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around exceptional points
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Abstract
The robust operation of quantum entanglement states is crucial for applications in quantum information, computing,
and communications1–3. However, it has always been a great challenge to complete such a task because of
decoherence and disorder. Here, we propose theoretically and demonstrate experimentally an effective scheme to
realize robust operation of quantum entanglement states by designing quadruple degeneracy exceptional points. By
encircling the exceptional points on two overlapping Riemann energy surfaces, we have realized a chiral switch for
entangled states with high fidelity. Owing to the topological protection conferred by the Riemann surface structure,
this switching of chirality exhibits strong robustness against perturbations in the encircling path. Furthermore, we have
experimentally validated such a scheme on a quantum walk platform. Our work opens up a new way for the
application of non-Hermitian physics in the field of quantum information.

Introduction
Quantum entanglement as the heart of quantum

mechanics highlights the nonseparability and non-
locality, which has been created experimentally in var-
ious physical systems. However, it is susceptible to
influences of environment, which often appears deco-
herence. How to perform robust entanglement opera-
tions is crucial for applications in quantum
information1–4. Recent investigations have shown that
the combination of topology and quantum states can
bring hope to solve such a problem, including the
topological quantum optics interface5,6, topological
sources of quantum light7–9, topologically protected
two-photon quantum correlation10–13, topologically
robust transport of entangled photons14,15. The problem
is that the fidelities of entangled states become very low
after these reported topologically protected operations.
Although the transformation efficiency of entangled
states can be improved by using inverse-design
method16,17, various parameters need to be designed

for the transformation between different entangled
states. Moreover, the signal also scatters to non-
topologically protected channels, resulting in significant
losses in the transformation of entangled states. Thus,
how to realize robust entanglement operation with high
fidelity is still unknown.
In this work, we provide topologically protected

entanglement operations with high fidelity by designing
quadruple degeneracy exceptional point (EP). The EP is
a type of non-Hermitian degeneracy, and its research has
attracted more and more attention18–22. This is because
the abrupt nature of the phase transitions around or
near the EP has been shown to lead to many intriguing
phenomena, such as topological mode and energy
transfers23–29, laser mode selectivity30–32, EP-enhanced
mode splitting33–45, loss-induced transparency46,47,
unidirectional invisibility48,49 and so on50–56. These
phenomena have not only been explored in classical
systems, but also they have been discussed in the
quantum regime57–62. However, whether or how to
achieve robust operations of entangled states around the
EP has not yet been studied. As the first work on
entanglement operations around the EP, our work opens
up the exciting possibility of realizing robust entangle-
ment operations with high fidelity in non-Hermitian
systems.
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Results
Theory of topological entanglement switching around
degeneracy exceptional points
In many previous studies23–29, the dynamic encircling of

the exceptional point was described using Hamiltonian
operators. In the following, we provide another way to
describe such a problem, that is, utilize non-Hermitian
evolution operators based on non-Hermitian quantum
walk (QW). As illustrated in Fig. 1a, two entangled par-
ticles (the red and gray spheres) as the input state jζ ini are
incident on an array composed of multiple operators
U1;U2; � � � ;UN . Here, the Hilbert space of each particle is
2×1 dimensional, and its state can be expressed using an
orthogonal basis j0i ¼ ð1; 0ÞT and j1i ¼ ð0; 1ÞT . The two
entangled particles evolve along separate paths through
the operator array, and the output entangled state can be
expressed as jζouti ¼ UN � ::: � U2 � U1 � jζ ini. Each evolu-
tion step Ui consists of the QW operator I �Mi, as well
as pre- and post-control operators Ci and C�1

i . The

detailed expressions and derivations of these control
operators are provided in Section “Introduction” of
Methods. Taking the first evolution step operator U1 ¼
C1ðI �M1ÞC�1

1 as an example, the single step evolution
process can be divided into three stages. First, both par-
ticles are acted upon by the operator C1. Next, the red
particle enters the identity matrix module I , while the gray

particle enters the QW module M1, where M1 ¼
ψðφÞRðθ12 ÞGSRðθ2ÞG�1SRðθ12 Þ consists of multiple opera-

tors. Here RðθÞ ¼ cosðθÞ � sinðθÞ
sinðθÞ cosðθÞ

� �
is the rotation

operator, where θ1=2 and θ2 represent rotation angles.

When RðθÞ acts on the gray particle, it can make the

output state a linear superposition state related to j0i and
j1i. S ¼ eik 0

0 e�ik

� �
is the conditional phase shift

operator, which adds a phase shift of eik for state j0i, and
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Fig. 1 The realization of the dynamic encircling of the exceptional point for entangled states. a Schematic of the quantum walk evolution
operator. b Riemann energy surface for evolution operator Uiði � NÞ with φ and θ1, other parameters are γ ¼ 0:2; k ¼ 0 and θ2 ¼ π

16. Four stars with
different colors represent different initial states. A green ball indicates the position of EP. c Trajectories of the encircling path, where the black path
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the opposite phase shift of e�ik for state j1i. The gain-loss
operators are G ¼ eγ 0

0 e�γ

� �
and G�1 ¼ e�γ 0

0 eγ

� �
,

where γ is the gain-loss strength. Under the action of G,

the wave function with the state j0i (j1i) is amplified

(reduced). The effect of G�1 is the opposite of G. The

symmetry breaking operator is ψ ¼
cosðφÞ i � sinðφÞ

i � sinðφÞ cosðφÞ
� �

, which breaks parity-time

symmetry63–65 when φ≠0. After the two particles have
gone through I �M1, they are both acted upon by the
operator C�1

1 . Afterwards, each evolution step operator
Uiði � NÞ acting on the two particles follows a similar
three-stage process, with the difference being that the
parameters θ1 and φ in the evolution change. It is
important to note that the evolution operator Ui incor-
porates the gain-loss operators G and G�1 with the gain-
loss strength γ, which leads to Ui � Ui

y≠I . Therefore, our
quantum walk system Ui is non-unitary indeed, not a
closed quantum system. The gain-loss operators G and
G�1 reflect the influence from the outside onto the
quantum walk system. Such “effective” description of
influence from the surrounding environment has also
been used before in the study of Hamiltonians with
exceptional points24,59.
Taking the parameters θ1 and φ as variables, by solving

the eigen-equation Uijαji ¼ ηjαji we obtain the eigenva-
lues η± ¼ e�iλ± , where λ± is the quasienergy of the
evolution system, and jαjiðj ¼ 1; 2; 3; 4Þ represent the four
eigenstates of the evolution operator Ui. The details of
these eigenvalues and eigenstates are provided in Section
“Results” of Methods. Figure 1b shows the real part of the
quasienergy as a function of θ1 and φ. Four energy sur-
faces are divided into two groups where each group
contains two degenerated Riemann energy surfaces. An
isolated EP (green sphere in Fig. 1b) exists at the branch
point of these surfaces. The red or blue color indicates
that the imaginary part of quasi-energy λ± is positive or
negative, respectively. It is found that the evolution pro-
cess described in Fig. 1a can exhibit behavior surrounding
an EP by appropriately selecting the parameters θ1 and φ.
When the parameter ðφ; θ1Þ ¼ ð0;�0:6Þ marked by the
asterisk in Fig. 1b is chosen as the starting point, and
φ ¼ 0:2 ´ cosð± 2π

N n� π
2Þ and θ1 ¼ 0:2´ sinð± 2π

N n�
π
2Þ � 0:4(N is the total number of step) at the nth step, the
variation of parameters constitutes a loop (black Loop 1)
as shown in Fig. 1c. The positive sign in the above
equation corresponds to the entangled state evolving
along the counter-clockwise path, while the negative sign
corresponds to the clockwise path. Next, four Bell states
jζ1i ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

, jζ2i ¼ ðj00i � j11iÞ= ffiffiffi
2

p
, jζ3i ¼

ðj01i þ j10iÞ= ffiffiffi
2

p
and jζ4i ¼ ðj01i � j10iÞ= ffiffiffi

2
p

are taken

as the input to the system, and the evolutions are studied.
To make the state evolution approximately adiabatically,
the number of total steps along Loop 1 is taken as N ¼
100. In this way, the parameters θ1 and φ change slowly.
The theoretical density matrices of the four output states
are shown in Fig. 2. Figures 2e–h correspond to the case
where θ1 and φ change clockwise, while Figs. 2i–l corre-
spond to the change counter-clockwise. For comparison,
Fig. 2a–d shows the density matrices of the input states.
The white, yellow, red and blue asterisks in Figs. 2a–d
corresponds to those labeled in Fig. 1b, which represent
the input states jζ1i, jζ2i, jζ3i and jζ4i, respectively.
As shown in Figs. 2e, f, when the input states jζ1i and

jζ2i encircle the EP clockwise (CW), the evolved output
results are both very close to the entangled state jζ2i. The
calculated fidelities are as high as 98.3% and 96.4%,
respectively. For comparison, if the input states jζ1i and
jζ2i encircle the EP counter-clockwise (CCW), the output
results are both very close to the entangled state jζ1i with
very high fidelities, see Figs. 2i, j. It indicates that encir-
cling the EP enables asymmetric conversion between the
entangled states jζ1i and jζ2i.
The origin for such asymmetric conversion is uncovered

below. For the input state jζ1i, its real part of the energy is
less than 0, which is described by the white asterisk in Fig.
1b. So when starting from jζ1i and encircling the EP
clockwise, the state experiences the evolution path on the
red Riemann surface, i.e. experiencing the gain mode
where the imaginary part of the quasienergy is positive. In
this case, the input states adiabatically evolve on the
Riemann surface, and change to jζ2i after one cycle of
parameter changes, as shown in Fig. 2e. While, when the
input state changes to jζ2i (its real part of the energy
greater than 0, labeled as yellow asterisk in Fig. 1b), the
evolution path encircling the EP clockwise is on the blue
Riemann surface at the initial stage, i.e. the loss mode
where the imaginary part of the quasienergy is negative. In
this case, the tiny non-adiabatic coupling between the loss
and gain modes of the non-Hermitian system induces
non-adiabatic transitions, which breaks the adiabaticity. It
results in the transition from the blue Riemann surface to
the red one during the evolution, eventually return to
itself after one cycle, as shown in Fig. 2f. Different evo-
lution behaviors appear when the input states jζ1i and
jζ2i encircle the EP counter-clockwise. For the input state
jζ1i, the initial stage of the evolution paths is composed of
the loss modes. So the non-adiabatic transitions occur
during the evolution, causing the states to return to itself
after one loop, as shown in Fig. 2i. While, when starting
from jζ2i and circling the EP counterclockwise, the input
state experiences the evolution path composed of the gain
mode. Therefore, these input states evolve adiabatically on
the Riemann sheet, and change to jζ1i after one full
period of parameters, see Fig. 2j. Detailed analysis of each
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step evolution have been provided in S1 of Supplementary
Materials.
Similar results can also be found for jζ3i and jζ4i.

When the input states change to jζ3i or jζ4i, and then
encircles the EP clockwise, the output results are very
close to the entangled state jζ3i with high fidelities of
96.4% and 98.3%, see Figs. 2g, h. While, if the input state

jζ3i or jζ4i encircles the EP counter-clockwise, the out-
put results are both very close to the entangled state jζ4i,
see Figs. 2k, l. These results mean that the asymmetric
conversion between the entangled states jζ3i and jζ4i
can also be realized through encircling the EP. The ori-
gin for such asymmetric conversion is also similar to that
for jζ1i and jζ2i.
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The study above demonstrates that encircling the EP
enables asymmetric conversion between the four entangled
states, i.e., realize a chirality switch for entangled states.
The output entangled state in the conversion is determined
by the direction of circling the EP, and the conversion
efficiency is very high. This phenomenon can be attributed
to the consistency between the four eigenstates jαjiðj ¼
1; 2; 3; 4Þ of the evolution operator U1 and the four input

Bell states jζ jiðj ¼ 1; 2; 3; 4Þ. To reveal this physical

mechanism, the fidelities Fj ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρξ jÞ

1=2ραjðρξ jÞ
1=2

q
ðj ¼

1; 2; 3; 4Þ between the four input Bell states and the

eigenstates are calculated, where ρξ j ¼ jξ jihξ jj and ραj ¼jαjihαjj. It is found that these fidelity values are all above
0.99, indicating the forms are very close. If the parameters
are tuned to make the eigenstates jαjiðj ¼ 1; 2; 3; 4Þ ideal
Bell states, the output states will also be ideal Bell states. In
addition, to achieve the above chiral switch, the evolution
path of parameters cannot be far away from the EP. This
chiral switch disappears if the evolution path of parameters
is far away from the EP. For example, when the parameter
values at the nth step are taken as: φ ¼ 0:1 ´ cosð± 2π

N n�
π
2Þ and θ1 ¼ 0:1 ´ sinð± 2π

N n� π
2Þ � 0:5, they form a path

not enclosing the EP but away from it, which is shown as
the red Loop 2 in Fig. 1c. Our results of the Bell state
conversion show that the chiral behavior disappears, which
the detailed results has been provided in S2 of Supple-
mentary Materials.
Furthermore, it is emphasized that the above manip-

ulation processes for the entanglement states are topo-
logically protected due to topological properties of EP.
And more importantly, these phenomena can all be

experimentally demonstrated. In the following, we discuss
the experimental realization of the above theoretical
scheme by constructing the non-Hermitian QW platform
and demonstrate the robustness of this chiral switch.

Experimental realization of topological entanglement
switching
The constructed non-Hermitian QW platform is shown

in Fig. 3, which contains three parts: state preparation
(source), evolution process, and measurement. This cor-
responds to the theoretical scheme in Fig. 1a. In the state
preparation, we first use 400 nm picosecond laser pulses
to pump a 3mm thick β-BaB2O4 (BBO) crystals, gen-
erating photon pairs at 800 nm through type-I parametric
down conversion. These photon pairs are sent through
interference filters to enhance their indistinguishability
and coupled into single-mode fibers. The quantum states
j0i and j1i of the two particles are encoded in the hor-
izontal (jHi) and vertical (jV i) polarization states of the
two photons, respectively. In the experiment, we choose
the four maximally entangled Bell states jζ1;2;3;4i as the
initial states. Since the operator C1

�1 acting on the four
Bell states jζ1;2;3;4i can yield product states that are easy to
prepare accurately, we directly prepare the states
C1

�1jζ1;2;3;4i by rotating the angles of half-wave plates
(HWP) and quarter-wave plates (QWPs), before sending
them into the multi-step QW.
After preparation, the photons are then sent into the

multi-step QW ðI �MN Þ � � � ðI �M1Þ. Compared with
the previous theoretical design, the intermediate Ci and
C�1

iþ1 (1 � i � N � 1) are omitted in the experiment, since
CiC�1

iþ1 is very close to the identity matrix for relatively
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large N, i.e., CiC�1
iþ1 � I , where the detailed analysis is

provided in Section “Discussion” of “Methods”. In the
experiment, one photon propagates in free space while the
other photon enters the QW Mn. The operators in Mn

can all be implemented experimentally. The rotation
operator RðθÞ is implemented using a combination of a
green HWP at 0° and a black HWP at θ. Two QWPs and
one HWP together implement the conditional phase shift
operator S. For the gain-loss operator G, defining the

relation γ ¼ 1=2 ln ðl1=l2Þ, we obtain an equivalent gain-

loss operator L ¼ l1 0
0 l2

� �
by equating small (large) loss

to gain (loss), where 0 � l1 and l2 � 1. Similarly, G�1 can

be implemented by the equivalent gain-loss operator L�1.
In the experiment, partially polarizing beam splitters
(PPBS) are used to implement the operator L, while other
loss operators L�1 are implemented using a sandwich-
type HWP-(PPBS-A)-HWP optical device. Moreover, to
implement the symmetry-breaking operator ψðφÞ, a
combination of two QWPs and one HWP is placed at the
end of each step. For different Mn, by changing the
parameters θ1 and φ, the loops 1 and 2 described theo-
retically in Fig. 1c are implemented experimentally. For
the last operation CN , we decompose it into the product
of a SWAP gate, controlled-not (CNOT) gate, and the
operator T. The SWAP gate can exchange the states of
two quantum bits. In experiments, it can be implemented
by exchanging the upper and lower photons using mir-
rors. The CNOT gate is implemented by Hong-Ou-
Mandel interference using a combination of two PPBS-Bs
and one PPBS-C. For the operator T, different combina-
tions of HWPs, QWPs, and PPBS-D are placed in the
upper and lower paths to implement it. The detailed
experimental implementation is provided in Section
“Materials and methods” of Methods.
After the two photons undergo the above evolution

process, the output state is obtained through two-photon
quantum state tomography. By using an apparatus con-
sisting of QWPs, HWPs and polarizers, 16 measurement
bases are constructed to perform projective measurements
on the output state. With these projective measurement
results, the quantum state tomography is completed and
the density matrix of the output state is reconstructed.
The experimental results for the output states are

shown in Fig. 4. In the experiment, a total number of QW
steps N ¼ 8 is taken. In fact, the theoretical results shown
in Fig. 2 exhibit the case with 100-steps QW, which the
parameters are equally spaced. It is very difficult to realize
experimentally with so many QW steps due to loss. For-
tunately, it is found that good results can be obtained
using fewer QW steps when the parameters θ1 and φ are
unequally spaced. This is because it is uneven for the
matching degree between the output state and input state

for each step evolution along Loops. The calculated
results with N ¼ 8 are very close to those theoretical
results with N ¼ 100, indicating that the adiabatic con-
dition is also basically satisfied. Detailed analysis is pro-
vided in S3 of Supplementary Materials. When the initial
states prepared in the experiment are jζ1i and jζ2i, from
Figs. 4e, f it is found that the final entangled states
obtained are very close to jζ2i in clockwise; while from
Figs. 4i, j, when circling the EP counterclockwise, the final
entangled states obtained experimentally are very close to
jζ1i. This demonstrates the chiral behavior of the entan-
gled states jζ1i and jζ2i experimentally. In the same sys-
tem, when the input states in the experiment are jζ3i and
jζ4i, both change leads to jζ3i with encircling the EP
clockwise (Figs. 4g, h); while leads to jζ4i with encircling
the EP counter-clockwise (Figs. 4k, l). These results are
identical with those theoretical results shown in Fig. 2.
In the experiments, the fidelity F ¼

Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρξ jÞ

1=2ρexðρξ jÞ
1=2

q
ðj ¼ 1; 2; 3; 4Þ is calculated between

the output state and the ideal entangled state, where ρex is
the density matrix of the experimental output state and ρξ j
is one of the four Bell states. All fidelities reach 84% or
above, indicating the output states are very close to the
ideal entangled states. Because the total number of steps in
the experiment is 8, there are some differences between the
output states and the ideal entangled states, but it is suf-
ficient to demonstrate the chiral switching of the entangled

states. The similarity S½ρth; ρex� ¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρth

1=2ρexρth
1=2

p
between theoretical and experimental results is also cal-

culated, where ρth is the theoretical density matrix. It can
be seen that the similarity for all cases is greater than 92%,
indicating the excellent agreement between experiment
and theory. This means that we have successfully experi-
mentally demonstrated the chiral switch for the four Bell
states. The inevitable loss of photon leads to the resource of
error, and the related analysis in the experiment has been
provided in Section “Error analysis in the experiment” of
Methods. In addition, when choosing the red Loop 2 in Fig.
1c, the experimental results show that the chiral behavior
disappears, which are also identical with theoretical results,
see S4 of Supplementary Materials.
In order to verify the robustness of this switching

behavior, the disorder is introduced into the encircled
path, and to observe the variations in the output
entangled states. In the experiment, the disorder is
realized by adding small random angular deviations to
the rotation angles of the waveplates, i.e., the parameters
of path become θ1 þ Δθ1 and φþ Δφ, where the dis-
order strengths Δθ and Δφ are uniformly random cho-
sen within the interval ð�0:025; 0:025Þ rad. Here, θ1 and
φ take the same values as those in the Fig. 4. Ten groups
of perturbations are chosen, and the average results over
these groups are shown in Fig. 5. The blue bars
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represent the fidelities between the output states and the
ideal entangled states without disorder, and the gray
bars represent the fidelities with disorder for compar-
ison. Figure 5a shows the cases of clockwise encircling
of the EP. It can be seen that for the four different input

Bell states, the fidelities between the output states and
the ideal Bell states with disorder (gray bars) do not
change much compared with the corresponding cases
without disorder (blue bars), remaining at high values
(above 0.8). Similar results are found for the cases of
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Fig. 4 Experimental results of the chiral entanglement switching with encircling an EP. a–d Density matrices of the four different input Bell
states jζ jiðj ¼ 1; 2; 3; 4Þ. e–h Experimental density matrices after clockwise encircling of the EP. i–l Experimental density matrices after counter-
clockwise encircling of the EP. At the top of (e–l), the symbol F represents the fidelity between the output states and the ideal Bell states. The symbol
S represents the similarity S½ρth; ρex � between theoretical and experimental results
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counterclockwise encircling of the EP in Fig. 5b. The
fidelities with disorder also do not change much com-
pared to the case without disorder. This means the
chiral switching of the entangled states does indeed
exhibit robustness against disorder in the path
parameters.

Discussion
The usual approach to achieving conversion of entan-

glement states is to precisely manipulate a two-qubit gate,
and the conversion between different entangled states
requires constructing different quantum gates. However,
such an operation does not have topological protection
characteristics, which is easily affected by environment
and appears errors. In this work, we have provided
effective scheme to realize robust operation of quantum
entanglement states with high fidelity by designing
quadruple degeneracy EPs. Because the designed Riemann
energy surfaces with degeneracy EPs have the same
eigenstates as the entangled states, asymmetric conversion
between the entangled states can be realized by encircling
the EP. Such manipulation for the entangled states is
topologically protected due to the topological properties
of the Riemann surface structure. Furthermore, the phe-
nomena have been experimentally demonstrated by con-
structing the quantum walk platforms.

The above discussions focus on the case for encircling the
EPs. Recent investigations have shown that chiral state
transfers can appear without encircling the EP or near
EP28,29. In fact, our designed topologically protected entan-
glement switching can also work without encircling the EP
or near EP. The detailed discussions have been given in S5
of Supplementary Materials. This means that the phenom-
ena we have revealed are easier to be implemented in var-
ious real systems, which is very beneficial for future
quantum information, computing, and communications66,67.

Materials and methods
The details of pre- and post-control operators
In our discussion, the operators for the nth QW can be

expressed as Mn ¼ ψðφÞRðθ12 ÞGSRðθ2ÞG�1SRðθ12 Þ. The
terms Rðθ12 ÞGSRðθ2ÞG�1SRðθ12 Þ can be written by the 2 ´ 2
identity matrix σ0, and Pauli matrices σx, σy and σz,

R θ1
2

� �
GSRðθ2ÞG�1SR θ1

2

� � ¼ d0σ0 þ dxσx þ idyσy þ id0σz

¼ d0 þ idz dx þ dy

dx � dy d0 � idz

� �

ð1Þ

The elements d0, dx, dy and dz are taken as
d0 ¼ cos 2k cos θ1 cos θ2 � cosh 2γ sin θ1 sin θ2, dx ¼ � sinh 2γ sin θ2,
dy ¼ � cos θ2 sin θ1 cos 2k � cosh 2γ cos θ1 sin θ2 and dz ¼

1
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Fig. 5 Experimental results of fidelities. In (a, b), under the perturbation of disorder, the fidelity between the output states and the ideal entangled
states for different input states. The label “CW” denotes the path circling the EP clockwise in the experiment, and “CCW”means counterclockwise. The
horizontal axis jζ j;iniðj ¼ 1; 2; 3; 4Þ labels the four different input Bell states. The vertical axis represents the fidelity between the output state and the
ideal output entangled state. The error bars without disorder represent ±1 s.d. estimated from Poisson photon counting statistics, and the error bars
with disorder represent the standard deviation
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cos θ2 sin 2k, respectively. These elements satisfy the relation
d0

2 � dx
2 þ dy

2 þ dz
2 ¼ 1. When considering the operator

ψðφÞ, the QW operator Mn can be shown as

Mn ¼
D0 þ iDZ DX þ DY

DX � DY D0 � iDZ

� �
ð2Þ

with the operators D0, DX , DY and DZ as

D0 ¼ cosφd0 þ i sinφdx;DX ¼ cosφdx þ i sinφd0

DY ¼ cosφdy þ sinφdz;DZ ¼ cosφdz � sinφdy

ð3Þ

At the nth step, two photons undergo the evolution as
I �Mn, which can be described as

I �Mn ¼

D0 þ iDZ DX þ DY 0 0

DX � DY D0 � iDZ 0 0

0 0 D0 þ iDZ DX þ DY

0 0 DX � DY D0 � iDZ

0
BBB@

1
CCCA
ð4Þ

For the above operator I �Mn, it is obviously that the
eigenstates are not the Bell states. Based on the studies
about quantum state control encircling the EP, the effi-
cient control among Bell states requires the eigenstates of
system to be nearly Bell states. Therefore, to realize the
efficient control of Bell states, we add the pre- and post-
control operators Cn and C�1

n to I �Mn in the theoretical
design. In this way, the evolution operator at the nth step
is Un ¼ CnðI �MnÞC�1

n . Due to the similarity transfor-
mation, the operators Un and I �Mn have the same
eigenvalues as η± ¼ D0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0

2 � 1
p

. In the following, we
provide the design of eigenstates of Un.
When solving the eigen-equation Un, we can always

have the relation as,

UnA ¼ A

η� 0 0 0

0 η� 0 0

0 0 ηþ 0

0 0 0 ηþ

0
BBB@

1
CCCA ð5Þ

Here, the column vectors in the matrix A are composed
of the eigenstates of Un. For the operator I �Mn, we can
also have the eigen-equation as,

ðI �MnÞB ¼ B

η� 0 0 0

0 η� 0 0

0 0 ηþ 0

0 0 0 ηþ

0
BBB@

1
CCCA ð6Þ

where the column vectors in the matrix B are composed
of the eigenstates of I �Mn. By combing Eqs. (5) and (6),

we can obtain the relation as,

Un ¼ AB�1ðI �MnÞBA�1 ¼ CnðI �MnÞC�1
n ð7Þ

The operator Cn has the form as Cn ¼ AB�1. Through
such similarity transformation, the eigenvalues of I �
Mn and Un are the same, which means the same Rie-
mann energy surfaces. The operator Un corresponds to
the one step evolution for two photons, and can be
expressed as

Un ¼

D0 0 DZ iDX þ iDY

0 D0 iDX � iDY �DZ

DZ �iDX � iDY D0 0

iDY � iDX �DZ 0 D0

0
BBB@

1
CCCA
ð8Þ

This operator Un characterizes a four-level system
with overlapping exceptional point Riemann surfaces. It
should be noted that since the inclusion of the gain-loss
operators G and G�1 within the operator Mn, the evo-
lution operator Un is a non-Hermitian matrix. As shown
in Eq. (3), the expressions of D0 and DX are complex,
and the expressions of DY and DZ are pure real.
Therefore, the off-diagonal term in the matrix Un is not
anti-Hermitian. At the first sight, this matrix Un appears
to be similar as the form of a general scattering matrix68.
However, the scattering matrix shown in ref.68 is anti-
Hermitian, so the matrix Un in Eq. (8) cannot be
equated with the anti-Hermitian scattering matrix
directly. If we aim to implement the scattering matrix, it
would be necessary to redesign the parameters within
the matrix Un.

The construction of QW with Bell states as its eigenstates
By solving the eigen-equation, the eigenstates of Un can

be obtained as Unjαji ¼ η± jαji ðj ¼ 1; 2; 3; 4Þ, with
eigenvalues η± ¼ D0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0

2 � 1
p

¼ e�iλ± . The explicit
forms of jαji ðj ¼ 1; 2; 3; 4Þ are

jα1;2i ¼ 1ffiffi
2

p ðη	�D0Þ

iDX þ iDY

�DZ

0

η	 � D0

0
BBB@

1
CCCA;

jα3;4i ¼ 1ffiffi
2

p ðη ±�D0Þ

DZ

iDX � iDY

η± � D0

0

0
BBB@

1
CCCA

ð9Þ

The specific expressions for the above operators can be
obtained in Eq. (3) as well as the descriptions after Eq. (1).
To prepare the eigenstates as Bell states, we select the
initial point ðφ; θ1Þ ¼ ð0;�0:6Þ. Combining this with the
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parameters γ ¼ 0:2; k ¼ 0 and θ2 ¼ π
16 already provided in

the caption of Fig. 1 in the main text, we can calculate the
eigenstate of the system at the initial point as: jα1;2i ¼

± 0:6281
0
0

0:7781

0
BB@

1
CCA; jα3;4i ¼

0
± 0:7781
0:6281

0

0
BB@

1
CCA. It is evident that

the eigenstate closely approximates a Bell state, with a
fidelity exceeding 0.99.
Considering the non-Hermitian system, the left eigen-

states satisfy Uyjβi ¼ η�jβi with jβji ðj ¼ 1; 2; 3; 4Þ as

hβ1;2j ¼ 1ffiffi
2

p ðη	�D0Þ

�iDX þ iDY

DZ

0

η	 � D0

0
BBB@

1
CCCA

T

;

hβ3;4j ¼ 1ffiffi
2

p ðη±�D0Þ

�DZ

�iDX � iDY

η± � D0

0

0
BBB@

1
CCCA

T
ð10Þ

In our study, the parameters for the starting point of
system are chosen as ðφ; θ1Þ ¼ ð0;�0:6Þ. It is found that
the eigenstates jα1;2;3;4i are very close to Bell states
jζ1;2;3;4i. The fidelities between jα1;2;3;4i and jζ1;2;3;4i are all
larger than 97%. Therefore, the eigenstates of system with
ðφ; θ1Þ ¼ ð0;�0:6Þ can be treated as Bell states. In this
way, the efficient quantum control among bell states can
be realized by encircling the EP.

The simplification Cnþ1
�1Cn in the design of experiment

When the evolution encircles the EP, the output state is
obtained as:

jζouti ¼ UN � � �Un � � �U2U1jζ ini ð11Þ

By replacing Unð1 � n � NÞ with its explicit form
CnðI �MnÞC�1

n , the above equation changes to:

jζouti ¼ CN ðI �MN ÞC�1
N � � �CnðI �MnÞC�1

n � � �C1ðI �M1ÞC�1
1 jζ ini

ð12Þ

In our study, the state changes slowly on the Riemann
energy surface with φ and θ1. For the adjacent Un and
Unþ1, the parameters φ and θ1 also change slowly. As
mentioned in Section “Introduction” of Methods, the
operator Cn has the form as Cn ¼ AB�1, where A and B
are composed of the eigenstates of Un and I �Mn,
respectively. The slow changes of φ and θ1 indicate that

the expressions for Cn and Cnþ1 are nearly the same. So
we can obtain the relation approximately as

Cnþ1
�1Cn � 1 ð13Þ

For our discussions in the main text, we also numeri-
cally calculate the Eq. (13) and find it is always satisfied. In
this way, the evolution shown in Eq. (12) can be simplified
as:

jζouti ¼ CN ðI �MN Þ � � � ðI �MnÞ � � � ðI �M1ÞC1
�1jζ ini

ð14Þ

The Eq. (14) means that we can achieve the circle of the
EP following this simple evolution. In our experiment, the
input states undergo the optical elements consisting of the
evolution as Eq. (14), and change to different output states
depending on the circle of the EP clockwise and counter-
clockwise. Next, we show how to realize the operators in
the optical platform.

Realizations of operators in the optical platform
In the experiment, the combination of two QWPs and

one HWP can realize any unitary operation of single
polarization bits. Here, we design a specific combination
of waveplates to achieve a more concise form of this
evolution. The Jones matrices of the HWP and QWP are

HWPðθÞ ¼ cosðθÞ sinðθÞ
sinðθÞ � cosðθÞ

� �
and QWPðθÞ ¼

ffiffi
2

p
2

1� i cosðθÞ �i sinðθÞ
�i sinðθÞ 1þ i cosðθÞ

� �
. It is noted that the

actual rotation angle in the experiment is θ
2. In the fol-

lowing, we give the explicit realizations of these operators
in the optical platform.

Rotation operator R

RðθÞ ¼ cosðθÞ � sinðθÞ
sinðθÞ cosðθÞ

� �
¼ cosðθÞ sinðθÞ

sinðθÞ � cosðθÞ

� �
1 0

0 �1

� �
¼ HWPðθÞ � HWPð0Þ

ð15Þ

The rotation operator R can be achieved by the com-
bination of two half-wave pieces with angles 0 and θ
respectively. The symbol ‘·’ represents the actions of
operators from right to left.
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Conditional phase shift operator S

S ¼ eik 0

0 e�ik

 !
¼ i

ffiffi
2

p
2

1 �i

�i 1

� �
sinðkÞ cosðkÞ
cosðkÞ � sinðkÞ

� � ffiffi
2

p
2

1 �i

�i 1

� �

¼ ei
π
2QWPðπ2Þ �HWPðπ2 � kÞ � QWPðπ2Þ

ð16Þ

Therefore, the operator S can be realized by combining
two QWPs with an angle of π2 and one HWP with an angle
of π

2 � k.

The equivalent gain-loss operator L and L’
The polarization-dependent loss operators L ¼
l1 0
0 l2

� �
and L0 ¼ l2 0

0 l1

� �
are implemented using a

partial polarization beam splitter (PPBS), an optical device
with different transmittance ðtH ; tV Þ ¼ ðl21; l22Þ for the
horizontal and vertical polarizations of the incident light.
The horizontal polarization in the experiment is set to be
fully transmitted ðtH ¼ l21 ¼ 1Þ, while the vertical polar-
ization has a transmittance smaller than 1 ðtV ¼ l22Þ,
realizing the polarization-controlled loss operators. The
gain-loss strength γ ¼ 1=2 ln ðl1=l2Þ is set to be 0.2, and
the corresponding transmittance parameter of our cus-
tomized PPBS is ðl21; l22Þ ¼ ð1; 0:45Þ. Similarly, the opera-
tor L0 can be achieved by a PPBS with another type of
transmittance ðtH ; tV Þ ¼ ðl22; l21Þ. In order to realize such a
PPBS with a special polarization transmittance, we add
two HWPs with a rotation angle of π=4 before and after
injecting to the PPBS. So the operator L0 can be experi-
mentally realized by a sandwich-type HWP-(PPBS-A)-
HWP combination.

The symmetry breaking operator ψ

The operator ψ can be realized by combining two
QWPs with an angle of 0 and one HWP with an angle of φ
. Indeed, the operator Rðθ12 ÞGSRðθ2ÞG�1SRðθ12 Þ represents
a quantum walk model that satisfies parity-time (PT)
symmetry63–65. Here we give a brief description of PT
symmetry. We can introducing the PT-symmetric
operator PT ¼ σzK , where the operators K and σz

represent the complex conjugate operator and the Pauli
matrix along the z direction, respectively. Consequently,
we can calculate and obtain the following relation

ðPTÞðRðθ12 ÞGSRðθ2ÞG�1SRðθ12 ÞÞðPTÞ�1 ¼ ðRðθ12 ÞGSRðθ2ÞG�1SRðθ12 ÞÞ
�1

where I is the identity matrix. Therefore, the operator
Rðθ12 ÞGSRðθ2ÞG�1SRðθ12 Þ possesses PT symmetry.
However, when the operator ψðφÞ is introduced, the new

quantum walk system M1 ¼ ψðφÞRðθ12 ÞGSRðθ2ÞG�1SRðθ12 Þ
only maintains PT symmetry at the specific parameter φ ¼
0. In all other cases, PT symmetry is broken, and isolated
exceptional points emerge on the Riemann surface. So we
refer to the operator ψðφÞ as a symmetry-breaking opera-
tor, and the related discussion is thoroughly described65.
We have provided the realization of Mn in the optical
platform, then the implementations of C�1

1 jζ ini and CN are
given to complete the evolution encircling the EP.

Realization of C�1
1 jζ ini

In the experiment, the starting points of parameters are
selected as ðφ; θ1Þ ¼ ð0;�0:6Þ. The controlled operator
C1

�1 can be obtained with Eqs. (5)-(7).

C�1
1 ¼

�i 0 0 0

0 0 0 1

0 0:8071i 0 0

0 0 1:2389 0

0
BBB@

1
CCCA ð18Þ

When the input states are Bell states jζ1;2i, the states
undergoing the operator C�1

1 are

C�1
1 jζ1;2i ¼

ffiffiffi
2

p

2
C�1

1

1

0

0

± 1

0
BBB@

1
CCCA ¼

ffiffiffi
2

p

2

�i

± 1

0

0

0
BBB@

1
CCCA ð19Þ

When the input states are Bell states jζ3;4i, the states
undergoing the operator C�1

1 are

C�1
1 jζ3;4i ¼

ffiffiffi
2

p

2
C�1

1

0

1

± 1

0

0
BBB@

1
CCCA ¼

ffiffiffi
2

p

2

0

0

0:8071i

± 1:2389

0
BBB@

1
CCCA

ð20Þ
As shown by Eqs. (19)-(20), after going through the

operator C�1
1 , the Bell states change to new product

ψ ¼ cosðφÞ i sinðφÞ
i sinðφÞ cosðφÞ

� �
¼ i 12

1� i 0

0 1þ i

� �
cosðφÞ sinðφÞ
sinðφÞ � cosðφÞ

� �
1� i 0

0 1þ i

� �
¼ ei

π
2QWPð0Þ � HWPðφÞ � QWPð0Þ

ð17Þ
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states. These product states can be realized through
adding QWP and HWP to the two photons generated at
the β-BaB2O4 (BBO) crystals.

Realization of CN

According to the evolution encircling the EP (Eq. (14)),
the final operator is CN with the parameters ðφ; θ1Þ ¼
ð0;�0:6Þ. Through Eqs. (5)-(7), the explicit form of CN is

CN ¼

i 0 0 0

0 0 �1:2389i 0

0 0 0 0:8071

0 1 0 0

0
BBB@

1
CCCA ð21Þ

This operator can be realized by the combination of the
SWAP, CNOT and T operators. The expressions for these
operators are

SWAP ¼

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0
BBB@

1
CCCA;CNOT ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1: 0

0
BBB@

1
CCCA
ð22Þ

and

T ¼

i 0 0 0

0 1:2389i 0 0

0 0 0:8071 0

0 0 0 1

0
BBB@

1
CCCA ¼ T 1 � T2

¼ i 0

0 0:8071

� �
� 1 0

0 1:2389

� �
ð23Þ

It is found that the difference between the operator CN

and T � SWAP � CNOT is the coefficient −1 in the second
row of corresponding matrices. Such difference can be
eliminated by the phase plate. The operator T can be
obtained with T1 and T2. Since the operator T 1 can be

decomposed as T1 ¼ i 0
0 1

� �
1 0
0 0:8071

� �
, the com-

bination of QWP with the angle π
2 and PPBS-D can realize

this operator T1. The operator T2 can be expressed as

T2 ¼ 1:2389
0:8071 0

0 1

� �
, which can be implemented

by the sandwich type HWP-(PPBS-D)-HWP in the
experiment.

Error analysis in the experiment
In addition to the polarization-dependent loss caused

by the PPBS, imperfect optical components also lead to
the general loss. In the experiment, the input para-
meters θ1 and θ2 are realized by rotating half-wave
plates or quarter-wave plates to specific angles. The

measurement accuracy depends on the scale value,
reaching 1°. The transmission rate of each half-wave
plate and quarter-wave plate we used is about 0.991. In
the experiment, the power of the femtosecond pulsed
laser we used reached 250 mw. The measured coin-
cidence count of the matched photons directly gener-
ated from the type-I BBO can reach about 50k
per second. The generated photon pairs are enhanced
for their indistinguishability by passing through an
interference filter, and coupled into single mode fibers,
then emitted into the evolution optical path by another
pair of receiving heads.
The coupled interaction between the two photons in the

experiment is implemented through a CNOT gate. The
CNOT gate on the optical bench is experimentally
implemented by a combination of three PPBSs. The
central PPBS-C implements the quantum phase gate
operation by perfect reflection of vertically polarized light
and reflection (transmission) of 1/3 (2/3) of horizontally
polarized light. Two PPBS-Bs are inserted to adjust the
amplitude of the photonic qubits by perfect transmission
(reflection) of 1/3 (2/3) of vertically polarized light and
perfect transmission of horizontally polarized light. Due
to the effect of the 1/3 reflectivity beam splitter, both
photons may be lost, so the success of this CNOT gate is
not deterministic. The success probability of this all-
optical CNOT gate is 1/9. However, once we successfully
detect the final state (coincidence count of the control and
target bits), it indicates the successful implementation of
the CNOT gate.
The experimental implementation of the CNOT gate is

based on Hong-Ou-Mandel (HOM) interference, which is
a two-photon interference effect in quantum optics, ori-
ginating from the bosonic nature of photons. To tune the
two-photon interferometer, we set the incident light in
both paths to horizontal polarization and tune the optical
path difference between the two photons by moving the
coupling heads mounted on a translation stage. When the
coincidence count is minimized and reduced to about 1/9
of the total original count, it means we have successfully
tuned to the dip of the HOM curve, indicating the two-
photon interferometer is tuned.
In the measurement process, we record the number of

times the two-photon detectors respond coincidentally,
i.e. the photon coincidence counts. In performing com-
plete quantum state tomography measurements on the
entangled photon states, both photons pass through a
local measurement device consisting of QWP, HWP and
polarizer, then received by single photon detectors and
enter the coincidence measurement device, so that we can
realize joint measurements of the two photons. To
implement complete quantum state tomography, in the
experiment we measure the coincidence counts for 16
groups of bases: jHHi, jHV i, jHLi, jHDi, jVHi, jVV i,
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jVLi, jVDi, jRHi, jRV i, jRLi, jRDi, jDHi, jDV i, jDRi and
jDDi. Here the bases are defined as:

jDi ¼ ðjHi þ jV iÞ= ffiffiffi
2

p
; jAi ¼ ðjHi � jV iÞ= ffiffiffi

2
p

jRi ¼ ðjHi þ ijV iÞ= ffiffiffi
2

p
; jLi ¼ ðjHi � ijV iÞ= ffiffiffi

2
p

ð24Þ

Therefore, in the experiment, complete quantum state
tomography of the entangled states can be realized by
simply adjusting the wave plate angles corresponding to
the measurement bases.
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