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ABSTRACT Over the past two decades, immunotherapies have increasingly been considered as first-line treatments for most cancers. One such 
treatment is immune checkpoint blockade (ICB), which has demonstrated promising results against various solid tumors in clinical 
trials. Monoclonal antibodies (mAbs) are currently available as immune checkpoint inhibitors (ICIs). These ICIs target specific 
immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1).  
Clinical trial results strongly support the feasibility of this immunotherapeutic approach. However, a substantial proportion of 
patients with cancer develop resistance or tolerance to treatment, owing to tumor immune evasion mechanisms that counteract the 
host immune response.
Consequently, substantial research focus has been aimed at identifying additional ICIs or synergistic inhibitory receptors to enhance 
the effectiveness of anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), and anti-CTLA-4 treatments. Recently, several 
immune checkpoint molecular targets have been identified, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT), 
mucin domain containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), V-domain immunoglobulin suppressor of T cell 
activation (VISTA), B and T lymphocyte attenuator (BTLA), and signal-regulatory protein α (SIRPα). Functional mAbs targeting 
these molecules are under development. CTLA-4, PD-1/PD-L1, and other recently discovered immune checkpoint proteins with 
distinct structures are at the forefront of research. This review discusses these structures, as well as clinical progress in mAbs targeting 
these immune checkpoint molecules and their potential applications.
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Introduction

Cancer is a rapidly progressing disease with a high mortality rate1. 
In recent decades, novel therapeutic modalities, such as targeted 
therapies and immunotherapies, have emerged as supplements to 
conventional treatment approaches, such as surgery and radiation 
therapy. The landscape of cancer management has undergone a 
paradigm shift with the advent of immunotherapy. The discov-
ery and development of immune checkpoint inhibitors (ICIs) 
substantially enhanced tumor treatment outcomes. Research in 
cancer immunology continues to explore innovative agents that 

target and elicit efficient immune responses. As of March 2023, 
11 ICIs had received regulatory approval in the United States2,3. 
In 2018, Ryuji Ohno and James Allison were awarded the Nobel 
Prize for their contributions to the fields of programmed cell 
death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated 
antigen-4 (CTLA-4)4. Despite the remarkable therapeutic 
effects observed for some tumor types, a substantial proportion 
of patients exhibit inherent or acquired resistance to immune 
checkpoint interventions5,6. Consequently, understanding novel 
immune checkpoint molecules, such as T cell immunoreceptor 
with Ig and ITIM domains (TIGIT), mucin domain containing-3 
(TIM-3), lymphocyte activation gene-3 (LAG-3), V-domain 
immunoglobulin suppressor of T cell activation (VISTA), B and 
T lymphocyte attenuator (BTLA), and signal-regulatory protein α 
(SIRPα), has emerged as an active area of research.

This review focuses on progress in immune checkpoints in 
cancer treatment, as well as clinical trials of immune check-
point combination therapies, to highlight the therapeutic 
potential of these targets (Table 1).
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Traditional ICIs

PD-1/programmed cell death ligand 1 (PD-L1) 
monoclonal antibodies (mAbs)

Brief description of PD-1/PD-L1
PD-1, also known as CD279, is a member of the CD28 super-
family7 that is expressed primarily in T cells, B cells, natural 
killer (NK) cells, and dendritic cells (DCs)8 (Table 2). PD-1 
is a protein of approximately 50 kDa comprising 3 parts: an 
extracellular hydrophobic transmembrane region, IgV-like 
domains in the N- and C-terminal regions, and 2 intracellu-
lar tyrosine residues. The interaction between PD-1 and its 
ligands, PD-L1 and programmed cell death ligand 2 (PD-L2), 
inhibits T cell activation and cytokine production. Recent stud-
ies9 have shown that in certain tumors, such as head and neck 
squamous cell carcinoma (HNSCC) and advanced colorectal 
cancer (CRC), PD-L2 has a 2–6 times higher affinity for PD-1 
than PD-L1, although PD-L1 is more widely expressed. PD-L1 
and PD-L2 bind not only to PD-1 but also to their binding 
partners CD80 and RGMB, respectively, thus forming com-
plexes with distinct roles10. The binding of PD-L2 to RGMB 
inhibits the activity of tumor-infiltrating T cells and cytokine 
secretion, whereas the binding of PD-L1 to CD80 promotes 
cytokine production and thus decreases the likelihood of 
immune evasion. The presence of PD-L2 has dual effects by 
acting as both an inhibitor and a promoter of T cell activation. 
Inhibiting the expression of PD-L2 alone might not achieve 
the desired results. Because of a lack of research on PD-L2 and 
an absence of consistent outcomes, PD-L2 inhibitors alone 
cannot be used for immunotherapy, and no PD-L2 inhibitors 
are available for use in oncology. In contrast, the role of PD-L1 
is much better understood.

The cytoplasmic tail of PD-1 is composed of 2 tyrosine- based 
structural motifs: the immunoreceptor tyrosine-based inhibitory 
motif (ITIM) and the immunoreceptor tyrosine-based switch 
motif (ITSM)11. The core of PD-1’s inhibitory function lies in 
the ITSM-Y248 residue rather than the ITIM-Y223 residue12. 
When PD-L1/PD-L2 binds PD-1, ITSM is phosphorylated by 
the T cell receptor (TCR) proximal Src family kinase. This phos-
phorylation triggers the recruitment of Src homology region 
2-containing protein tyrosine phosphatase 2 (SHP2). SHP2, an 
important dephosphorylase, plays a key role in the PD-1 sig-
naling pathway: it regulates the activity of downstream signal 
transduction by dephosphorylating CD3ζ-chain-associated Co
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protein of 70 kDa (ZAP70) and Phospholipase Cγ1 (PLCγ1)3. 
The interaction between SHP2 and the ITSM-Y248 residue of 
PD-1 has been verified through live cell imaging experiments13. 
SHP2 also inhibits the function of lymphocyte- specific protein 
tyrosine kinase (Lck), thereby inhibiting the phosphorylation 
state of the downstream molecule ZAP70 of Lck14. This process 
directly affects the PI3K/AKT signaling pathway and decreases 
activation of T cells15.

Furthermore, SHP2 also blocks the RAS/MEK/ERK signaling 
pathway by inhibiting the activation of PLCγ116. Alterations in 
this signaling pathway further affect T cell activation and func-
tion. SHP2 interacts with casein kinase (CK2), which in turn 
regulates the phosphorylation status of phosphatase and tensin 
homolog (PTEN). PTEN, a tumor suppressor gene, functions in 
normal cells by inhibiting cell proliferation and promoting cell 
differentiation through its phosphatase activity. Additionally, 
the PI3K/AKT signaling pathway, which is crucial for maintain-
ing cellular homeostasis, is negatively regulated by PTEN. When 
SHP2 inhibits the activity of CK2, PTEN phosphorylation is 
suppressed, thereby maintaining its active state3. This process 
effectively blocks the downstream transmission of PI3K signals 
and consequently inhibits T cell activation17 (Figure 1A).

Signal transducer and activator of transcription 3 (STAT3) 
as a transcription factor plays an important role in cancer18. 
Its rapid and transient activation is achieved through tyros-
ine phosphorylation within a series of complex signaling 

pathways. This process involves factors including the cytokine 
IL-6, which activates STAT3 phosphorylation, promotes 
tumor growth and survival, and suppresses T cell function19. 
Targeting the PD-L1/PD-1 pathway through the specific bind-
ing of PD-1 mAb or PD-L1 to PD-1 or PD-L1, respectively, has 
become an effective cancer treatment strategy. This approach 
blocks the interaction between these proteins, thereby disrupt-
ing the PD-L1/PD-1 signaling pathway and restoring T cell 
immune function to achieve cancer treatment (Figure 1B).

A considerable number of mAbs licensed by the Food and 
Drug Administration (FDA) in the United States are PD-1/
PD-L1 mAbs, which are also the most commonly used mAbs 
in tumour immunotherapy.

PD-1/PD-L1 mAb monotherapy
In 2014, the FDA approved 2 PD-1 mAbs, nivolumab and 
pembrolizumab, for the treatment of advanced melanoma. 
Although both mAbs can be used in various cancer therapies 
to increase overall survival (OS), the efficacy of monothera-
pies might not benefit most patients, given the limited avail-
able clinical data, and the potential for inherent or acquired 
patient tolerance20. Combined therapy or switching to other 
treatments should be considered in a timely manner21.

Notably, on March 22, 2023, Incyte’s retifanlimab (PD-1 mAb) 
was approved by the FDA, representing a major advancement in 
the field of oncology treatment with ICIs. This therapy is the first 

Table 2 Immune checkpoints and their expression in cells

Checkpoint   Cells   Ligand

PD-1   T cells, DCs, NK cells, and B cells   PD-L1, PD-L2

CTLA-4   CD4+ T cells, CD8+ T cells, and Tregs   CD86, CD80

LAG-3   CD4+ T cells, CD8+ T cells, Tregs, NK cells, B cells, and DCs   MHC II, FGL-1, Gal-3, LSECtin

TIM-3   NK cells, monocytes, macrophages, DCs, and CD4+ and CD8+ T cells   Gal-9, CEACAM-1, PtdSer, HMGB-1

TIGIT   CD4+ and CD8+ T cells, NK cells, and DCs   CD155, CD112

VISTA   Basophils, monocytes, resting T cells, memory T cells, and CD68+ tumor-associated 
macrophages

  VSIG-3, PSGL-1

BTLA   CD4+ and CD8+ T cells, DCs, NK cells and macrophages   HVEM

SIRPα   DCs, macrophages, and neutrophils   CD47

PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; PD-L2, programmed cell death ligand 2; CTLA-4, cytotoxic 
T lymphocyte-associated antigen-4; LAG-3, lymphocyte activation Gene-3; TIM-3, T cell immunoglobulin and mucin-domain containing-3; 
TIGIT, T cell immunoglobulin and ITIM domain; VISTA, V-domain immunoglobulin suppressor of T cell activation; BTLA, B and T lymphocyte 
attenuator; SIRPα, signal-regulatory protein α; DCs, dendritic cells; NK cells, natural killer cells; MHC II, major histocompatibility complex II; 
FGL-1, fibrinogen-like protein-1; Gal-3, galectin-3; LSECtin, liver and lymph node sinusoidal endothelial cell C-type lectin; Gal-9, galectin-9; 
CEACAM-1, carcinoembryonic antigen-related cell adhesion molecule-1; PtdSer, phosphatidylserine; HMGB-1, high-mobility group box-1; 
VSIG-3, V-Set and immunoglobulin domain containing-3; PSGL-1, P-selectin glycoprotein ligand-1; HVEM, herpes virus entry mediator.
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PD-1 mAb developed to treat Merkel cell carcinoma (MCC)2,22. 
A phase II clinical trial (NCT03679767)23 has recently published 
findings on the efficacy of retifanlimab in the treatment of solid 
tumors. The results have indicated significant anti-tumor activ-
ity in melanoma, non-small-cell lung cancer (NSCLC), and renal 
cell carcinoma (RCC). In addition, according to clinicaltrials.gov, 
Incyte is currently conducting a trial (NCT04370704) to assess 
the safety and efficacy of a combination therapy comprising reti-
fanlimab, INCAGN02385 (LAG-3 mAb), and INCAGN02390 
(TIM-3 mAb) as a first-line treatment for HNSCC. The findings 
of that trial remain to be published.

PD-1/PD-L1 mAb combination therapies
Combination therapy is currently considered an optimal 
approach to enhance the feasibility of cancer treatment by increas-
ing the number of antigen-presenting cells (APCs) and released 
tumor antigens. Multiple clinical trials have demonstrated that 
PD-1/PD-L1 mAbs can be a part of highly effective therapeutic 
combination regimens, and have evaluated their clinical efficacy 
alongside other inhibitors in treating malignancies24,25.

PD-1/PD-L1 mAbs plus anti-angiogenic agents Proliferative 
tumors may show altered ratios of pro- angiogenic to 
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anti-angiogenic factors in a malignant environment, thereby 
modifying the balance in favor of pro-angiogenic factors and 
activating angiogenesis. This phenomenon, also known as the 
“angiogenic switch,” is crucial for tumor growth, prolifera-
tion, and metastasis26. Major anti-angiogenic agents include 
axitinib and sunitinib.

Blockade of immune checkpoints in conjunction with 
anti-angiogenic drugs may facilitate vascular normalization 
and increase the immune cell response to tumor regression27. 
Researchers have examined data from early stages of the 
KEYNOTE-42628 clinical study to determine how pembroli-
zumab, an mAb against PD-1, and anti-angiogenesis medi-
cations (axitinib and sunitinib) might confer clinical advan-
tages in patients with advanced RCC. After a long follow-up 
period, the KEYNOTE-426 clinical study has demonstrated 
that treating untreated advanced RCC with a combination 
of pembrolizumab and axitinib is beneficial for patients. In 
the recently conducted clinical trial NCT047904092629, sin-
tiliumab, the second domestically developed PD-1 inhibitor 
approved in China, in combination with the anti-angiogen-
esis agent anlotinib, has shown remarkable results. The com-
bination therapy achieved a superior overall response rate to 
those of chemotherapy and monotherapy with either agent 
alone. Therefore, sintiliumab and anlotinib have the potential 
to serve as new treatment options for patients with advanced 
stages of NSCLC with rare epidermal growth factor receptor 
(EGFR) mutations.

PD-1/PD-L1 mAbs plus radiotherapy Radiotherapy, which 
is essential for the eradication of cancer, is administered to 
40% of patients with cancer and can be divided into 2 types: 
stereotactic radiotherapy and stereotactic body radiother-
apy. The duration of radiotherapy treatment determines the 
classification into short-course  radiation (SCRT) or long-
course radiation. Radiotherapy, which serves as a coadjuvant 
in numerous combination regimens, is frequently used to 
synergistically augment the therapeutic potency of tumor 
immunotherapy. This modality provides a new  trategy on 
anti-tumor immunity, encompassing the elimination of 
tumor cells and the stimulation of T cell immunological 
 activity. Consequently, radiotherapy serves as a potent tool 
to fortify the host immune response30-32.

The abscopal effect is the most notable example of 
how radiation at one location can decrease tumor sizes at 
nearby and distant non-irradiated sites33,34. Beyond remov-
ing local lesions, radiotherapy activates the body’s natural 

immunological defenses against tumors35. Although abscopal 
effects have been well known since their identification, how 
radiotherapy influences immune cell functioning, and how to 
elicit the regression of distant unirradiated tumors through 
abscopal effects remain unkown36.

A pre-clinical study37 published in May 2023 has demon-
strated that radiotherapy enhances the body’s immune 
response, thus enabling tumor killing and potentially increas-
ing the sensitivity of microsatellite stable (MSS) rectal 
 cancer to immunotherapy. In a trial conducted by the Fudan 
University Cancer Center in China, patients with locally 
advanced rectal cancer (LARC) were treated with SCRT 
as the basic adjuvant treatment and immunotherapy to kill 
tumors, to determine whether the treatment might decrease 
tumor size or cause regression. The trial, called the TORCH 
study, has progressed to phase II, and its clinical trial regis-
tration number is NCT04518280. The results of the trial have 
indicated a strong complete response after SCRT combined 
with chemotherapy (oxaliplatin plus capecitabine) plus the 
PD-1 mAb toripalimab. The preliminary results suggest that 
this treatment is better tolerated and achieves clearer tumor 
regression than other treatments. However, these results are 
preliminary, and long-term follow-up is necessary to confirm 
the benefits to patients.

Nevertheless, because of poor response to PD-1/PD-L1 
mAbs among patients with MSS LARC, more optimized 
methods are necessary to treat this disease; developing such 
methods is currently a research hotspot. In the above TORCH 
trial, radiotherapy as an adjuvant treatment, together with 
the immune mAbs, has been found to increase the sen-
sitivity of MSS LARC and promote the effects of tumor 
immunotherapy37.

PD-1/PD-L1 mAbs plus chemotherapy Clinically, chemo-
therapeutic agents are used to kill cancer cells to achieve ther-
apeutic goals. Most agents were developed to inhibit tumor 
growth by blocking cell growth cycles, interfering directly 
with cell metabolism, and exerting cytotoxic effects. Tumors 
become more responsive to immunotherapy when their 
expression of tumor antigens increases, immune cell suppres-
sion decreases, and the tumour microenvironment (TME) 
is remodeled to promote immune infiltration of T cells and 
activation of DCs. However, some cytotoxic chemotherapeutic 
agents, such as paclitaxel, oxaliplatin, and anthracyclines, can 
potentially lead to lymphocyte exhaustion, thereby suppress-
ing immune responses.
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Preliminary studies in mouse models have demonstrated 
that enhancing immune function decreases the immune rejec-
tion of tumors to anthracyclines, thus highlighting the  benefits 
of combining chemotherapeutic and immunotherapeutic 
agents38. The effects of chemotherapy on the immuno therapy 
process have been well demonstrated, and such treatments 
are being used alongside a variety of combination regimens. 
Numerous chemotherapeutic mixed regimens have now 
received FDA approval.

The phase III trial CheckMate 64939 has demonstrated 
that FOLFOX (comprising 5-fluorouracil plus leucov-
orin plus oxaliplatin)/XELOX (comprising capecitabine 
plus  oxaliplatin) chemotherapy combined with nivolumab 
increases OS and confers therapeutic advantages in patients 
with advanced gastric cancer, gastroesophageal junc-
tion (GEJ) cancer, or esophageal adenocarcinoma. In the 
KEYNOTE-18940,41 and KEYNOTE-40742 clinical trials, 
the participants were primarily treatment-naïve patients 
with metastatic squamous NSCLC. The experimental group 
(receiving pembrolizumab plus pemetrexed/platinum 
chemotherapy), as compared with the control group (receiv-
ing chemotherapy plus a placebo combination regimen), 
showed a significant doubling of the OS rate, an improvement 
in progression-free-survival (PFS), manageable toxicity, and a 
durable response after 2 consecutive years of treatment with 
pembrolizumab. Pembrolizumab plus chemotherapy is cur-
rently the standard treatment of choice for metastatic squa-
mous NSCLC.

Serplulimab, an intravenously administered PD-1 mAb, was 
approved in China in 2022 for the treatment of advanced unre-
sectable or metastatic microsatellite instability-high (MSI-H) 
solid tumors43. A study (NCT03958890)44 on PD-L1-positive 
esophageal squamous cell carcinoma (ESCC) has shown that 
serplulimab plus chemotherapy (5-fluorouracil plus cisplatin), 
compared with placebo plus chemotherapy, improves PFS and 
prolongs OS.

PD-1 mAbs plus cell therapies Cell therapies can be broadly 
categorized into 2 main types: (1) adoptive cell transfer (ACT) 
therapies and (2) stem cell therapies, which further encompass 
a variety of therapeutic modalities such as T cell receptor-en-
gineered T (TCR-T) cell therapy, chimeric antigen receptor 
T (CAR-T) cell therapy, and chimeric antigen receptor nat-
ural killer (CAR-NK) cell therapy45. Among these therapies, 
CAR-T and TCR-T cell therapies notably exhibit highly spe-
cific recognition of tumor cells and have potent killing efficacy 

and therefore have become critical in the field of tumor ther-
apy, thus bringing new therapeutic hope to researchers and 
patients.

(1) PD-1 mAbs plus ACT therapy CAR-T cell therapy is 
an emerging technology that precisely targets tumor cells for 
treatment. This therapy involves the isolation and extrac-
tion of T-lymphocytes from patients with cancer. The cells 
are subsequently genetically engineered in vitro to express a 
chimeric antigen receptor (CAR). The modified CAR-T cells 
specifically recognize antigens from tumor cells, thereby 
enabling targeted treatment. The genetically engineered and 
edited CAR-T cells are expanded in vitro to a specific num-
ber and are subsequently reinfused into the patient’s body, 
where they specifically recognize tumor antigens and kill 
tumor cells46.

CAR-T cell therapy has broad clinical application pros-
pects. The results of a phase I clinical trial (NCT02414269)47 
support the combination of iCasp9M28z T cells with pem-
brolizumab (PD-1 mAb) for the treatment of malignant pleu-
ral mesothelioma (including breast cancer and metastatic 
lung cancer). In that study48, the combination of CAR-T cells 
and PD-1 inhibitors has been shown to amplify anti-tumor 
immune effects. A lentiviral vector has been developed to 
target dual shRNA CAR: PD-1/TIGIT for infecting xeno-
grafts in a mouse model of disseminated human blood can-
cer. Moreover, PD-1/TIGIT downregulation has been found 
to enhance the anti-tumor activity of CAR-T cells targeting 
CD19. This finding provides the first conclusive evidence 
that the blockade of 2 immune checkpoints synergistically 
augments the anti-tumor activity of CAR-T cells, thereby 
offering novel strategies and insights for future immunother-
apies against malignancies.

However, most regimens for the treatment of solid tumors 
consist of PD-1 mAbs with CAR-T cells. Therefore, other ICIs 
can be targeted for combination therapy with CAR-T cells to 
provide more therapeutic options for patients with cancer.

CAR-T cell therapy has gained widespread attention for its 
efficacy as a tumor immunotherapy. CAR-NK cell therapy is 
a therapeutic means that uses the anti-tumor abilities of NK 
cells and genetic engineering technology49. Compared with 
CAT-T cell therapy. In research using a mouse tumor model, 
hematopoietic stem cell (HSC)-derived CAR-NK cells have 
shown exceptional anti-tumor efficacy in combination with 
nivolumab50. N-803, an IL-15 superagonist, has been shown 
to expand NK cells in humans after injection and to be well 
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tolerated51. An ongoing clinical trial (NCT04847466)52 is 
investigating the combination of N-803, pembrolizumab, 
and HSC CAR-NK for the treatment of GEJ and advanced 
HNSCC; trial completion is expected by the end of 2025.

NY-ESO-1, a cancer-testis antigen, is a tumor-associ-
ated antigen that is specifically expressed in cancerous tis-
sues and therefore is a target for cancer therapies. In TCR-T 
cell  therapy, the modifier genes for the NY-ESO-1 TCR are 
usually introduced into the patient’s T cells and then rein-
fused into the patient, thus potentially helping the body to 
mount an immune response to kill tumor cells that express 
NY-ESO-1. Modest anti-tumor activity has been observed in 
a clinical trial (NCT03168438)53 targeting NY-ESO-1 specific 
TCR-T cells alone or in combination with pembrolizumab 
for the treatment of relapsed/refractory multiple myeloma. 
In another clinical trial, NCT0277529254, the combination of 
NY-ESO-1 TCR-T cells with the DC vaccine and nivolumab 
(PD-1 mAb) has been shown to block sarcoma progression. 
A search of ClinicalTrials.gov identified the clinical trial 
NCT05349890, started in March 2023, which is combining 
TCR-transduced T cells with CDX-1140 (CD40 mAb) and 
pembrolizumab (PD-1 mAb) for the treatment of malignant 
epithelial neoplasms.

NCT03747484 in ClinicalTrials.gov is an ongoing clini-
cal trial evaluating the safety and overall therapeutic efficacy 
of injecting FH-MCVA2 TCR-T cells in combination with 
avelumab (PD-L1 mAb) or pembrolizumab (PD-1 mAb) in 
patients with metastatic or unresectable MCC.

Currently, most TCR-T cell therapies use autologous T cells 
derived from individual patients. Nevertheless, as research 
deepens and technological advancements accelerate, the use 
of allogeneic T cells and those differentiated from induced 
pluripotent stem cells (iPSCs) as alternative cell sources for 
TCR-T therapies has emerged as a major area of investiga-
tion55. The ongoing exploration and refinement of these novel 
methods are anticipated to broaden the potential applications 
of TCR-T therapies in the future and to enable breakthroughs 
in the field through the use of next-generation technological 
innovations56.

(2) PD-1 mAbs plus stem cell therapy Stem cell therapy is 
a therapeutic approach that harnesses the inherent differen-
tiation capabilities of stem cells. Typically, this process begins 
with the isolation and extraction of stem cells from the patient’s 
body. Subsequently, these cells are cultured and expanded in 
vitro, to promote their differentiation into diverse cell types, 

including NK cells and T cells. Finally, these regenerated and 
healthy stem cells are reintroduced into the patient to achieve 
therapeutic benefits for the treatment of various diseases57.

FT500, an induced pluripotent stem-cell-derived NK 
(iPSC-NK) product, has been investigated in the clinical trial 
NCT03841110 for the treatment of advanced solid tumors, 
either as a monotherapy or in combination with ICIs, such as 
nivolumab, pembrolizumab, and atezolizumab. However, no 
studies associated with this trial have been published to date58.

Currently, no clinical trials have explored the combination of 
iPSC-derived T (iPSC-T) cell therapy with ICIs; instead most 
trials have focused on iPSC-NK cell therapy. Stem cell ther-
apy has the potential to enhance the immune system’s  ability 
to recognize a wide range of non-mutated tumor antigens. 
Additionally, stem cells can be genetically edited and modi-
fied in vitro to create cells with specific anti-tumor functions59. 
Although many studies have demonstrated the safety of iPSCs, 
potential risks remain, such as the possibility of teratoma for-
mation in undifferentiated iPSCs60. Additionally, the admin-
istration of differentiated stem cells does not expedite patient 
recovery time. Furthermore, the high cost and prolonged pro-
duction process associated with iPSC-T cell therapies remain 
substantial obstacles for both patients and researchers57.

CTLA-4 mAbs

Brief description of CTLA-4
CTLA-4 is a leukocyte differentiation antigen and a 
 co-stimulatory signaling molecule that decreases T cell activ-
ity in specific environments, such as the TME, thereby ena-
bling immune escape. This antigen is found primarily on the 
surfaces of CD4+ T cells, CD8+ T cells, and Tregs (Table 2).

Both CD86 and CD80 are ligands for CTLA-4 and are 
located on APCs. CD80 has a higher affinity for CD28 and 
CTLA-4 than for CD8661. Because CTLA-4 and CD28 not 
only have similar functional properties but also share the 
same ligand, CTLA-4 and CD28 compete with each other62. 
However, in the TME, CD28 has a lower affinity for the ligand 
than CTLA-4, thus hindering the positive regulatory effect of 
CD2863. In contrast, CTLA-4 inhibits the activating effect of 
T cells by forming a complex with the ligand, thereby limit-
ing the normal anti-tumor immune response64 (Figure  2). 
Theoretically, CTLA-4 mAbs bind CTLA-4 molecules 
expressed on tumor cells and subsequently trigger a signaling 
cascade that leads to engagement of the ligand CD80/86 with 
CD28. This interaction restores T cell activity and effectively 
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transforms the initial suppression of anti-tumor immunity 
into promotion of tumor immunity.

CTLA-4 mAb monotherapy
Tremelimumab, also known as IMJUDO, is a CTLA-4 mAb 
produced by AstraZeneca that is used to cure many types of 
malignant cancers65. Another CTLA-4 mAb, ipilimumab, 
received FDA approval in 2011 and has been prescribed pri-
marily for treating melanoma. This antibody is the first clin-
ical CTLA-4 mAb65. However, like other ICIs, it may have 
severe adverse effects, such as acute liver and cholestatic 
damage, which can be fatal in extreme situations. Because of 
these adverse effects, the drug is rarely used clinically on its 
own; instead, it is usually paired with other immune mAbs or 
radiotherapy.

CTLA-4 mAb combination therapies
CTLA-4 mAbs plus PD-1/PD-L1 mAbs The CheckMate 
22766 clinical trial focused on drug efficacy in patients with 
NSCLC in various experimental arms, with OS as the pri-
mary endpoint. Treatment with nivolumab plus ipilimumab 
was more effective than chemotherapy. At the final follow-up 
time point of 61.3 months, patients receiving nivolumab 

plus ipilimumab had a better OS rate than those treated with 
chemotherapy, and showed long-term benefits and a man-
ageable safety profile. On the basis of these data, nivolumab 
plus ipilimumab is a reasonable choice as a first-line agent for 
the treatment of patients with NSCLC, regardless of PD-L1 
expression.

Tremelimumab is rarely used as a monotherapy and instead 
is usually administered in combination with durvalumab. 
Both agents were first approved in the USA in October 
202266,67. The POSEIDON phase III study (NCT03164616)68 
has explored the clinical efficacy of tremelimumab and dur-
valumab treatment regimens in patients with EGFR/anaplastic 
lymphoma kinase (ALK) wild-type metastatic NSCLC (mNS-
CLC). The use of durvalumab plus chemotherapy was associ-
ated with longer PFS than chemotherapy alone.

The phase 1b/2 clinical trial NCT0320275869 has inves-
tigated the safety and efficacy of durvalumab plus tremeli-
mumab plus chemotherapy (oxaliplatin plus folinic acid plus 
5-fluorouracil, mFOLFOX6) in patients with metastatic CRC 
with MSS and a RAS mutated status69. The main objective of 
the study was to evaluate safety, which was achieved with no 
issues during the phase II study. The mFOLFOX6 regimen 
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Figure 2 CTLA-4 and CD28 with their ligand-binding activities: On the surfaces of T cells, CTLA-4 and CD28 are co-inhibitory and 
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achieved the best overall results, with a PFS of 90.7% at 3 
months and 60% at 6 months. In contrast, the use of chemo-
therapeutic agents alone resulted in significantly less favorable 
outcomes. Therefore, combination therapies are useful and 
clinically promising.

CTLA-4 mAbs plus cell therapy In the NCT02070406 clini-
cal trial70, the therapeutic efficacy of NY-ESO-1-specific TCR 
transgenic lymphocytes, in combination with DC vaccine and 
ipilimumab, has been evaluated in patients with advanced sar-
coma or melanoma. The aim of the study was to assess the 
effects of TCR transgenic cell dosing on the treatment out-
comes. After the conclusion of the experiment, the therapeutic 
effects remained unaffected, regardless of the inclusion of ipil-
imumab in the treatment regimen.

Emerging immune checkpoint 
inhibitors

Similarly to how PD-1/PD-L1 mAbs and CTLA-4 mAbs ush-
ered in a new era of immunotherapies, the emergence of novel 
immune checkpoints, such as LAG-3, TIM-3, TIGIT, VISTA, 
BTLA, and SIRPα, has opened a new frontier in cancer treat-
ment. Researchers have devoted substantial resources to the 
study of these mAbs and their combination therapeutic regi-
mens, thus reinvigorating immunotherapy treatment8.

Next, we focus on novel ICI antibodies investigated in 
recent clinical trials, to demonstrate their in the treatment of 
certain solid tumors.

LAG-3 mAbs

Brief description of LAG-3
LAG-3, a transmembrane protein, is an immunological 
marker closely associated with CD4, according to RNA 
sequencing and localization experiments71. This protein is 
expressed primarily in CD4+ T cells, CD8+ T cells, Tregs, NK 
cells, B cells, and DCs72 (Table 2). The protein is composed 
of three parts—extracellular, transmembrane, and intracellu-
lar regions—which together comprise 4 structural domains, 
 D1–D473,74. The intracellular tail contains 3 comparatively 
conserved motifs: the EP motif, the Kieele motif, and the ser-
ine phosphorylation site. The remaining 2 motifs contribute 
to the immunosuppressive effect of LAG-3. However, the 
question of whether the serine phosphorylation site influences 
LAG-3 function remains under debate71.

Major histocompatibility complex II (MHCII) is a abundant 
ligand for LAG-3 and CD475. In contrast, LAG-3 binds MHC II 
with higher affinity, competes with CD4 for the binding of 
MHC II, and downregulates cytokine secretion and the pro-
liferative capacity of CD4+ T cells76. LAG-3 additionally binds 
other ligands, such as fibrinogen-like protein-1 (FGL-1), galec-
tin-3 (Gal-3), and liver and lymph node sinusoidal endothelial 
cell C-type lectin (LSECtin), all of which affect CD8+ T cells 
(Figure 3). LSECtin protein is highly expressed in the liver77. 
According to a pre-clinical study, the binding of LSECtin to 
LAG-3 in a B16 melanoma model downregulates IFN-γ secre-
tion, thereby blocking T cell immunity. Furthermore, LSECtin 
plays a role in the invasion and growth of gastric cancer cells, 
and eventually results in the development of gastric cancer78. 
FGL-1 directly downregulates the secretion of IL-2, thus con-
veying a negative regulatory signal79, whereas Gal-3 binds 
oncoproteins and elicits tumor cell proliferative effects. For 
example, binding of N-Ras to Gal-3 leads to transformation of 
the former into K-Ras, which in turn increases the number of 
breast cancer cells80.

Another concern pertains to one of the components of 
LAG-3, the Kieele motif. When the Kieele motif is removed 
from LAG-3, the protein is completely inactivated8, thus sug-
gesting that the Kieele motif acts as an “initiator” that trig-
gers the downstream signaling pathway in CD4+ T cells73,81 
(Figure 3). LAG-3 is also an immune checkpoint protein with 
inhibitory properties that promotes the anti-tumor inhibitory 
function of Tregs.

LAG-3 mAb combination therapies
LAG-3 mAbs plus PD-1 mAbs The interaction between 
LAG-3 and PD-1 has been extensively studied in clinical 
practice. These 2 receptors have synergistic effects resulting 
in the dual inhibition of tumor activity and the control of 
immune homeostasis82, thereby aiding in avoidance of auto-
immunity and improving tumor immune-mediated toler-
ance. Studies in mouse models have shown that the blockade 
of both receptors with antibodies is much more effective than 
blockade of either receptor alone82-84. Antibodies have been 
applied in the treatment of tumors to demonstrate the effects 
of blocking LAG-3 and PD-1. Relatlimab, often in combina-
tion with nivolumab85,86, is the most frequently used LAG-3 
inhibitor.

Blocking the LAG-3 pathway significantly improves the 
inhibitory effects of PD-1 on tumor immunity in a variety of 
illnesses, including NSCLC87, gastric cancer88, triple-negative 
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breast cancer89, and ovarian cancer74. Currently, 10 humanized 
IgG4 LAG-3 mAbs are currently under investigation in a total 
of 78 clinical trials72. On March 18, 2022, the FDA authorized 
a combination treatment using relatlimab and nivolumab90, 
known as opdualag, which can be prescribed for adults and 
children older than 12 years to treat metastatic or incurable 
melanoma91,92.

A phase II/III study, RELATIVITY-04786, has investigated 
the effects of combining the medications relatlimab and 
nivolumab in patients with unresectable melanoma. The com-
bination was found to be superior to nivolumab monotherapy 
with respect to mPFS, thus suggesting that the targeting of 
both immune checkpoints, PD-1 and LAG-3, might be more 
effective than targeting either checkpoint alone and might 
provide greater survival benefits.

In patients with advanced MSS CRC, favezelimab, a LAG-3 
mAb, has shown preliminary anti-tumor activity, both in 
combination with pembrolizumab and as a monotherapy93. 
However, in a clinical trial (KEYNOTE-495/KeyImPaCT)94 
for the treatment of NSCLC, the combination regimen was not 

available, because a lower overall response rate was observed 
among patients treated with pembrolizumab plus favezelimab 
than in the rest of the experimental group. Therefore, this 
therapy was replaced with another combination regimen of 
pembrolizumab plus lenvatinib, which met or exceeded the 
desired efficacy criteria.

TIM-3 mAbs

Brief description of TIM-3
TIM-3, also called CD366, belongs to the TIM family. The var-
iable immunoglobulin domain (IgV), transmembrane region, 
mucin domain (including an O-linked glycosylation site), 
and the C-terminal cytoplasmic tail are the 4 unique parts of 
TIM-3. In addition, an N-linked glycosylation site connects 
mucin and the transmembrane region8. TIM-3 exhibits a dis-
tinct structural profile from those of other immunosuppres-
sive molecules, and is characterized by the presence of 5 con-
served tyrosine residues95,96. According to previous research, 
human monocytes, macrophages, NK cells, DCs, and CD4+ 
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and CD8+ T cells (Table 2) produce TIM-397,98. Galectin-9 
(Gal-9), carcinoembryonic antigen-related cell adhesion 
 molecule-1 (CEACAM-1), phosphatidylserine (PtdSer), and 
high- mobility group box-1 (HMGB-1) are its ligands97,99. 
These ligands bind the target protein TIM-3, which is present 
in many types of cancer cells, including those causing colorec-
tal cancer100, cervical cancer101, ovarian cancer74, gastric 
 cancer102, and other cancers103.

The interaction of HLA-B-associated transcript 3 (Bat-3) 
with TIM-3 plays a key role in the activation or inhibition 
of T cells96,104. Two tyrosine residues (Y256 and Y263) in the 
cytoplasmic tail region of TIM-3 are particularly important in 
Bat-3’s physiological functions. When TIM-3 ligand is absent, 
Bat-3 interacts with the Y256/Y263 residues in the cytoplas-
mic tail of TIM-3. This promotes the activity of the Src kinase 
Lck, which in turn facilitates the recruitment of ZAP70105. 
Subsequently, T cell activation and suppression of the nega-
tive regulation of TIM-3 lead to enhanced effector activity of 
T cells (Figure 4A). However, when TIM-3 binds its ligand, 

Bat-3 dissociates after phosphorylation of Y256/Y263106, 
thus allowing Fyn, another Src kinase, to bind TIM-3. Lck is 
inactivated, and ZAP70 function is downregulated, thereby 
 ultimately inducing T cell exhaustion107. Therefore, the inter-
action between TIM-3 and its associated molecules is crucial 
in regulating the balance between T cell activation and exhaus-
tion (Figure 4B).

TIM-3 mAb combination therapies
NK cells, CD4+ T cells, and CD8+ T cells express TIM-3, and 
the percentage of TIM-3 in tumor-infiltrating CD4+/CD8+ T 
cells is closely associated with the prognosis of patients with 
cancer74,99. High expression of TIM-3 and PD-1 in acral mela-
noma, a subtype of melanoma, has been found to substantially 
deplete CD8+ T cells108. In addition, a study of bone marrow 
cells extracted from patients with colorectal cancer and then 
tested for co-expression with T cells has shown high TIM-3 
expression on the surfaces of T cells, mononuclear myeloid 
cells, and APCs in tumor tissues109.
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phosphorylation of Y256/Y263 triggers the dissociation of Bat-3, thus enabling the binding of another Src kinase, Fyn, to TIM-3. Subsequently, 
inactivation of Lck and downregulation of ZAP70 function ultimately induce T cell exhaustion. TIM-3, mucin domain containing-3; Gal-9, 
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box-1; Bat-3, HLA-B-associated transcript 3; Lck, lymphocyte-specific protein tyrosine kinase.
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In another study, mice with ID8 tumors received intraperi-
toneal injections of either TIM-3 mAbs or CD137 mAbs to 
treat ovarian cancer110,111. The makeup and gene expression 
of immune cells infiltrating the tumors were analyzed, and 
mouse survival was tracked. After 3 days, the mouse tumor 
model responded favorably to either CD137 mAbs or TIM-3 
mAbs alone. However, 10-day-old tumors showed promotion 
of tumor growth after the injection of TIM-3 mAb or CD137 
mAb. According to the results, CD4+ T cells and CD8+ T cells 
are key to treatment with TIM-3 mAb and CD137 mAb. A sig-
nificant increase in the number of CD4+ T cells was observed 
with treatment with TIM-3 mAb alone, whereas treatment 
with CD137 mAb alone significantly increased the number 
of CD8+ T cells. Therefore, the use of TIM-3 mAb or CD137 
mAb alone is not effective for treating ID8 ovarian cancer 
when CD4+ T cells or CD8+ T cells are deficient. Notably, in 
the peritoneal fluid of 60% of the mice after 90 days of treat-
ment with a combination of TIM-3 mAb and CD137 mAb, 
elevated CD8+ and CD4+ T-infiltrating cells and tumor regres-
sion were observed (Figure 5). These findings indicated a shift 
from “cold tumors” to “hot tumors” with tumor regression. 
The combined treatment significantly delayed ovarian cancer 
growth. Therefore, a potential immunotherapy strategy may 
involve the inhibition of TIM-3 and the activation of CD137.

A clinical study (NCT02608268)112 has been conducted 
to investigate the effects of sabatolimab, administered alone 
or in combination with spartalizumab (PD-1 mAb), in the 
management of advanced solid tumors. Fatigue was the most 

prevalent treatment-related adverse event (TRAE), and the 
maximum tolerated dose was not reached. The combination 
of the 2 medications was well-tolerated and showed early ben-
eficial effects against cancer.

Another phase I trial, clinical ID NCT03099109113, was 
aimed at performing the first evaluation of the safety of the 
novel TIM-3 mAb on humans. In that trial, researchers val-
idated the effectiveness of 2 novel mAbs, LY3321367(PD-L1 
mAb) and LY3300054(TIM-3 mAb), as a combination therapy 
or alone. According to the experimental results, LY3321367 has 
a safety profile in advanced solid tumour patients and achieves 
a general level of anti-tumor activity. The use of LY3321367 
and LY3300054 to treat MSI-H/mismatch repair-deficient 
(dMMR) tumors was further investigated in light of these 
experimental findings; however, the tumor samples did not 
show statistically significant results, and the experiment was 
paused.

TIGIT mAbs

Brief description of TIGIT
TIGIT is an innovative inhibitory ICI. The TIGIT proteins 
VSTM3, VSIG9, and WUCAM114 were first reported in 
2009115. The general TIGIT structure includes 2 tyrosine bases 
in the cytoplasm: ITIM and the Ig tail-tyrosine (ITT)-like 
motif. These tyrosine residues are crucial for TIGIT’s inhib-
itory function after phosphorylation, because mutation of 
these residues leads to dysregulated inhibitory function116.

C57BL female mice (6–8 w)

3 6

TIM-3 or CD137 mAb monotherapy

TIM-3 and CD137 mAb combination
Tumor-free in
60% of mice

10 90
(d)

Promotion of tumor growth

Inhibition of tumor growth

ID8 tumor

Injection

Figure 5 TIM-3 mAbs and CD137 mAbs for treatment in a mouse ID8 ovarian cancer model: In a mouse model of ovarian cancer, mice were 
treated with TIM-3/CD137 alone or TIM-3 in combination with CD137. By day 3, monotherapy effectively regressed the tumors, but by day 10, 
the tumors had become larger. In contrast, the combination treatment regressed tumors in 60% of the mice by day 90.
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A trial examining cutaneous melanoma with TIGIT infiltra-
tion of human skin melanoma tissue117 has shown differences 
in gene expression across various environments, in the pres-
ence or absence of tumor-infiltrating lymphocytes. Differential 
expression of multiple genes was observed in the presence of 
tumor- infiltrating lymphocytes, including the co-expression 
of TIGIT, LAG-3, and PD-1. According to multiplex immuno-
fluorescence staining, TIGIT is expressed primarily in CD8+ 
T cells, CD4+ T cells, and DCs, and is less frequently expressed 
in NK cells (Table 2); however, TIGIT signaling is dependent 
primarily on NK cells116.

CD155 and CD112 are ligands for TIGIT, and CD226 and 
CD96 can also bind CD155118. However, the binding mecha-
nism is similar to that of CTLA-4: because CD112 has a lower 
affinity than CD155 for TIGIT, TIGIT tends to bind CD155 
and form a complex114. In contrast, CD96 and CD226 play 
different roles in the TME: the former is a co-inhibitory recep-
tor, whereas the latter is a co-stimulatory receptor (Figure 6). 
A study of the anti-tumor immune response of CD8+ T cells 
by TIGIT and PD-1119 has focused on the CD226 signaling 

pathway. Mechanistically, PD-1 and TIGIT “encircles” CD226 
intracellularly and extracellularly, respectively: the ITIM struc-
tural domain of PD-1 inhibits the phosphorylation of CD226 
and consequently prevents CD226 from binding CD155. 
TIGIT inhibits CD226 binding to CD155, thus restraining 
the co-stimulatory activity of CD226 and decreasing CD8+ T 
cell infiltration. If both PD-1 and TIGIT inhibitors are com-
bined, the “lock” on CD226 signaling from both intracellular 
and extracellular sources is opened, the CD226 signaling path-
way is restored to its original state, and the immune function 
of CD8+ T cells is enhanced. The simultaneous inhibition of 
TIGIT and PD-L1 restores the anti-tumor capacity of NK 
cells120.

TIGIT combination therapies
A substantial TRAE frequency may be elicited by a combination 
of mAbs121. To mitigate these effects, the  co-administration 
of other less harmful agents is recommended. TIGIT mAbs 
may be a preferable alternative to CTLA-4 mAbs, because 
TIGIT knockout animals do not develop autoimmune 
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Figure 6 CD226, TIGIT, and CD96 with their ligand-binding activities: CD155 and CD112 are the ligands of TIGIT and CD226. CD96 also 
binds CD155. TIGIT and CD96 are co-inhibitory receptors that promote the infiltration ability of Tregs after binding ligands. They also transmit 
inhibitory signals to NK cells and T cells. CD226 is a co-stimulatory receptor responsible for activating NK cells and T cells. TIGIT mAbs bind 
TIGIT on the surfaces of NK cells and T cells, thus causing TIGIT to bind CD155 and CD112, and restoring the activity of immune cells. TIGIT, T 
cell immunoreceptor with Ig and ITIM domains; APC, antigen-presenting cell; NK cells, natural killer cells.
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diseases, whereas CTLA-4 knockout mice quickly succumb to 
severe autoimmunity114. The integration of TIGIT and PD-1 
mAbs has been found to double the inhibition efficiency. 
Simultaneously, the combination of both mAbs accelerates 
the infiltration of T cells into the TME and enhances the anti- 
tumor activity of NK cells. Furthermore, greater production 
of effector T cells enables better tumor killing ability, although 
the therapeutic efficacy is low, and the prognosis is poor in 
subcutaneous tumors122.

Pharmaceutical companies have recently devoted substan-
tial attention to the functionality of TIGIT mAbs. Six TIGIT 
mAbs have entered clinical phase I–III trials for the treatment 
of advanced solid tumors, all of which are being used in com-
bination with chemotherapy or PD-1/PD-L1 mAbs114.

In the NCT02964013 phase I clinical trial123, the combi-
nation of vibostolimab (TIGIT mAb) and pembrolizumab 
was well-tolerated in patients with solid tumors, showing 
 modest anti-tumor activity. However, the results for the other 
TIGIT mAb treatments were less promising: 2 clinical trials, 
SKYSCRAPER-01124 and -02125, exploring whether atezoli-
zumab (PD-L1 mAb) in combination with tiragolumab is 
 beneficial for the treatment of small-cell lung cancer, have 
indicated unsatisfactory final results, in which OS and PFS 
were not achieved. No recent research updates for tiragolumab 
have been reported.

Another novel TIGIT mAb, ociperlimab, developed by 
Beigene, Ltd., is currently recruiting volunteers worldwide for 
a new round of clinical trials. In the NCT 04047862126 drug 
dose-escalation trial in advanced solid tumors, the pharma-
cokinetics and safety of treatment with ociperlimab plus 
 tislelizumab, a novel PD-1 mAb, were examined, and the com-
bination treatment showed preliminary anti-tumor activity in 
a phase I trial. The symptoms of the adverse reactions occur-
ring were the same as those of the other TIGIT mAbs. The 
treatment is currently undergoing phase II and phase III trials.

In NCT031119428127, etigilimab (TIGIT mAb) has been 
shown to be effective alone or in combination with nivolumab 
for the treatment of locally advanced or metastatic solid 
 tumors; however, further clinical trials are warranted to con-
firm its therapeutic potential.

VISTA, BTLA, and SIRPαα mAbs

VISTA is an B7 immunoglobulin superfamily molecule. 
V-Set and immunoglobulin domain containing-3 (VSIG-3) 
and P-selectin glycoprotein ligand-1 (PSGL-1) bind VISTA 

as ligands. Unlike other co-suppressive immune check-
points, VISTA is expressed on both tumor cells and immune 
cells, and has significant effects on anti-tumor immunity128 
(Table  2). VISTA is expressed predominantly on basophils, 
monocytes, resting T cells, memory T cells, and CD68+ 
tumor-associated macrophages129. Currently, no inhibitors of 
VISTA mAbs are approved by the FDA, but several investiga-
tional drugs have emerged, such as CI-8993, HMBD-002, and 
KVA12123, all of which are VISTA mAbs. A dose- escalation 
trial (NCT05082610) of HMBD-002 in combination with 
pembrolizumab for the treatment of colon cancer is currently 
being conducted130. However, because VISTA can act as both 
a receptor and a ligand, uncertainty persists regarding its clin-
ical applications, and further study is therefore warranted131.

BTLA, also referred to as CD272, is a member of the 
CD28 immunoglobulin superfamily expressed primarily 
on CD4+ and CD8+ T cells, as well as DCs, NK cells, and  
macrophages132 (Table 2). BTLA binds the ligand HVEM, 
thereby inhibiting T and B cell activation and proliferation, and 
promoting the immune escape of tumors; consequently, BTLA-
HVEM is a potential target for tumor immunotherapies133. In 
a phase I/II clinical trial (NCT05000684)134, tifcemalimab, 
the first BTLA mAb, demonstrated preliminary anti-tumor 
activity in combination with toripalimab (PD-1 mAb) for the 
treatment of refractory extensive stage small-cell lung cancer 
(ES-SCLC). However, further clinical evaluation is required. 
A search of ClinicalTrials.gov identified another clinical trial 
(NCT05789069) that is recruiting volunteers to study the 
novel BTLA mAb HFB200603 as a single agent or for use in 
combination with tislelizumab for advanced solid tumors.

SIRPα is an inhibitory receptor expressed on DCs, mac-
rophages, and neutrophils (Table 2); its typical ligand is CD47, 
and it is expressed by both normal and tumor cells. Because of 
the ubiquitous expression of CD47, targeting of CD47 causes 
anemia and thrombocytopenia135. The structure of SIRPα con-
tains the ITIM motif. When SIRPα binds CD47, SIRPα trig-
gers ITIM phosphorylation and recruits tyrosine phosphatase 
(SHP)-1 and SHP-2. Subsequent activation of SHP-1 and 
SHP-2 leads to dephosphorylation of intracellularly associated 
proteins, thus resulting in a loss of the biological functions of 
the proteins and, ultimately, the inhibition of phagocytosis by 
macrophages136. In addition, the SIRPα-CD47 axis inhibits the 
antigen uptake and presentation ability of DCs and the killing 
ability of NK cells137. An experimental study has indicated 
that treatment of KWAR23 (SIRPα mAb) with vorsetuzumab 
(CD70 mAb) greatly enhances macrophage phagocytosis in 
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renal carcinoma cells and prevents tumor growth in mice138. 
BR105 is another novel SIRPα-targeted mAb that effectively 
inhibits tumor growth in mice. Its good safety profile both 
in vivo and in vitro supports the use of other ICIs or radio-
therapy in combination therapies139. In an experimental study, 
ADU-1805, another SIRPα mAb, has been demonstrated to 
promote phagocytosis by macrophages without interfering 
with T cell activation140. To further advance the clinical devel-
opment of ADU-1805, a study currently underway is evaluat-
ing its safety and pharmacokinetics, both as a monotherapy 
and in combination with pembrolizumab (PD-1 mAb), for the 
treatment of advanced solid tumors in NCT05856981.

Conclusions
Several clinical trials have established the efficacy of tradi-
tional ICIs for the treatment of patients with cancer. Recently, 
interest has grown in targeting novel immune checkpoints 
for immunotherapies. Pharmaceutical companies have exten-
sively studied these checkpoints and conducted numerous 
clinical trials. However, most of those trials have been limited 
to animal models. Therefore, clinical trials are necessary to 
validate the safety and adverse effects of combination thera-
pies, to ensure their success. Furthermore, additional research 
is required to clarify the mechanisms of immune regulation 
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and tumorigenesis in humans. ICIs also encounter several 
challenges, and TRAEs remain a major concern. At present, 
tumor immunotherapies can be broadly categorized into 4 
main types: ICIs, drug nano-delivery therapies, cell therapies, 
and oncolytic virus therapies141 (Figure 7). Among these, 
drug nano-delivery therapies62,142,143 and oncolytic virus ther-
apies144 exhibit high specificity in terms of reaching targets, 
thus enabling drug accumulation in tumor tissue while mini-
mizing off-target effects. These 2 approaches can be combined 
with ICIs to achieve significantly lower toxicity than that with 
systemic administration.

Furthermore, both ACT and stem cell therapy, as described 
earlier, provide distinct advantages and disadvantages. In 
practical applications, selecting the most suitable treatment 
modality according to the patient’s physical condition and 
the specific tumor type is imperative. Additionally, with the 
continuing advancement of technology and the deepening 
of research endeavors, these 2 therapeutic approaches are 
expected to undergo further optimization and find broader 
applications in forthcoming years.

Despite notable successes in clinical applications, the cur-
rently available ICIs, such as PD-1/PD-L1 mAb, continue to 
face challenges including drug resistance and off-target tox-
icity. Consequently, combination therapies have emerged as 
a critical future research focus to integrate ICIs with other 
immunotherapeutic strategies, such as ACT therapies and 
tumor vaccines, or with conventional treatments such as 
chemotherapy and radiotherapy. This integrated approach 
holds promise for achieving synergistic enhancement of thera-
peutic efficacy while minimizing adverse effects.

As tumor immunology research continues to advance, 
additional immune checkpoint targets may be identified in the 
future, such as LAG-3, TIM-3, and BTLA. The exploration of 
these novel targets is expected to provide new opportunities 
for the development of ICIs.

With the increasing elucidation of tumor immune mecha-
nisms and the emergence of innovative ICIs, clinical indica-
tions are expected to undergo more extensive expansion. We 
eagerly anticipate further innovative research breakthroughs 
and advancements in clinical applications in this field, which 
will ultimately benefit a vast population of patients with cancer.
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