, Branham SE. et al. Genetic diversity and
population structure of USDA sweetpotato (Ipomoea batatas)
germplasm collections using GBSpoly. Front Plant Sci. 2018;9:1166

20. Kuster RD, Yencho GC, Olukolu BA. ngsComposer: an automated
pipeline for empirically based NGS data quality filtering. Brief
Bioinform. 2021;22:bbab092

21. Wu S, Lau KH, Cao Q. et al. Genome sequences of two diploid
wild relatives of cultivated sweetpotato reveal targets for genetic
improvement. Nat Commun. 2018;9:4580

22. Rosyara UR, De Jong WS, Douches DS. et al. Software for genome-
wide association studies in autopolyploids and its application to
potatoes. Plant Genome. 2016;9

23. VanRaden P. Efficient methods to compute genomic predictions.
J Dairy Sci. 2008;91:4414–23

24. Amadeu RR, Cellon C, Olmstead JW. et al. AGHmatrix: R package
to construct relationship matrices for autotetraploid and diploid
species: a blueberry example. Plant Genome. 2016;9:1–10

25. Fang H, Huang C, Zhao H. et al. CCLasso: correlation inference
for compositional data through lasso. Bioinformatics. 2015;31:
3172–80

26. Yu JM, Pressoir G, Briggs WH. et al. A unified mixed-model
method for association mapping that accounts for multiple
levels of relatedness. Nat Genet. 2005;38:203–8

27. Kang HM, Zaitlen NA, Wade CM. et al. Efficient control of popula-
tion structure in model organism association mapping. Genetics.
2008;178:1709–23

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/11/7/uhae135/7668423 by guest on 08 August 2024

https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae135#supplementary-data


Cham et al. | 11

28. Zhang Z, Zhang Z, Ersoz E. et al. Mixed linear model
approach adapted for genome-wide association studies. Nat
Genet. 2010;42:355–60

29. Slater AT, Cogan NO, Forster JW. et al. Improving genetic gain
with genomic selection in autotetraploid potato. Plant Genome.
2016;9:1–15

30. Vitezica ZG, Varona L, Legarra A. On the additive and domi-
nant variance and covariance of individuals within the genomic
selection scope. Genetics. 2013;195:1223–30

31. Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin
P, O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour
M, Bedward, M, Bolker B, Borcard D, Carvalho G, Chirico M, De
Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M,
Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette
M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J
(2022) Vegan: community ecology package. R package version
2.6-4. https://CRAN.R-project.org/package=vegan.

32. Lipka AE, Tian F, Wang Q. et al. GAPIT: genome association and
prediction integrated tool. Bioinformatics. 2012;28:2397–9

33. Gaber W, Abou-elenien N, Shehata E. Population fluctuation
of Tetranychus urticae on sweet potato (Ipomoea batatas L.) and
effect of some insecticides. Egyptian Academic Journal of Biological
Sciences, F Toxicology & Pest Control. 2023;15:123–7

34. Gilbertson RL, Batuman O, Webster CG. et al. Role of the insect
supervectors Bemisia tabaci and Frankliniella occidentalis in the
emergence and global spread of plant viruses. Annual Review of
Virology. 2015;2:67–93

35. Balog A, Markó V, Imre A. Farming system and habitat structure
effects on rove beetles (Coleoptera: Staphylinidae) assembly in
Central European apple and pear orchards. Biologia. 2009;64:
343–9

36. Ruhe J, Agler MT, Placzek A. et al. Obligate biotroph pathogens
of the genus Albugo are better adapted to active host defense
compared to niche competitors. Front Plant Sci. 2016;7:820

37. Dean JM, Mescher MC, De Moraes CM. Plant dependence
on rhizobia for nitrogen influences induced plant
defenses and herbivore performance. Int J Mol Sci. 2014;15:
1466–80

38. Arnaiz A, Rosa-Diaz I, Romero-Puertas MC. et al. Nitric oxide, an
essential intermediate in the plant–herbivore interaction. Front
Plant Sci. 2021;11:620–086

39. Yang X, Liu YB. Nitric oxide fumigation for postharvest pest
control on lettuce. Pest Manag Sci. 2019;75:390–5

40. Fan ZY, Liu Y, He ZQ. et al. Rickettsia infection benefits its
whitefly hosts by manipulating their nutrition and defense.
Insects. 2022;13:1161

41. Zhao P, Yao X, Cai C. et al. Viruses mobilize plant immunity to
deter nonvector insect herbivores. Sci Adv. 2019;5:eaav9801

42. Thaler JS, Humphrey PT, Whiteman NK. Evolution of jas-
monate and salicylate signal crosstalk. Trends Plant Sci. 2012;17:
260–70

43. Houben M, Van de Poel B. 1-Aminocyclopropane-1-carboxylic
acid oxidase (ACO): the enzyme that makes the plant hormone
ethylene. Front Plant Sci. 2019;10:695

44. War AR, Paulraj MG, Ahmad T. et al. Mechanisms of plant
defense against insect herbivores. Plant Signal Behav. 2012;7:
1306–20

45. Pavlidi N, Vontas J, van Leeuwen T. The role of glutathione S-
transferases (GSTs) in insecticide resistance in crop pests and
disease vectors. Curr Opin Insect Sci. 2018, 2018;27:97–102

46. Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-
containing kinesin as a versatile plus-end-directed transporter
in Physcomitrella. Nature Plants. 2023;9:733–48

47. Kretschmer M, Damoo D, Djamei A. et al. Chloroplasts
and plant immunity: where are the fungal effectors?
Pathogens. 2020;9:19

48. Ross EM, Hayes BJ. Metagenomic predictions: a review 10 years
on. Front Genet. 2022;13:865–765

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/11/7/uhae135/7668423 by guest on 08 August 2024

https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan

	 Metagenome-enabled models improve genomic predictive ability and identification of herbivory-limiting genes in sweetpotato
	Introduction
	Results
	Discussion
	Conclusion
	Materials and methods
	Acknowledgements
	Data availability
	Conflict of interest statement
	Supplementary data


