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Abstract   Holographic optical elements (HOEs) based on polymer composites have become a research hot spot in recent years for augmented

reality (AR) due to the significant improvement of optical performance, dynamic range, ease of processing and high yield rate. Nevertheless, it re-

mains a formidable challenge to obtain a large field of view (FOV) and brightness due to the limited refractive index modulation. Herein, we re-

port an effective method to tackle the challenge by doping an epoxy liquid crystal termed E6M, which enables a large refractive index modula-

tion of 0.050 @ 633 nm and low haze of 5.0% at a doping concentration of 5 wt%. This achievement may be ascribed to the improved molecular

ordering of liquid crystals within the holographic polymer composites. The high refractive index modulation can endow transmission-type holo-

graphic polymer composites with a high diffraction efficiency of 96.2% at a small thickness of 5 μm, which would promise the design of thin and

lightweight AR devices.
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INTRODUCTION

With  the  rapid  development  of  high-speed  communications
and mobile computing, augmented reality (AR) is blazing as the
next  generation display  platform that  can deepen the human-
machine interactions. As a matter of fact, AR technologies have
been  of  immense  utility  in  a  broad  range  of  fields  such  as
healthcare,  industry  incubation,  immersive  teaching  and
games.[1,2] Optical  elements for reshaping the light path within
AR setups are indispensable and can significantly affect the ulti-
mate  imaging  prowess.  However,  traditional  optical  elements
like freeform prisms,  off-axis  aspheric mirrors and birdbath,  are
subject  to  fundamental  physical  constraints  when  it  comes  to
complex design and machining on a large scale.[3,4] Alternative-
ly,  holographic  optical  elements  (HOEs)  have  proved  to  bring
fresh vitality.[5,6] The combination of HOEs with waveguide ele-
ments  can  not  only  eliminate  the  cumbersome  and  intricate
lens groups,  but  can also provide more design freedom to ad-
just the field of view (FOV) and eye box. In addition, such a com-

n1

bination  can  also  improve  the  optical  efficiency  and  thus  pro-
vide a high brightness even with a low illumination intensity.[7,8]

This is of vital significance for reducing power consumption and
miniaturing the light source. Unfortunately, the refractive index
modulation (n1) of current HOEs generally remains small, which
would  consequently  restrict  the  FOV  and  diffraction
efficiency.[7,9−12] In addition, under such a condition, a thick HOE
must be used for ensuring a high diffraction efficiency and dis-
play  brightness,  which  would  also  hamper  endeavors  to  fabri-
cate  thin  and  lightweight  AR  setups.  Clearly,  it  is  in  an  urgent
need to develop high  materials to ensure high-performance
HOEs.

In  response  to  the  above  challenge,  holographic  polymer
nanocomposites,  particularly  those  containing  liquid  crystals
(LCs),[13−19] have  recently  garnered  significant  interests  as  a
noteworthy type of  HOEs.[20−25] This  is  because the introduc-
tion of LCs can not only offer a high n1, but also can impart ex-
ceptional  susceptibility  to  external  fields  and  attractive  pro-
cessing  feasibility.[23,26−35] The  most  appealing  example  was
reported by DigiLens in which the n1 could be as high as 0.15
and  thus  the  FOV  approached  50°  diagonal.[36,37] However,
the  formulations  are  undisclosed  probably  due  to  the  com-
mercial interests. In 2023, Ni et al. also reported a high-perfor-
mance HOE with a high n1 of 0.08, which offered a FOV of 30°

 

* Corresponding author, E-mail: hypeng@hust.edu.cn

Special Issue: Functional Polymer Materials
Received January 4, 2024; Accepted February 21, 2024; Published online
April 10, 2024

Chinese Journal of
POLYMER SCIENCE RESEARCH ARTICLE 
 

   
© Chinese Chemical Society www.cjps.org
     Institute of Chemistry, Chinese Academy of Sciences link.springer.com

 

https://doi.org/10.1007/s10118-024-3110-z
https://doi.org/10.1007/s10118-024-3110-z
https://doi.org/10.1007/s10118-024-3110-z
https://doi.org/10.1007/s10118-024-3110-z
https://doi.org/10.1007/s10118-024-3110-z
https://doi.org/10.1007/s10118-024-3110-z
https://doi.org/10.1007/s10118-024-3110-z
mailto:hypeng@hust.edu.cn
http://www.cjps.org
http://link.springer.com


diagonal.[7] Despite these inspiring achievements, there is still
lack of versatile approach to boost the n1.  Though further in-
creasing the refractive index of LCs might be a reasonable ap-
proach  to  improve  the n1 and  thus  the  FOV  and  brightness,
significant  light  scattering  loss  would  arise  due  to  increased
mismatch  of  refractive  index  between  the  polymer-rich  and
LC-rich  regions.[20,38,39] Under  such  a  condition,  the  haze
would be increased, leading to decreased optical transparen-
cy and poor quality of AR display.

Herein, we reported a viable approach to boosting the n1 of
holographic  polymer  composites  while  decreasing  the  haze
by  doping  an  epoxy  LC  termed  E6M.  Interestingly,  the n1

could reach 0.050 @ 633 nm and the haze decreased to 5.0%.
This  achievement  may  be  ascribed  to  the  fact  that  the  E6M
can  facilitate  the  LC  ordering  within  holographic  polymer
composites (Fig. 1).

EXPERIMENTAL

Materials

Chemicals used for synthesizing LC E6M and MPEB
Sodium hydroxide (purity: 99.5%) was obtained from TCI Chem-
icals.  Ethyl  acetate  (purity:  99.8%),  anhydrous  ethanol  (purity:
99.7%),  potassium  iodide  (KI,  purity:  99%)  and p-hydroxyben-
zoic acid (purity:  99%) were received from Innochem, China. 6-
Bromo-1-hexene  (purity:  95%), n-hexane  (purity:  98%),  methyl
hydroquinone  (purity:  99%)  and p-dimethylaminopyridine
(DMAP,  purity:  99%)  were  purchased  from  Aladdin,  China.
Dichloromethane  (CH2Cl2,  purity:  99.8%),  potassium  hydroxide
(KOH, purity: 99%) and hydrochloric acid (HCl, concentration: 37
vol%)  were  acquired  from  Acros  Organics,  Belgium.  Sodium
chloride (NaCl, purity: 99.5%), sodium sulfite (purity: 98%), sodi-
um  carbonate  anhydrous  (Na2CO3,  purity:  99.9%)  and  sodium
sulfate (Na2SO4, purity: 99%) were received from Sigma-Aldrich,

United  States.  Magnesium  sulfate  anhydrous  (purity:  97%),  3-
chloroperoxybenzoic  acid  (mCPBA,  purity:75%)  and N,N'-dicy-
clohexylcarbodiimide  (DCC,  purity:  99%)  were  supplied  by
Macklin, China.

Commercial LC for holographic recording
The  nematic  LC  P0616A  (ne(589nm,20°C)=1.72, n0(589nm,20°C)=1.52)
was supplied by Shijiazhuang Chengzhi Yonghua Display Mate-
rials Co., Ltd., China.

Monomers for holographic recording
N,N-dimethylacrylamide  (DMAA,  purity>99%）was  purchased
from  J&K  Scientific,  China.  The  multifunctional  acrylate
monomer 6361-100 was donated by Eternal Materials Co.,  Ltd.,
China.

Photoinitiating system
3,3′-Carbonylbis(7-diethylaminocoumarin) (KCD, purity: 99%) as
the photosensitizer was received from Acros Organics, Belgium.
N-phenylglycine (NPG,  purity >97%) as the co-initiator  was ob-
tained  from  TCI  Chemicals.  The  combination  of  KCD  with  NPG
led to the formation of “photoinitibitor” with both the initiation
and inhibition functions.[27]

LC cells
ITO cells with a gap of 5 μm was purchased from Hunan Future
Electronics Technology, Co., Ltd, China.

Characterization Methods
Molecular  structures  were  characterized  using  nuclear  magne-
tic  resonance  spectroscopy  (NMR,  400  MHz,  Ascend,  Bruker,
Germany). Molecular mass was acquired on the high-resolution
mass  spectrometry  (HRMS,  5800,  AB  SECIX,  United  States).  LC
textures  were  captured  using  polarized  optical  microscopy
(POM, Axio Scope. A1, Carl Zeiss, Germany). Heating was imple-
mented at a ramp rate of 3 °C∙min−1 from 25 °C to 170 °C while
the cooling was exerted at a ramp rate of 2 °C∙min−1. Phase tran-
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Fig. 1    Schematic illustration on the construction of high-performance LC-based holographic polymer nanocomposites by doping E6M.
P0616A was commercially available LC in nematic phase.
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sition  temperatures  were  analyzed  on  a  differential  scanning
calorimeter  (DSC,  Q2000,  TA,  United States).  Cooling and heat-
ing  were  implemented  at  a  ramp  rate  of  5  °C∙min−1 between
−20 and 180 °C.  For  the holographic  polymer nanocomposites
with grating structures, the diffraction efficiency and electro-optic
response  were  monitored  using  an  LCD  display  parameter
tester (LCT-5016C, North LC Engineering Research and Develop-
ment Center,  China.  Probe wavelength:  633 nm),  the haze was
characterized  using  hazemeter  (WGT-S,  Shanghai  Shengguang
Instrument Co., Ltd, China), and the micromorphology was ana-
lyzed  using  atomic  force  microscopy  (AFM,  SPM-9700,
Shimadzu, Japan) in the tapping mode. The LCs were removed
by soaking the gratings in hexane for 3 days before characteri-
zation.  Photopolymerization kinetics  was analyzed using Fouri-
er transform infrared spectroscopy (FTIR, V80, Bruker, Germany)
when in  situ shining  light  (wavelength:  460  nm,  intensity:  2.0
mW∙cm−2,  time:  500  s).  Temperature-dependent  wide-angle  X-
ray scattering (T-WAXS) characterizations at 20, 100 and 180 °C,
respectively,  were performed at  Soochow University  on a  scat-
tering  instrument  (SAXSess  mc2,  Anton  paar,  Austria)  with  a
temperature controller (TCS 300, Anton paar, Austria).

Chemical Synthesis
In  this  work,  E6M,  namely  2-methyl-1,4-phenylenebis(4-(2-(oxi-
ran-2-yl)ethoxy)benzoate)  was  synthesized  by  referencing  the
reported method.[40,41] As shown in Scheme 1, E6M was synthe-
sized in three-steps, wherein 2-methyl-1,4-phenylene bis(4-(ally-
loxy)benzoate)  (shortened as  MPEB)  was one of  the intermedi-
ates.

Synthesis of 4-allyloxybenzoic acid
To  start  with,  CH3OH  (100  mL),  H2O  (24  mL),  KOH  (20.0  g,  357
mmol), p-hydroxybenzoic acid (19.0 g, 137 mmol) and KI (0.2 g,
1.2  mmol)  were  added  to  a  500  mL  round-bottom  flask  and
stirred  at  0  °C  for  30  min.  Following,  6-bromo-1-hexene  (19.4
mL, 145 mmol) was added dropwise. Subsequently, the mixture
was heated up to 80 °C and refluxed for 12 h to complete the re-
action.  After  cooling down to room temperature,  the pH value
of  the  mixture  was  adjusted to  3  by  adding HCl  solution (con-
centration:  10  vol%)  dropwise.  The  product  was  obtained via
precipitation  from  the  original  solution  as  white  color  solid
(yield: 90%).

Synthesis of MPEB
4-Allyloxybenzoic acid (9.7 g, 44.4 mmol), methylhydroquinone
(2.4 g, 19.3 mmol), DMAP (0.4 g, 3.3 mmol) and distilled CH2Cl2

(200  mL)  were  added  into  a  500  mL  round-bottom  flask  and
stirred at 25 °C for 30 min. Afterwards, DCC was added dropwise.
After reacting for 24 h at room temperature, the mixture was fil-
tered to remove the residue, and the filtrate was further purified
by  column  chromatography  using  CH2Cl2 as  the  eluent  and  fi-
nally  precipitated  in  ethyl  acetate  as  white  color  solid
(yield:78%).

Synthesis of E6M
MPEB  (5.0  g,  9.4  mmol)  and  distilled  CH2Cl2 (120  mL)  were
added  to  a  250  mL  round-bottom  flask.  Then,  mCPBA  (4.83  g,
20.8 mmol) was added dropwise under continuous stirring.  Af-
ter reacting for 3 days at room temperature, the insoluble mat-
ter was filtered out, and the residual mixture was extracted with
CH2Cl2 for three times. The combined organics were washed by
aqueous solutions with 10.0 wt% Na2SO3, 10.0 wt% NaHCO3 and
saturated  sodium  chloride,  respectively.  The  organic  layer  was
collected and dried  with  anhydrous  Na2SO4,  and then concen-
trated via vacuum  evaporation.  The  obtained  crude  product
was recrystallized with ethyl acetate to produce white color sol-
id (yield: 42%).

Holographic Recording
The structures of LC-based holographic polymer composites are
in  periodic,  consisting  of  alternate  polymer-rich  and  LC-rich
phases.  To  generate  such  periodic  structures,  a  homogeneous
mixture  of  monomers,  LCs  and  photoinitiating  systems  was
sandwiched  inside  the  ITO  cells,  and  then  exposed  by  two  co-
herent  laser  beams  from  the  same  side.[38,42] The  laser  wave-
length was 460 nm (λwriting), and the external angle of these two
beams was set as ~38° (θset),  which thus could create transmis-
sion  gratings  in  a  period  of  about  700  nm  according  to  the
Bragg Law:[28]

Λ =
0.5λwriting

sin (θset

2
) (1)

where λwriting is  laser  wavelength, θset is  the  external  angle  of
these  two  beams,  and Λ is  grating  period.  During  holographic
recording,  the  intensity  of  each  beam  was  optimized  as  1
mW∙cm−2 while  the exposure time was 30 s.  After  holographic
recording, the composite gratings were post-cured by UV light
(365  nm,  100  mW∙cm−2,  5  min)  to  solidify  the  grating
structure.[43] To  avoid  overmodulation,  the  grating  thickness
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Scheme 1    Synthetic route to E6M.
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was controlled to be 5 μm.
The  composite  gratings  were  formed via periodic  pho-

topolymerization  induced  phase  separation,[13,44] where  the
photoinitiating system absorbed laser energy, produced radi-
cals  and  initiated  the  photopolymerization  in  the  bright  re-
gion, while the LC molecules were squeezed into the dark re-
gions due to the change of the chemical potential.[32,45,46] To
obtain  well-defined  gratings,  the  hyperbranched  monomer
6361-100 and monofunctional monomer DMAA were utilized
as previously optimized (Scheme 2 and Table 1). A monochro-
matic “photoinitibitor” composed  of  KCD  and  NPG  was  em-
ployed  as  the  photoinitiating  system  which  could  efficiently
regulate  the  phase  separation  structures via the  synergy  of
the  simultaneously  generated  photoinitiation  and  inhibition
functions.[27,47]

RESULTS AND DISCUSSION

LC Characteristics of E6M
LC characteristics of E6M can be characterized by POM and DSC

after chemical  identification with NMR and HRMS (Figs.  S1 and
S2  in  the  electronic  supplementary  information,  ESI).  Before
POM  and  DSC  characterizations,  thermogravimetric  analysis
(TGA)  was  exerted  to  evaluate  the  thermal  stability  of  E6M,
which indicates a high thermal stability up to 374 °C (Fig. S5 in
ESI).  As  shown  in Figs.  2(a)−2(c),  birefringent  patterns  become
more significant when heating from 25 °C to 89 °C and then fad-
ed off at 167 °C. The textures at 89 °C looked schlieren, implying
the formation of nematic LC phase, in consistent with previous
reports.[31,41] Upon  cooling,  the  birefringent  patterns  come  out
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Scheme 2    Schematic illustration of 6361-100, KCD, DMAA, NPG.

Table 1    Holographic formulations by weight percentage.

Entry DMAA/6361-100
(2/1) P0616A E6M

1# 70.0 30.0 0
2# 70.0 27.5 2.5
3# 70.0 25.0 5.0
4# 70.0 22.5 7.5
5# 70.0 20.0 10.0
6# 70.0 15.0 15.0
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at 160 °C and turn to focal conic below the temperature of 40 °C
(Figs.  2d−2f),  which  may  be  driven  by  the  transition  from  LC
phase to crystalline phase. DSC results supported the POM ob-
servations (Fig. 2g). Two exothermal peaks can be observed up-
on  cooling,  which  are  at  166  and  16  °C,  respectively.  The  first
peak indicates isotropic-nematic phase transition, while the sec-
ond with a small enthalpy of 7.7 J·g−1 may be accompanied by
slow crystallization. In sharp contrast, there is a large endother-
mal peak (enthalpy: 66.5 J·g−1) at 88 °C upon heating, which was
the sign of E6M melting. The small endothermal peak at 167 °C
indicated  the  nematic-isotropic  phase  transition  and  the  tem-
perature  was  referred  as  the  clearing  point.  To  further  confirm
the LC phase of E6M, T-WAXS analysis was exerted, and the re-
sults showed that E6M was crystalline at 20 °C while in nematic
phase  at  100  °C  with  the  sharp  reflection  peaks  fading  to  a
broad halo (Fig. 2h).

Influence of E6M on the Phase Transition Behavior of
P0616A
The LC characteristic of E6M would facilitate the miscibility with
the nematic  P0616A for  holographic  recording.[30] As  shown in
Fig. S6 (in ESI), homogeneous E6M/P0616A mixtures were ready
via simple mixing with varying mass ratios of 0.0/30.0, 2.5/27.5,

5.0/25.0,  7.5/22.5,  10.0/20.0  and  15.0/15.0,  respectively.  As  dis-
played in Fig. 3, with the increase of E6M content, the character-
istic schlieren textures of nematic LCs were gradually enlarged,
implying the formation of  larger  LC domains.  Interestingly,  the
nematic  LC tended to be more ordered according to the color
change  of  schlieren  textures,  and  cyan-blue  and  brown  colors
were shown when increasing the E6M loading. Basically, the for-
mer color indicates a parallel molecular alignment with respect
to  the  slow axis  of  the  phase  retarder  while  the  latter  shows a
perpendicular alignment.[30,48]

The preferred molecular orientation of P0616A by E6M can
be described by the order parameter:[49,50]

S =
K (TC − T)

TC
(2)

where TC and T denote the clearing point of the LC and a tem-
perature  below the clearing point,  respectively,  and K is  a  pro-
portional constant. This temperature dependent order parame-
ter tells us that with the increase of clearing point, the more or-
dered  of  LC  molecules  would  be  at  an  observed  temperature
lower than the clearing point. Interestingly, with the increase of
mass  ratio  of  E6M  to  P0616A  from  0.0/30.0  to  15.0/15.0,  the
clearing point of the LC mixtures is found to increase from 58.1
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°C to 101.7 °C during the first cooling and arise from 57.5 °C to
101.5  °C  during  the  second  heating  (Fig.  4).  The  ~76.5%  incre-
ment of nematic-isotropic phase transition temperatures clearly
demonstrates  the  increased  molecular  alignment  and  long-
range orientation order of LC mixtures by E6M.

Influences of E6M on the Reaction Kinetics and
Holographic Performance
The increased clearing point of LC mixtures by E6M might facili-
tate  the  LC  nucleation  during  holographic  patterning,  which
then may affect  the  photopolymerization kinetics,  phase  sepa-
ration  structures  and  holographic  performance.  By  evaluating

the photopolymerization kinetics using the previously reported
method  based  on  FTIR,[15,47] we  noted  that  the  photopolymer-
ization was generally accelerated by E6M and the double bond
conversion increased 6% when adding 15 wt% of E6M (Fig. 5).

η

The introduction of E6M was also found to boost the holo-
graphic  performance.  We  first  evaluated  the  influences  of
E6M on the diffraction efficiency, , and refractive index mod-
ulation, n1.  As  shown  in Fig.  6(a),  a  633  nm  laser  was  em-
ployed  to  probe  the  transmission  gratings  in  a  non-destruc-
tive modality,  where p-polarization meant an electric field of
the  probe  beam  was  parallel  to  the  plane  of  the  incidence
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while s-polarization had an electric field in the vertical. When
probed  from  the  Bragg  angle,  the  holographic  gratings  dis-
play a maximum diffraction intensity,  the diffraction efficien-
cy  can  be  calculated  using  the  equation  shown  in Fig.
6(b).[26,51] Interestingly,  the  formulated  transmission  gratings
with  E6M  showed  a  large  dependence  on  p-polarization  of
the  probe laser,  implying the  preferred parallel  alignment  of
LC molecules along with grating vector. In addition, the ratio
of  p-polarized  diffraction  efficiency  to  the  s-polarized  was
found  to  increase  by  48.5%  (i.e.,  from  10.3  to  15.3),  with  an
augmentation  of  E6M/P0616A  mass  ratio  from  0.0/30.0  to
5.0/25.0 (Fig. 6c). These results further support the conclusion
that the LC alignment can be promoted by E6M.

For a transmission holographic grating without overmodu-
lation, a high diffraction efficiency is given by the large n1,[52]

n1 =
arcsin (η0.5) cosθBλprobe

πd
(3)

where λprobe is  the  wavelength  of  probe  laser, θB denotes  the
Bragg angle, and d represents the grating thickness.[53,54] As dis-
played in Fig. 7(a), n1 is generally increased with an augmenta-
tion  of  E6M  content  and  could  reach  0.046  @  633  nm  at  the
mass ratio of  5.0/25.0 for  E6M/P0616A.  In comparison with the
control  without  E6M,  the n1 exhibits  a  great  increasement  by
44%. Nevertheless, the haze of holographic gratings was found

to increase  with  an augmentation of  the  mass  ratio,  and holo-
graphic gratings were hard to fabricate when further increasing
the mass  ratio  more  than 15.0/15.0  as  E6M could  not  be  com-
pletely dissolved (Fig. S7 in ESI). Excitingly, the formulated com-
posite gratings in this work can also show a high optical quality
with a small haze at 5.0% (Fig. 7b). To further boost the n1, the ir-
radiation intensity for each coherent laser beam was further in-
creased,  and  eventually  a  high n1 up  to  0.050  @  633  nm  was
achieved while the haze was maintained at 5.0% when the laser
intensity was 3 mW∙cm−2 (Figs. 7c and 7d).

To get a deeper insight into the mechanism for the boost-
ed n1 by E6M, the segregation degree (SD) was evaluated ac-
cording to the following equation:[13,38,55]

n1 = SD × fLC × ( nLC − nP) (4)

where fLC was the LC volume fraction (29.4 % in this  work),  SD
signified the degree of phase separation, nLC and nP denoted the
refractive index of LC and polymer, respectively. Due to the lack
of viable methods to characterize the SD by experiments apart
from  diffraction  efficiency,[13] the  SD  can  be  roughly  estimated
from  the  phase  separation  structures.  As  shown  in Fig.  8,  the
AFM  measured  grating  depth  was  123±5,  148±8,  123±11,
116±25,  134±14  and  127±8  nm,  respectively,  when  increasing
the mass ratio of E6M/P0616A from 0.0/30.0 to 15.0/15.0, which
implies insignificant changes of phase separation structures and
SD. This result supports that the increased n1 by E6M is primari-
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ly  ascribed  to  the  strengthened  LC  alignment  along  with  grat-
ing vector.[56] As we all know, the LC refractive index in the long
axis  is  much  higher  than  that  in  the  short  axis,  thus  the  pre-
ferred LC alignment can afford a  high refractive index contrast
between  the  LC-rich  and  polymer-rich  regions.  It  is  also  worth
noting  that  uniform  LC  alignment  could  downscale  the  differ-
ences  in  order  parameter  between  different  LC  domains  and
consequently  could  reduce  the  light  scattering  losses  and  im-
prove the optical quality.[39] Although similar results can be ob-
tained  by  adding  MPEB  (Figs.  S8−S13  in  ESI),  E6M  exhibits  far
beyond performance.

Effect of E6M on the Electro-optic Response of
Holographic Gratings
Fig. 9(a) displays the diffraction efficiency of composite gratings
against  applied  alternative  voltage.  As  clearly  shown,  the
diffraction  efficiency  is  declined  when  applying  an  alternating
voltage from 0 V to 300 V with an interval of 0.5 V, and eventual-
ly levels off. This is due to the reorientation of LC molecules with
positive dielectric constants along with the electric field can de-
crease  the  refractive  index  contrast  between  polymer-rich  and
LC-rich  phases.  With  an  augmentation  of  the  mass  ratio  of

E6M/P0616A from 0.0/30.0 to 5.0/25.0, the calculated threshold
voltage[38,57] increases from 7.4 V∙μm−1 to 17.5 V∙μm−1,  and the
saturated  voltage  increases  from  20.2  V∙μm−1 to  44.5  V∙μm−1.
With  the  mass  ratio  further  increasing  to  15.0/15.0,  both  the
threshold and saturated voltages are maintained at  higher val-
ues.  For  the  composite  gratings  with  scaffolding  morphology,
the increased driving voltage is mainly ascribed to the boosted
interfacial  interaction  between  polymer-rich  and  LC-rich
region.[38] This is in good agreement with shortened decay time
from 457 ms to 143 ms when turning off  the electric field (Fig.
9b). The results are reasonable as more and more LC molecules
would  be  directly  anchored  at  the  interface  when  the  LC
molecules are aligned along with grating vector as illustrated in
Fig.  1.  Under  such  a  condition,  interfacial  actions  rather  than
bend  elastic  force  of  LCs  would  govern  the  electro-optic  re-
sponse behaviors.

CONCLUSIONS

In  summary,  we  demonstrated  a  viable  approach  to  boost  re-
fractive  index  modulation  of  holographic  polymer  nanocom-
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posites by doping E6M. E6M was found to benefit the LC align-
ment  within  the LC-rich  regions  of  composite  gratings  accord-
ing to POM and DSC characterizations, which could not only en-
large  the  refractive  index  difference  between  the  polymer-rich
and LC-rich regions, but also could constrain the light scattering
loss.  Therefore,  a  high  refractive  index  modulation  of  0.050  @
633nm and low haze of 5.0% could be obtained, enabling a high
diffraction efficiency of 96.2% for 5 μm-thick transmission grat-
ings. In comparison with other work by solely introducing high
refractive  index  LCs,  the  major  advantage  of  this  approach  is
that  the  significant  light  scattering  can  be  depressed  by  uni-
form  LC  ordering  within  the  LC-rich  domains.  Therefore,  high
optical  quality  composite  gratings  can  be  promising  to  be  uti-
lized as HOEs for future advanced AR applications.
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