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Abstract
Plant height and above-ground biomass are important growth parameters that affect crop yield. Efficient and non-destructive technologies of

crop  phenotypic  monitoring  play  crucial  roles  in  intelligent  farmland  management.  However,  the  feasibility  of  using  these  technologies  to

estimate cotton plant height and above-ground biomass has not been determined. This study proposed a low cost and high-throughput imaging

method combined with Canopeo to extract the percentages of green color from high-definition digital images and establish a model to estimate

the cotton plant height and above-ground biomass.  The plant height and above-ground biomass field trials  were conducted at  two levels  of

irrigation  (soil  water  content  70%  ±  5%  and  40%−45%,  respectively)  using  80  cotton  genotypes.  The  linear  fitting  performed  well  across  the

different cotton genotypes (PH, R2 = 0.9829; RMSE = 2.4 cm; NRMSE = 11% and AGB, R2 = 0.9609; RMSE = 0.6 g / plant; and NRMSE = 5%), and two

levels of irrigation (PH, R2 = 0.9604; RMSE = 2.15 cm; NRMSE = 6% and AGB, R2 = 0.9650; RMSE = 4.51 g/plant; and NRMSE = 17%). All reached a

higher fitting degree. Additionally, the most comprehensive model to estimate the cotton plant height and above-ground biomass (Y = 0.4832*X
+ 11.04; Y = 0.4621*X − 0.3591) was determined using a simple linear regression modeling method. The percentages of green color positively

correlated  with  plant  height  and  above-ground  biomass,  and  each  model  exhibited  higher  accuracy  (R2 ≥ 0.8392,  RMSE  ≤ 0.0158,  NRMSE  ≤
0.06%). Combining a high-definition digital camera with Canopeo enables the prediction of crop growth in the field. The simple linear regression

modeling method and the most comprehensive model enable the rapid estimation of the cotton plant height and above-ground biomass. This

method can also be used as a baseline to measure other important crop phenotypes.
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 INTRODUCTION

The  conventional  methods  for  phenotypic  analysis  require
manpower  and  manual  measurement  tools,  which  are  time-
consuming, laborious and inefficient. Moreover, these methods
are  expensive,  require  skilled  technical  personnel,  and  are
unsuitable  for  large  farmland  areas.  Therefore,  simple  and
efficient  phenotypic  analysis  is  needed  to  ensure  the  auto-
mation  of  modern  agricultural  production[1,2].  With  the  rapid
development  in  information  technology,  techniques,  such  as
high-throughput  phenotypic  analysis,  could  be  used  to  over-
come  these  challenges[3−5].  Compared  with  traditional  pheno-
typic analysis,  these new techniques are non-destructive,  cost-
effective, highly efficient, simple, and rapid.

Digital  image  analysis  is  one  of  the  methods  of  high-
throughput phenotypic analysis.  Recently,  digital  image analy-
sis  has been applied in the nutritional  diagnosis  of  field crops,
such  as  rice  (Oryza  sativa L.)[6−8],  corn  (Zea  mays L.)[9,10],  wheat
(Triticum  aestivum L.)[11−13],  and  cotton  (Gossypium  hirsutum
L.)[14−16].  Lee  &  Lee[6] used  the  image  analysis  software  Visual
Basic  Version  6.0  to  calculate  the  canopy  coverage  (CC)  value
and estimate 10 color indices. The study found that eight color
indices  and the CC had a  linear  relationship  with  the  leaf  area

index, above-ground dry weight, and nitrogen accumulation in
the upper layer. Additionally, Li et al.[11] used digital cameras to
obtain  the  CC  of  wheat  plants  in  the  vegetative  growth  and
early stages of stem elongation and demonstrated that the leaf
area index, above-ground biomass (AGB), and nitrogen content
highly correlated with the CC. Therefore, digital image analysis
has  enabled  the  highly  efficient  collection  of  phenotypic  data
from large areas of crops in a short time period. The technique
is  cost-effective  and  involves  simple  operational  and  post-
processing  steps,  which  ensure  convenience,  while  incorpora-
ting the intelligent agricultural aspects.

Most  previous  studies  focused  on  digital  image  analysis
technology  and  diagnoses  of  plant  nutrition.  Many  studies
have shown that the AGB of wheat and barley crops positively
correlates with their grain yield[17,18]. Plant height (PH) and AGB
are  key  indicators  of  plant  growth  dynamics  and  yield.  There-
fore,  studying  the  PH  and  AGB  of  the  Malvacaceae  would  be
valuable in monitoring the growth of cotton plants.

Cotton  is  an  important  cash  crop  that  is  widely  cultivated
worldwide.  Its  production  and  yield  can  be  enhanced  by
improving  the  plant  type  and  photosynthetic  capacity  of  the
leaves, optimizing the canopy structure, increasing the total dry
matter accumulation of plants, and enhancing the number and
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quality of bolls per plant[19−21]. Drought is a major and complex
abiotic stress that limits the growth, development, and produc-
tion  of  cotton[22,23].  Climate  changes  and  irrigation  constraints
have increased its frequency and severity, leading to significant
reductions  in  yield[24].  Therefore,  accurate  and  efficient  moni-
toring of PH and AGB can help to identify the growth status and
prediction  of  yield  of  crops  under  drought  stress  in  a  timely
manner,  thus,  augmenting  the  management  of  plant  abiotic
stresses[25].  However,  the traditional methods of measuring PH
and AGB are  time-consuming,  laborious,  limited to  small-scale
crops,  and  often  damage  plants  during  the  measurement
processes.

Canopeo is a cost-free image analytical software that can be
used as a mobile application on Android or IOS devices. It  was
developed in the MATLAB programming language (MathWorks,
Inc.,  Natick,  MA,  USA)  and uses  the  red,  green,  and blue  (RGB)
color values[26,27]. Canopeo-based image analysis is an efficient,
simple,  accurate,  cost-effective,  and  non-destructive  method
that enables the reliable and quick large-scale measurement of
crop canopies and other  phenotypic  features.  This  phenotypic
analytical method can directly obtain the percentages of green
color  (PGC)  by  maximum  inter-class  variance  morphological
threshold  methods  without  the  removal  of  soil,  vegetation  or
deionization.  Thus,  this  technique  is  very  important  for  the
future  advancement  of  agriculture  and enhancing the interest
of individuals in modern agriculture.

The  method  involves  photographing  green  crops  using
smartphones  or  digital  cameras  and  generating  image  pixel
percentages to compare the correlations between the real-time
and estimated PGC of the PH and AGB. If the correlation is very
high,  the  PGC  can  represent  the  PH  and  AGB  and  serve  as  a
substitute method to evaluate dry crop matter and PH. Notably,
high-definition  (HD)  digital  cameras  are  inexpensive  and  offer
high  image  resolution  and  simple  data  processing  steps,
making  them  the  cost-effective  methods  of  choice  for  data
acquisition.  Chung  et  al.[28] used  Canopeo  to  analyze  the  PH
and  node  height  (NH)  of  sorghum  (Sorghum  bicolor L.)  using
the PGC data extracted from digital camera pictures. The results
showed significant correlations between PGC and PH.

There  are  also  relevant  reports  on  the  use  of  unmanned
aerial vehicle (UAV) digital imaging and deep learning in cotton
field  research.  The  UAV  imaging  technology  extracts  both
canopy spectral information and structural features, accurately
monitoring  the  cotton  leaf  area  index  and  heterosexual
fiber[29−32].  Additionally,  deep  learning  techniques  using
DenseNet can relatively quickly determine the characteristics of

cotton  crops  in  approximately  5  h[33].  Although  UAV  digital
imaging and deep learning models can extract crop phenotypic
characteristics, UAV technology has a short endurance time (30
min  without  a  load),  and  high  monitoring  costs,  and  its
performance  is  limited  by  heavy  fog,  strong  winds,  and  rainy
days[34]. Moreover, deep learning requires a large sample size to
construct  a  high-precision  prediction  model,  which  limits  its
application for small-scale work[35]. Canopeo circumvents these
challenges since it allows for the use of a mobile smartphone or
HD digital  for imaging. The method is cost-effective and easily
mastered  with  simple  post-processing  steps  suitable  for  ordi-
nary farmers or researchers.

However,  cotton  crops  are  unique  for  their  indeterminate
growth habits,  and the feasibility of Canopeo imaging techno-
logy  in  measuring  the  cotton  PH  and  AGB  had  not  yet  been
verified. This study aimed to obtain the PGC for different cotton
genotypes  subjected  to  levels  of  different  irrigation  and
develop  models  to  estimate  PH  and  AGB.  The  assumptions  of
the study were as follows:  (i)  PGC is  highly correlated with the
cotton  PH  and  AGB,  (ii)  PGC  can  be  used  to  establish  high-
precision PH and AGB models for different genotypes of cotton,
and (iii) PGC uses the same model to estimate the PH and AGB
under  different  levels  of  irrigation.  Thus,  this  system  provides
an  efficient  and  non-destructive  method  to  comprehensively
estimate the growth and yield of cotton.

 RESULTS

 PGC, PH, and AGB of the 80 cotton genotypes
The above-ground phenotypic parameters of cotton, includ-

ing PH, AGB, and PGC, were analyzed under the drought stress
and  control  check  treatments  (CK)  (Fig.  1),  and  the  results
showed  that  the  three  parameters  exhibited  a  similar  trend
between  the  two  treatments.  The  average  PGC,  PH,  and  AGB
values were 50.08%, 35.13 cm, and 26.85 g/plant,  respectively,
for the CK-treated cotton, while the drought stress (DS)-treated
cotton  had  average  values  of  27.18%,  24.24  cm,  and  12.77
g/plant for PGC, PH, and AGB respectively (Fig. 1a−c). Moreover,
the average values of PGC, PH, and AGB significantly decreased
(P  <  0.0001)  by  46%,  31%,  and  52%,  respectively,  under  DS
compared with the CK treatment.

 Correlation between PGC, PH, and AGB
The random effect of the Bayesian multivariate mixed model

demonstrated that  the  two combinations  of  all  variables  were
significant (Table 1).  The PGC positively correlated with the PH

a b c

 
Fig. 1    Phenotypic analysis of the PH, AGB, and PGC of the 80 cotton genotypes at the initial flowering stages. AGB, above-ground biomass;
DS, drought stress; CK, control check; PH, plant height; PGC, percentages of green color. **** P < 0.0001.
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and AGB of cotton, and the correlation coefficients of the three
were all higher than 0.96 (P < 0.01).

 Models to evaluate the different cotton genotypes
The PH and AGB values of the different genotypes obtained

by  measurement  were  compared  with  the  predicted  values
(Fig.  2),  and  we  found  that  the  linear  regression  model  can
accurately  estimate  the  PH  and  AGB.  There  was  a  significant
positive correlation between the PGC, PH, and AGB (Fig. 2a, c),
and no study has proven that different cotton genotypes could
affect  this  association.  The  two  linear  regression  models  (Fig.
2a, c) were accurate enough to prove their calibration rationale
(R2 ≥ 0.9642). However, the predicted PH and AGB values were
often  lower  than  the  one  observed.  Compared  with  the

measured  values,  the  means  of  PH  and  AGB  values  observed
were reduced by 1.52% and 2.95%, respectively (Fig. 2b, d).

 Evaluation of the models of the different levels of
cotton irrigation

The  accurately  simulated  PH  and  AGB  values  for  all  the
irrigation  treatments  are  shown  in Fig.  3.  The  PGC  positively
correlated  with  PH  and  AGB  during  calibration  in  all  the
irrigation treatments, and there was a good fitting effect for the
model  (R2 ≥ 0.9229)  ( Fig.  3c).  During  validation,  the  R2,  RMSE,
and NRMSE values of the PH and AGB were 0.9604 and 0.9650,
2.15  cm  and  4.51  g/plant,  and  6%  and  17%,  respectively  (Fig.
3b, d).  However,  the  predicted  PH  and  AGB  values  were  often
lower than those measured, while the mean of the observed PH
and  AGB  values  were  reduced  by  3.45%  and  2.95%,
respectively, compared with the measured values (Fig. 3a, c and
Fig. 3b, d).

 Determining the most comprehensive model to
estimate cotton growth

A  simple  linear  regression  (SLR)  analysis  and  modeling
methods  demonstrated  that  the  simulated  and  observed  final
PH  and  AGB  values  were  highly  consistent  (Fig.  4).  The
statistically  verified  indices  of  the  PH  and  AGB  parameters,  R2,
RMSE,  and  NRMSE  were  0.9776  and  0.8392,  0.0158  cm  and
0.0011 g, and 0.06% and 0, respectively (Fig. 4a, c). The average

Table 1.    Correlation matrix of the PGC, PH, and AGB

PGC PH AGB

DS PGC 1
PH 0.99** 1

AGB 0.96** 0.96** 1
CK PGC 1

PH 0.98** 1
AGB 0.98** 0.99** 1

AGB,  above-ground  biomass;  PGC,  percentage  of  green  color;  PH,  plant
height. ** P < 0.01

a b

c d

 
Fig.  2    Validation  results  of  the  PH  and  AGB  prediction  model  for  the  different  cotton  genotypes.  Model  fitting  of  (a)  PGC  and  PH,  (b)
measured  and  predicted  PH  values,  (c)  PGC  and  AGB,  (d)  measured  and  predicted  AGB  values.  N,  number  of  samples;  R2,  coefficient  of
determination (according to formula [1]);  RMSE,  root mean square error (according to formula [2]);  NRMSE,  standard root mean square error
(according to formula [3]); AGB, above-ground biomass; PGC, percentages of green color; PH, plant height.
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values  of  the  predicted  PH  and  AGB  values  remained
unchanged  compared  with  those  measured.  Moreover,  the
simulated PH and AGB values corresponded with the predicted
ones  (R2 ≥ 0.8392,  RMSE  ≤ 0.0158,  NRMSE  ≤ 0.06%)  during
calibration  and  verification  (Fig.  4b, d).  The  validation  model
also showed that the PH and AGB of various cotton genotypes
highly  correlated  under  different  conditions  and  that  the  PGC
positively correlated with the PH and AGB. The fitting equations
to  determine  the  most  comprehensive  model  to  estimate  PH
and AGB were expressed as follows: Y = 0.4832*X + 11.04 and Y
= 0.4621*X – 0.3591, respectively.

 DISCUSSION

 Canopy phenotypic analysis can be an effective tool to
estimate the above-ground traits

The  PH  and  AGB  are  the  key  indicators  of  cotton  growth
dynamics  and  yield.  Since  the  traditional  methods  of  moni-
toring PH and AGB in the field are destructive, time-consuming,
and laborious, this study proposed a high-throughput phenoty-
pic  tool  for  accurate,  efficient,  and  non-destructive  prediction
of  the  cotton  growth  status  and  yield  in  the  field.  It  is  worth
noting  that  Liu  et  al.[36],  Ma  et  al.[37],  and  Zhang  et  al.[38] took
vertical  views of the plants,  while Chung et al.[28] captured the

horizontal views of the plants using cameras. These techniques
were  slightly  different  from  those  used  in  this  study  in  which
images were obtained via Canopeo at an angle of 60° from the
ground to maximize capture of  the uncovered parts  by ensur-
ing a larger R2 in a smaller RMSE.

The  images  obtained  in  this  study  were  analyzed  using  a
canoe  phenotype  analysis  to  obtain  the  cotton  PH  and  AGB
from the PGC to fit the Bayesian multivariate mixed model. The
model  fitting  revealed  that  all  the  variables  were  highly
correlated (P < 0.01)  (Table 1),  which was similar  to the results
obtained  by  Chung  et  al.[28] following  PGC  extraction,  canopy
phenotypic  analysis,  and  Bayesian  multivariate  mixed  model
fitting.  This  shows  that  the  phenotypic  analysis  of  the  canopy
can  be  an  effective  tool  to  estimate  the  cotton  PH  and  AGB.
Other  previous  studies  have  also  conducted  relevant  research
on estimating AGB using high-throughput image analyses. Soja
et al.[39] estimated the AGB of tropical  forest trees using the P-
band (435 MHz) synthetic aperture radar (SAR), while Li et al.[21]

estimated  the  AGB  of  potatoes  (Solanum  tuberosum L.)  using
UAV  hyperspectral  imaging  data.  As  in  our  study,  Zhang  et
al.[32] estimated  the  AGB  of  winter  wheat  seedlings  using
Canopeo,  which has continued to receive special  focus due to
the upsurge of high-throughput digital analysis.

a b

c d

 
Fig.  3    The fitting effects  of  the PGC,  PH,  and AGB models  under  the DS and CK conditions.  (a)  The PGC and PH models  under  DS.  (b)  The
fitting effect of the measured and predicted PH values in the CK, (c) PGC, and AGB model under DS. (d) The fitting effect of the measured and
predicted  AGB  values.  N,  the  number  of  samples;  R2,  coefficient  of  determination  (according  to  formula  [1]);  RMSE,  root  mean  square  error
(according to formula [2]); NRMSE, standard root mean square error (according to formula [3]); AGB, above-ground biomass; CK, control check;
DS, drought stress; PGC, percentage of green color; PH, plant height.
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 PGC can be used as an indirect parameter to estimate
crop growth

Canopy cover (CC) is the proportion of land area covered by
the crop canopy[40].  Accordingly, PGC is a new tool to measure
the green CC,  which is  closely  related to  the CC.  The PGC tool
extracts the green and non-green parts of the HD images of the
crop  canopy,  based  on  the  color  threshold,  and  finally  calcu-
lates  the  percentage  of  green  in  non-green  sections.  Many
canopy-related  studies  have  shown  that  the  CC  can  estimate
the  growth  status  of  crops.  Lee  &  Lee[6] photographed  and
extracted the CC from four  rice  varieties  under  different  nitro-
gen  treatments.  The  results  showed  that  the  CC  had  a  signifi-
cant  linear  relationship  with  the  manually  obtained  leaf  area
index, AGB, and above-ground nitrogen accumulation, suggest-
ing  that  the  CC  can  be  used  as  an  indirect  parameter  to
estimate  the  nitrogen  nutrition  index  of  rice.  Similarly,  Li  et
al.[11] showed  that  the  CC  values  obtained  using  a  digital
camera  during  the  vegetative  growth  period  and  early  stem
elongation of wheat were closely related to the leaf area index,
AGB,  and  nitrogen  content,  indicating  that  it  could  indirectly
estimate  the  nitrogen  content  of  wheat.  Behrens  &
Diepenbrock[41] also demonstrated that  the CC extracted from
digital  images  obtained  during  the  vegetative  development
stage  of  rapeseed  (Brassica  napus subsp. napus L.)  was  closely

associated with soil coverage, leaf area index, and dynamics of
plant quantity. These findings are similar to those obtained on
cotton crops.

This  study  manually  measured  the  PH  and  AGB  of  80  DS-
treated and 49 CK-treated cotton genotypes and extracted the
PGC  from  the  images  of  all  samples  (Fig.  3).  The  PGC  highly
positively correlated with PH and AGB (Figs 2–4). Therefore, the
PGC is an important way to indirectly estimate the PH and AGB
of cotton due to its relative measurement stability.

Since  some  studies  have  been  reported  to  use  various
camera brands for the CC analysis, it is important to determine
whether different brands of  digital  cameras could yield similar
PGC  values  in  cotton  crops.  Attention  should  be  paid  to  the
angle,  height,  width,  and  photographic  time  when  taking
pictures  in  the  field.  The  PGC  values  obtained  from  all  the
processing  shots  should  also  be  kept  at  the  same  level.
However, there could be significant differences in the final PGC
values  obtained  due  to  the  proportional  difference  of  the
plants obtained in the image.

 PGC can be used to construct highly precise models of
cotton PH and AGB

A  simple  linear  regression  (SLR)  analysis  was  used  to  fit  the
PGC, PH, and AGB cotton models. The linear regression analysis

a b

c d

 
Fig. 4    Verification of the cotton PGC, PH, and AGB prediction models based on the SLR method. (a) PGC and PH model. (b) Fitting effect of the
measured and predicted PH values.  (c)  PGC and AGB model.  (d)  Fitting effect  of  the measured and predicted AGB values.  N,  the number  of
samples; R2, coefficient of determination (according to formula [1]); RMSE, root mean square error (according to formula [2]); NRMSE, standard
root mean square error (according to formula [3]). AGB, above-ground biomass; PGC, percentages of green color; PH, plant height; SLR, simple
linear regression.
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and true values of the different cotton genotypes showed that
the PH and AGB models exhibited a good fit (R2 = 0.9829, RMSE
= 2.4  cm,  NRMSE = 11%;  R2 =  0.9609,  RMSE = 0.6  g/plant,  and
NRMSE  =  5%)  (Fig.  2).  However,  whether  the  model  is  widely
applicable  to  different  irrigation  conditions  needed  to  be
determined. A simulation fit of PH and AGB was constructed for
both  the  DS  and  CK  groups,  and  we  found  that  the  two
simulations  highly  positively  correlated  with  high  determina-
tion  coefficients  (≥ 0.9604)  and  a  small  NRMSE  (≤ 17%);  thus,
showing  high  accuracy  and  stability  (Fig.  3).  The  optimal
comprehensive cotton PH and AGB model was also generated
for  all  the  treatments  (Y  =  0.4832*X  +  11.04;  Y  =  0.4621*X  –
0.3591)  (Fig.  4).  Studies  have  shown  that  UAV  digital  camera
images  can  also  be  used  to  accurately  estimate  the  AGB.
Husson  et  al.[42] accurately  estimated  the  AGB  of  riparian  field
plants  using  UAV  vegetation  maps,  while  Adar  et  al.[43] used
high-resolution  UAV  data  and  the  new  multispectral  VENµS
satellite to accurately monitor AGB in Mediterranean and semi-
arid  grassland  pastures  in  Israel  for  two  consecutive  years.
Additionally,  Tian  et  al.[44] accurately  estimated  the  AGB  of
mangroves  (R2 =  0.8319,  RMSE  =  22.7638  Mg/ha)  using  an
XGBoost  regression  model  based  on  the  canopy  height,
vegetation index, texture index, and laser point cloud index of
low altitude UAV remote sensing. Lu et al.[45] demonstrated that
combining UAV light detection and Ranging (UAV LiDAR) with
backpack  LiDAR  (back-lidar)  can  significantly  improve  the
overall  accuracy  of  a  single-tree  detection  (F  =  0.99)  and  the
higher estimation accuracy of a random forest model (P < 0.05).
Moreover,  Zhang et  al.[46] obtained hyperspectral  images from
UAV  and  showed  that  the  XGBoost  model  could  accurately
estimate  maize  AGB  (R2 =  0.81,  RMSE  =  0.27  t/ha)  at  each
growth  stage.  These  results  are  consistent  with  those  of  this
study and show that a high-throughput analysis can accurately
estimate the values of AGB in cotton.

Notably,  the  predicted  PH  and  AGB  values  obtained  in  this
study  were  slightly  different  from  the  real  ones  because  the
canopy effect could have hindered the camera from capturing
the three-dimensional structure information, such as the blade.
This  results  in  a  predicted  value  that  was  slightly  smaller  than
the real one. This was consistent with the results of estimating
the  PH  and  AGB  of  winter  wheat  based  on  UAV  digital
images[47].

 Factors that affect model fitting should be noted
The  crops  were  photographed,  and  the  PH  and  AGB  were

manually  measured  at  the  initial  cotton  flowering  stages.  The
extracted  PGC  highly  correlated  with  the  cotton  PH  and  AGB
(Table 1).  This  is  the 'climbing'  stage of  cotton plants,  which is
critical  for  water  and  fertilizer  uptake.  Thus,  daily  measure-
ments during this stage follow strict manual routines to enable
the prediction of growth and development of the later period.
However,  manual  measurements  are  time-consuming  and
laborious. Therefore, this experiment provides an efficient, non-
destructive,  accurate,  and  simple  high-precision  model[26,27],
which reduces the workload associated with manual measure-
ments. Thus, this technique enables the measurement of plant
traits  on  a  large  scale.  Liu  et  al.[36] used  the  PGC  extracted  by
Canopeo to construct  models  of  experimental  plots,  and plots
with  different  management  levels  poorly  correlated  (R2 =
0.403). However, the extremely high correlation suggested that
a  rapid  population  diagnosis  with  Canopeo  mobile  software
could be possible in plots with different levels of management

but  with  low  accuracy.  Ma  et  al.[37] used  Canopeo  to  segment
and  eliminate  the  background  noise  in  canopy  images.  Thus,
the  Canopeo  phenotypic  method  is  a  widely  used  approach
with many advantages and is suitable for ordinary farmers and
researchers.

Canopeo  is  one  of  the  widely  used  methods  for  high-
throughput  phenotypic  analysis[26,27].  However,  Canopeo  is  an
image  segmentation  method  based  on  color  information,
which  is  easily  affected  by  background  noise,  such  as
illumination[48],  which  reduces  its  accuracy  and  robustness  in
estimating crop growth status. Under the same environmental
conditions, standardization of the operational methods should
be considered when using Canopeo under similar environmen-
tal  conditions.  Moreover,  accurate  and  reliable  reference
methods  should  be  incorporated  in  scientific  research  and
application  to  reduce  the  human  factors  that  could  affect  the
performance  of  the  tool[36].  It  is  also  important  to  determine
whether the standardized operational methods are suitable for
different growth stages of cotton under the same environmen-
tal conditions.

 CONCLUSIONS

This  study  proposed  a  high-throughput  imaging  tool  to
measure the green and non-green canopy areas. We calibrated
and  verified  the  PH  and  AGB  estimation  models  of  different
cotton  genotypes  under  varying  levels  of  irrigation  with  an
inexpensive  and  easily  used  HD  digital  camera  and  Canopeo
technology.  The PGC that was obtained highly correlated with
the  cotton  PH  and  AGB.  Thus,  the  digital  imaging  technology
and  extracted  PGC  can  serve  as  effective  tools  and  indirect
estimates of cotton growth,  respectively.  The fitting models of
different levels  of  irrigation and 80 different cotton genotypes
corresponded  with  one  another,  indicating  that  there  is  no
need to separately simulate the different levels of irrigation and
genotypes. Additionally, a combination of an HD digital camera
and Canopeo is  a  non-destructive  and convenient  method for
measurement.  The  technique  does  not  require  professional
knowledge of computer and machine learning and thus, can be
utilized by ordinary farmers or researchers.

 MATERIALS AND METHODS

 Cotton genotypes
This  study  utilized  eighty  cotton  varieties  from  the  cotton-

growing  areas  of  the  Yellow  and  Yangtze  River  basins
(Supplemental Table S1).

 Experimental design
This  study  was  conducted  in  the  drought  shed  in  the

Qingyuan  Experimental  Field  at  Hebei  Agricultural  University
(Baoding City, Hebei Province, China) (38.85° N, 115.30° E) from
April to July 2021 (Fig. 5a, b). The drought sheds automatically
close  and  open  during  the  rainy  and  sunny  seasons,  respec-
tively. Full-grain and uniform seeds were selected for sowing in
soil  (see Supplemental  Table  S2 for  the  soil  properties)  and
subjected to different treatments (Supplemental Table S1). The
relative water contents of the soil for the CK and DS treatments
were  75%  ±  5%  and  40%–45%,  respectively.  Additionally,  the
different  irrigation  treatments  were  regulated  by  a  soil  mois-
ture  monitoring  system  (TDR),  watch-dog  real-time  moisture
detector, and intelligent irrigation system (micro nozzle). There
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were 90,000 plants/hm2 in the field with an equal row spacing
of  50  cm.  The  field  management  was  similar  to  that  applied
during  the  conventional  cultivation  of  high-yielding  cotton
fields.  A  water  meter  was  used  to  measure  and  record  the
actual amount of irrigation. The seeds were artificially sown on
April 20, 2021, and harvested on November 5, 2021.

 Field data acquisition and processing

 Collection of data on plant height and above-ground biomass
collection

The  data  were  collected  at  the  initial  flowering  stage  of
cotton, and the plants with consistent growth were selected for
index  measurement.  All  the  indices  were  measured  at  09:00.
Five representative plants were measured from each treatment,
and their average values were used as the final results.

The  plant  height  (cm)  was  obtained  by  measuring  the
distance between the cotyledon node and the top of the main
stem using a ruler. For the above-ground biomass (g/plant), the
plants  were  separated  from  their  rhizome  and  stem  joints,
oven-dried at 105 °C for 30 min and at 75 °C for 72 h and then
weighed.

 Collection of green color percentages
Digital  image  analysis  was  utilized  to  extract  the  images

taken in the field using a single-lens reflex camera (Nikon D5-A;
Tokyo,  Japan)  under  natural  light  conditions.  Each  image
contained only one whole row of plants. The HD digital camera
parameter  values  were  as  follows:  aperture  value,  exposure
time,  ISO speed,  exposure  compensation,  contrast,  brightness,
light source, saturation, white balance, and other settings were
consistent in each acquired image. Moreover, the images were
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Fig. 5    Daily mean temperature (°C) and hours of sunshine time of the study site during cropping.
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Fig.  6    Image  processing  steps.  (a)  The  images  were  obtained
with  a  camera  at  a  certain  height  and angle.  All  the  images  were
taken from the same location. (b) The APP website was logged into
to  obtain  the  uploaded  image.  First,  the  user  must  log  into  the
Canopeo  account,  upload  and  segment  the  image,  extract  the
contour,  and  obtain  the  green  and  non-green  threshold  regions.
(c)  Non-green  threshold  image  feature  extraction.  (d)  The  PGC
parameters and green or non-green images were downloaded.
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recorded and stored in JPG format with a file size of 3.5 MB for
each image. Canopeo was utilized to analyze each block center
using  automatic  color  threshold  (ACT)  free  image  analysis
software. The software was developed in the MATLAB program-
ming  language  (MathWorks,  Inc.,  Hebei,  China)  and  uses  the
RGB color values[26,27]. Canopeo image analysis software can be
used  to  directly  obtain  the  PGC  using  a  maximum  inter-class
variance  morphological  threshold  technique  without  soil  and
vegetation removal or deionization.

Application of the web version (www.canopeoapp.com) and
mobile  Application  (APP)  system.  We  choose  the  web  version
due to its simplicity, convenience, and ability to perform batch
image  processing.  The  HD  digital  camera  was  installed  one
meter high on a wooden stick marked at  a height of  80 cm to
ensure  that  all  the  HD  digital  images  were  taken  at  the  same
vertical  distance from the plant.  Similarly,  a  straight  horizontal
line measuring 80 cm was drawn at the base of each processed
plant  (photographed  plant)  to  ensure  that  each  image
maintained  the  same  distance  from  the  plant  in  width.  The
camera  angle  of  view  was  60  degrees  above  the  ground.  This
angle  was  established  based  on  the  height  and  width  of  the

cotton  plant  to  provide  the  best  view  and  ensure  that  the
height  and  leaf  area  were  adequately  captured.  Canopeo  is
based on the color ratio of red and green, blue and green, and
the  excess  green  index[27].  Patrignani  &  Ochsner[49] provided
the  pixel  standard,  and  the  image  was  analyzed  automatically
by the APP.  The adjusted value was set to 0.9 (the default).  To
reduce  white  pixels  in  the  middle  between  rows,  we  adjusted
the  'slider'  to  match  the  green  pixels  in  the  original
photograph.  The  'slider'  refers  to  the  user-adjustable  noise
reduction  value  that  Canopeo  uses  to  reduce  background
pixels that may register on the R/G or B/G scale. The same value
was used on the ‘slider’ in each test. After taking a photograph,
we logged onto the Canopeo website (www.canopeoapp.com)
and uploaded the images, which were automatically converted
from green to white coloration to generate the percentages of
pixels  in  the  images.  Ultimately,  the  PGC  was  recorded  and
downloaded for  analysis[28,49−51].  The specific  process  is  shown
in Figs 6 & 7.

 Statistical analysis
The data obtained consisted of  the structural  characteristics

of 49 CK and 80 DS varieties and their corresponding HD digital

Image acquisition in the field Login webpage version

Upload images and download PGC data

Other background elements
appear as black pixels

Download and save the
PGC data

Green live vegetation appears
as white pixels

 
Fig. 7    Workflow hierarchy diagram. The PGC values and images were obtained after uploading to the web page for batch processing. PGC,
percentages of green color.
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images.  To  determine whether  the  models  to  estimate  the PH
and  AGB  exhibited  differences  among  the  different  cotton
genotypes,  we used 67% (53)  and 33% (27)  of  the DS samples
as  the  modeling  and  validation  sets,  respectively,  to  construct
the models and evaluate their accuracy. Conversely, 80 DS and
49 CK samples were used as the modeling and verification sets,
respectively,  to  construct  the  models  to  estimate  the  PH  and
AGB and evaluate their correlation with the DS and CK treated
cotton plants.  Finally,  SLR modeling was used to construct the
estimation model of cotton PH and AGB.

 Evaluation indices
The  accuracy  of  cotton  PH  and  AGB  prediction  models  was

verified  using  the  validation  sets.  Briefly,  the  R2,  RMSE,  and
NRMSE were selected for evaluation of the accuracy of models.
A higher R2 value indicates that the model is more accurate and
fits  better.  In  contrast,  lower  RMSE and NRMSE values indicate
higher  accuracy  of  the  estimation  model.  When  the  NRMSE  <
10%, the accuracy of the estimation model is considered to be
corresponding  to  the  measured  value.  However,  if  the  values
ranged  between  10%  to  20%  and  20%  to  30%,  the  accuracy
and  consistency  of  the  model  is  considered  and  medium,
respectively.  The  accuracy  and  consistency  of  the  model  with
an NRMSE that exceeds 30% are considered poor.  The specific
calculation formula is as follows:

R2 = 1−

∑n

i=1
(yi− ŷi)2∑n

i=1
(yi− ȳ)2

, ∈ [0,1] (1)

RMS E =

√
1
n

∑n

i=1
(yi− ŷi)2, ∈ [0 , +∞) (2)

NRMS E =
RMS E

ȳ
(3)

ŷi ȳ
where n is the number of samples; yi is the true values of cotton
PH or AGB;  is the predicted values of cotton PH or AGB, and  is
the average of PH or AGB true values.
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