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Abstract
Wireless sensing of the wave propagation direction from radio sources lays the foundation for communication, radar,
navigation, etc. However, the existing signal processing paradigm for the direction of arrival estimation requires the
radio frequency electronic circuit to demodulate and sample the multichannel baseband signals followed by a
complicated computing process, which places the fundamental limit on its sensing speed and energy efficiency. Here,
we propose the super-resolution diffractive neural networks (S-DNN) to process electromagnetic (EM) waves directly
for the DOA estimation at the speed of light. The multilayer meta-structures of S-DNN generate super-oscillatory
angular responses in local angular regions that can perform the all-optical DOA estimation with angular resolutions
beyond the diffraction limit. The spatial-temporal multiplexing of passive and reconfigurable S-DNNs is utilized to
achieve high-resolution DOA estimation over a wide field of view. The S-DNN is validated for the DOA estimation of
multiple radio sources over 5 GHz frequency bandwidth with estimation latency over two to four orders of magnitude
lower than the state-of-the-art commercial devices in principle. The results achieve the angular resolution over an
order of magnitude, experimentally demonstrated with four times, higher than diffraction-limited resolution. We also
apply S-DNN’s edge computing capability, assisted by reconfigurable intelligent surfaces, for extremely low-latency
integrated sensing and communication with low power consumption. Our work is a significant step towards utilizing
photonic computing processors to facilitate various wireless sensing and communication tasks with advantages in
both computing paradigms and performance over electronic computing.

Introduction
Wireless sensing and communication have become

essential parts of modern life. The direction of arrival
(DOA) estimation, i.e., the radio direction-finding, utiliz-
ing the array signal processing technique to retrieve the
angular direction of electromagnetic (EM) field sources, is
a critical technology and has facilitated broad applications
in both civilian and military fields1–3. The conventional
methods, e.g., the widely-used multiple signal classifica-
tion (MUSIC) algorithms, require large numbers of radio

frequency (RF) electronic circuits for acquiring multi-
channel baseband signals before digital signal processing1.
The high hardware and algorithm complexities and the
massive data sampling hamper its performance in latency,
power consumption, and cost. Therefore, it is imminent
to develop new types of computing paradigms to process
RF signals more effectively for DOA estimation beyond
electronic processors4,5.
Recent research works on photonic processors have

demonstrated their major advantages in computing speed,
computing throughput, and energy efficiency6–22. By
encoding RF signals in the optical domain and computing
with photons, photonic processors can achieve function-
alities of filtering23, temporal integration and differentia-
tion24, and blind source separations with broader
bandwidth25,26. To directly process the RF signals,
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diffractive neural networks27–29 and surface plasmonic
neural networks30 were constructed, which modulate the
EM waves and process its carried information for different
tasks, e.g., object recognition and wireless codec, at the
speed of light. Compared with surface plasmonic, the
meta-structures in diffractive neural networks can mod-
ulate three-dimensional instead of two-dimensional EM
waves, which enables the network to have higher scal-
ability for large-scale spatial computing. Recently pro-
posed meta-structures consist of an achromatic meta-
lenses array, enabling intelligent depth measurement31.
Nevertheless, the resolution of the existing system is still
constrained by the diffraction limit, and its application for
advanced wireless sensing tasks has not been explored.
Besides, applying reconfigurable intelligent surfaces (RIS)
to modulate the spatial EM waves and construct the next
generation of communication systems32–36 lacks percep-
tion and computing capabilities. Thus, RIS necessitates
communicating with the base station to receive the con-
trol signals and users’ angular directions37,38, which makes
it challenging to provide low-latency communication
services for high-speed rail and autopilot.
To address these challenges, we propose to construct

super-resolution diffractive neural networks (S-DNN) for

the all-optical DOA estimation over the broadband fre-
quency range with angular resolution beyond the Rayleigh
limit. Here, “all-optical” refers to using diffractive photo-
nic computing devices to direct process signals carried by
the EM wave. S-DNN can achieve DOA estimation at the
speed of light with an angular resolution superior to the
MUSIC algorithm without traditional radiofrequency
circuits, ADCs, and digital signal processing. Different
S-DNN models can be spatially or temporally multiplexed
to flexibly estimate multi-target angles over the wide field-
of-view (see Fig. 1). Specifically, S-DNN performs the 1D
or 2D DOA estimation that separately or simultaneously
estimates the elevation and azimuth angles (see Fig. S1).
The input EM fields from different target sources are
robustly classified into different angular intervals. For
example, a single-layer S-DNN can estimate multi-target
angles with a field-of-view of 100° and an angular reso-
lution of 10° (see Fig. 1a). By increasing the diffractive
modulation layer numbers, at any local field-of-view sizes
of 30° and 10°, the three-layer and four-layer S-DNNs
achieve angular resolutions of 3° and 1°, respectively,
which exceeds the Rayleigh limit angular resolution of
4:37° (see Fig. 1d, b). The applications of S-DNN for RIS-
based communication systems using temporal or spatial
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Fig. 1 S-DNN for all-optical wireless sensing and communication. a S-DNNs can be spatially multiplexed for separately estimating the azimuth
and elevation angular interval of targets over a wide field-of-view. b Four-layer S-DNN achieves DOA estimation with angular resolution beyond the
diffraction limit, which can be applied for detecting and tracking targets with emitters. c Reconfigurable S-DNN utilizes LC RIS with temporal
multiplexing to achieve DOA estimation for low-latency communication. d The three-layer S-DNN with super-resolution DOA estimation results are
utilized to establish real-time RIS-based communication links between a base station and users. e Device pictures of the passive and reconfigurable
diffractive layers utilized for integrated photonic computing, sensing, and communication. f The conventional RIS-based communication system
relies on the base station to process wireless signals and send user locations, substantially increasing the communication latency
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multiplexing are illustrated in Fig. 1c, d, respectively. In
Fig. 1b, the emitter scans and detects the aircraft, where
the reflected EM waves are received by the S-DNN. In Fig.
1d, the estimated results of the S-DNN can be measured
with power detectors and fed back to the field-
programmable gate array (FPGA) in real time to further
control the RIS to implement beamforming. The devel-
oped passive layers and liquid crystal (LC)-based RIS for
diffractive photonic computing and communication are
shown in Fig. 1e. For the conventional RIS-based com-
munication system, the DOA estimation requires the base
station to implement the pipeline of down-conversion,
sampling, and digital signal processing, and the estimation
results need to send to the RIS for establishing the com-
munication links as shown in Fig. 1f and Fig. S1a (left).
Differently, S-DNN empowers RIS-based communication
systems with perception and edge computing capabilities,
which facilitates low-latency beamforming tracking for
real-time communications between base stations and
high-speed mobile users with low power consumption.

Results
DOA estimation with S-DNNs beyond diffraction limits
The fundamental principle of S-DNN for DOA esti-

mation is to classify the input EM field distribution of
different target sources into different angular intervals
(see Methods). S-DNN can be designed to work under 1D
or 2D estimation mode for separately or simultaneously
estimating the target elevation angle θ and azimuth angle
φ. The architecture of S-DNN is constructed by cascading
multiple diffractive modulation layers, followed by a
detector array on the output plane (see Fig. S1b). Each
detection region corresponds to an input angular interval,
measuring the intensity of output EM fields. We imple-
ment the diffractive modulation layer with passive and
reconfigurable intelligent surfaces, i.e., the PIS and RIS.
Both PIS and RIS utilize sub-wavelength diffractive ele-
ments, i.e., the meta-atoms, to modulate the amplitude
and phase of EM waves over broadband frequency ranges
and generate large-scale optical interconnections between
layers via diffractions (see Methods and Fig. S2). We
designed the S-DNN to work at 5 G mmWave commu-
nication frequency band and experimentally validated
with 1D estimation mode for separately estimating the
elevation and azimuth angles. With accurate forward
modeling, the parameters of each meta-atom, including
the material thickness of PIS and control voltage of RIS,
are optimized during the network training. The S-DNN
learns to accumulate the energy of the incident plane
wave from a target at a given angle to its corresponding
detection region on the output plane. The target angular
intervals are determined by finding the top-K values of
intensity measurement among detection regions, where K
represents the number of incident angular intervals

having targets. The high degree-of-freedom design space
with large-scale diffractive modulation enables S-DNN to
generate super-oscillatory angular responses in different
local angular ranges for super-resolution DOA estima-
tions beyond the diffraction limit.
We first demonstrate the multi-layer S-DNNs for the

super-resolution DOA estimation at local angular ranges
(see Fig. 2). As the elevation and azimuth directions are
orthogonal in 3D space, the S-DNN models trained for
elevation angle estimation can be used for azimuth angle
estimation and verified with an azimuth angular rotation
system after rotating the network with 90° clockwise (see
Fig. S3). The proposed experimental system for char-
acterizing S-DNNs comprises a vector network analyzer
(VNA) connected with horn antennas as target sources
and a waveguide probe for detection, an azimuth angular
rotation stage for carrying and rotating networks, and a
xy-plane translation stage for setting the detection region
of the waveguide probe (see Methods, Fig. 2a, and Fig. S4).
We validate the proposed method by designing and fab-
ricating a four-layer passive S-DNN based on PIS within a
frequency range between 25 GHz and 30 GHz. To facil-
itate the experiments, the S-DNN is designed to perform
the DOA estimation of elevation angles with 1° angular
resolution at the angular range of ½�5°; 5° � (see Fig. 2b and
Fig. S5). Moreover, different angular ranges with a field-
of-view size of 10°, e.g., the angular range of ½45°; 55° �, can
also be achieved by training different models (see Fig. S6).
Each PIS has 32 × 32 modulation elements with element
size setting to half of the central wavelength, i.e., 5.45 mm.
The network parameters were re-trained with the dual
adaptive training method (DAT)39 before fabrications to
alleviate the model deviation (see Fig. 2b), and the posi-
tions of output detection regions were fine-tuned during
the experiments. The DAT training process was super-
vised with the full-wave EM field simulation results that
utilize the time-domain finite integration technology in
CST Studio Suite.
The confidence value of four-layer S-DNN models for

1D and 2D DOA estimations, evaluated with the angular
classification accuracy at different angular resolutions, are
shown in Fig. 2c. The S-DNN was trained with the mean
squared error (MSE) loss function for more robust esti-
mation with higher energy percentage of correct cate-
gories. Besides, the models were evaluated on the
boundary-free test datasets with 10,000 two-target test
samples, where the angles in the angular interval
boundary with a one-tenth of the angular interval range
were not sampled. With a confidence value threshold of
95%, the model for both 1D and 2D DOA estimation
modes can reach up to 0:4° angular resolution that is over
ten times higher than the diffraction-limited resolution
defined by the Rayleigh criterion40. The angular resolution
of the multi-layer S-DNN model can be further improved
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by increasing the network sizes, where the utilizing of the
cross-entropy (CE) loss function during the training
enables angular resolution 40–70 times higher than Ray-
leigh limits (see Fig. S7). For the complete angular sam-
pling testing datasets that include angles at angular
intervals, we developed the methods of flexible decision
boundary and optoelectronic estimation to improve the
model performance (see Supplementary Sections 8 and 9).
The flexible decision boundary strategy compares the

ratio of top-two power measurements to the pre-
calibrated decision coefficients. The optoelectronic
S-DNN architecture uses the least square method (LSM)
to find the pre-calibrated prior angle that best matches
the energy response of the unknown target.
In this work, we conduct the experimental evaluations

of four-layer S-DNN with 1° angular resolution. Figure 2d
shows the comparison of angular response between
S-DNN and a lens system under the same optical settings
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(see Fig. S8) by calculating the energy ratio of two
detection regions with the largest and second-largest
power values. The lens system has a smooth angular
response that results in limited angular resolution. In
contrast, S-DNN utilizes multi-layer subwavelength dif-
fractive elements to effectively modulate the incident
optical field and generate the super-oscillatory angular
response at the angular range of �5°; 5°½ �, which allows for
the super-resolution DOA estimation. In addition to the
frequency of 27.5 GHz, the experimental results demon-
strate high confidence values above 95% over the broad-
band frequency range between 25 GHz and 30 GHz for a
single input target (see Fig. 2e). The S-DNN models are
numerically evaluated with angular spectrum method
(ASM)27 on 10,000 test samples, which are further vali-
dated with CST and experimentally tested on 100 test
samples. The exemplar DOA estimations of elevation
angular interval for a single input target with an elevation
angle of �2:5° and an azimuth angle of 1° are shown in
Fig. 2f. The results show the correctness of estimation as
the second detection region corresponding to the angular
interval of ½�3°;�2° � has the max detected intensity. The
results also demonstrate the robustness of the model to
achieve high similarity between the numerical and
experimental results.
The confidence value of four-layer S-DNN models,

evaluated with ASM, achieve 99.3% and 99.0% on the
single-target and two-target test datasets, respectively (see
Fig. S5). The corresponding angular estimation accura-
cies, evaluated with root mean square errors (RMSEs) that
utilize the central angle of angular intervals as the ground
truth, are 0:23° and 0:24°, respectively; and the corre-
sponding average energy percentages of the correct
angular estimation are 34.6% and 29.8%, respectively.
Each sample in the two-target test dataset includes two
coherent targets distributed at the adjacent angular
interval. During the experiment, the source signal from
VNA is divided with a power divider and connected to
two horn antennas spaced with 1° that represent two
target sources. The angular rotation stage rotates at a
uniform step size to generate different angular test sam-
ples within the field-of-view. The corresponding experi-
mental results of the confusion and energy distribution
matrices, summarized over the test samples, are shown in
Fig. 2g, h, validating high confidence values of four-layer
all-optical S-DNN for DOA estimation with an angular
resolution of 1°.

Multiplexing S-DNNs with different configurations
S-DNNs can be spatially or temporally multiplexed to

perform the coarse-to-fine DOA estimation, enabling the
angular diffractive super-resolution over a wide field-of-
view (see Fig. 1 and Fig. S1). In addition to the four-layer
S-DNNs, we design different S-DNNs for the all-optical

DOA estimation of single or multiple targets with the
angular resolution of 15°, 10°, 3°, and 1°, corresponding to
the field-of-view size of 150°, 100°, 30°, and 10°, respec-
tively, at given angular ranges. Multiplexing S-DNNs,
configured with different angular resolutions and angular
ranges, allows us to design the system to achieve the
super-resolution DOA estimation over a wide field-of-
view. For instance, to achieve the DOA estimation at an
angular range of �45°; 55°½ � with an angular resolution of
1°, the single-layer S-DNN model with an angular reso-
lution of 10° can first be utilized to cover the field-of-view
(see Fig. 3a). Then, the four-layer S-DNN models can be
utilized to achieve 1°angular resolution at each 10°angular
interval of �45° þ 10i;�35° þ 10i½ � with i ¼ 0; ¼ ; 9.
The numerical and experimental results of a single-layer

S-DNN for estimating target elevation angles with a range
of �45°; 55°½ � and a resolution of 10° are shown in Fig. 3
and Figs. S9 and S10. The confidence values of the model,
evaluated with ASM at the central frequency of 27.5 GHz,
on the single-target and two-target test datasets with
10,000 samples are 98.7% and 98.0%, respectively. Similar
to four-layer S-DNN, the experimental results of confu-
sion and energy distribution matrices, summarized on 100
single-target and 100 two-target test samples, show the
high confidence values and average energy percentages of
correct angular categories. The broadband DOA estima-
tion of a single target also demonstrates the high con-
fidence values of the model above 95% between 25 GHz
and 30 GHz. Besides, the single-layer S-DNN can also
achieve a field-of-view of 150°and 30° for single-target test
samples, corresponding to the angular resolution of 15°
and 3°, respectively (see Figs. S11 and S12). Besides, the
single-layer S-DNN with 4°angular resolution can achieve
the super-resolution DOA estimation for two target
sources from arbitrary angular intervals (see Fig. S13).
To improve the model confidence value for multi-target

samples, we designed and constructed a three-layer S-
DNN for the super-resolution angular estimation with 3°
resolution at the angular range of �15°; 15°½ � (see Fig. 3c).
The three-layer S-DNN model is evaluated with different
two-target testing datasets, including datasets with two
targets at an adjacent angular interval (see Fig. S14d),
separated by one angular interval (see Fig. S14f), and with
all angular permutations of two targets (see Fig. 3g and
Fig. S15a), achieving the confidence values of 95.7%,
99.5%, and 94.9%, respectively. The corresponding angu-
lar estimation accuracies, evaluated with RMSEs, are 0:81°,
0:77°, and 0:88°, respectively; and the corresponding
average energy percentages of the correct two-target
angular estimation are 40.6%, 34.9%, and 33.7%, respec-
tively. Figure 3d demonstrates the robustness of the
model to achieve high similarity between the numerical
and experimental network outputs, which correctly esti-
mates the elevation angular interval of ½0°; 3° � for an
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Fig. 3 Multiplexing different S-DNNs. a, b Experimental results of a single-layer passive S-DNN, fabricated with PTFE F4BTME350 material, for the
DOA estimation of two-target samples with an angular resolution of 10°and an angular range of ½�45°; 55° �. c–f Experimental results of a three-layer
passive S-DNN, fabricated with PTFE F4BTME350 material, for the broadband DOA estimation of single-target samples at a central frequency of
27.5 GHz and between the frequency range of 25 GHz and 30 GHz. The angular resolution is designed to be 3°with an angular range of ½�15°; 15° �.
g Confusion matrix of three-layer S-DNN, evaluated with ASM, for all-optical DOA estimation using the two-target test dataset with all angular
permutations. Scale bar, 2 cm

Gao et al. Light: Science & Applications          (2024) 13:161 Page 6 of 13



exemplar single input target with an elevation angle of 1:5°
and an azimuth angle of 1°. The 3D EM field dynamics of
the network are shown in Supplementary Videos 1 and 2.
The experimental results in Fig. 3e further validates the
high confidence values above 95% of the three-layer S-
DNN for the broadband DOA estimation between the
frequency range of 25 and 30 GHz. Figure 3f shows the
experimental confusion and energy distribution matrices
of 100 single-target test samples at a central frequency of
27.5 GHz, and the experimental results of the two-target
test samples are shown in Fig. 4c. For the complete
angular sampling testing datasets, the flexible decision
boundary (see Fig. S16) can be utilized for improving the
model performance for single-target samples, and the
optoelectronic architecture (see Fig. S17) can be utilized

for improving the model performance for both single-
target and multi-target samples. The optoelectronic DOA
estimation improves the model confidence value of the
three-layer S-DNN from 94.9% to 99.5% on the two-target
test dataset with all angular permutations and complete
angular sampling (see Fig. S17c).

S-DNN for integrated sensing and communication
Based on the edge computing and broadband angular

perceptron capability of S-DNNs, we demonstrate the
application of S-DNN for RIS-based mmWave commu-
nication to achieve low-latency integrated sensing and
communications. With the support of passive or recon-
figurable S-DNNs as the all-optical edge computing
devices to achieve the super-resolution DOA estimation,
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application of DOA estimation with passive and reconfigurable S-DNNs for RIS-based communications. c Experimental output energy distribution of
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Gao et al. Light: Science & Applications          (2024) 13:161 Page 7 of 13



RIS can autonomously sense the EM environment inde-
pendent of base stations, enabling a real-time commu-
nication link between the base station and high-speed
mobile users (see Fig. 4). In this work, we develop the
reflective LC RIS system, which comprises 20 × 20 pro-
grammable meta-atom to modulate the phase of incident
EM field for beamforming communication and imple-
ment the reconfigurable S-DNN (see Fig. 4a and Meth-
ods). Each meta-atom element has a phase modulation
accuracy of 5 bits controlled by the voltage from the field
programmable gate array (FPGA). For the phase dis-
tribution to be loaded on the RIS, the corresponding
supply voltage is applied to each cell of the liquid crystal
layer, where the response time to switch the refractive
index of liquid crystal to the target value requires less than
500ms.
The system schematic and pipeline of fusing all-optical

edge computing capability of passive S-DNN for the RIS-
based communication system are depicted in Fig. 4b. The
passive S-DNN performs the all-optical angle estimation
of multiple targets at extremely low latency, depending on
the detection speed, after receiving EM waves from the
base station and users. Based on the estimation results of
S-DNN, the FPGA optimizes the beamforming phase and
configures RIS to reflect the EM wave from the base
station to the user to realize beamforming tracking32,
which bypasses obstacles to establish real-time commu-
nication links. The simultaneous DOA estimation of the
base station and the user is demonstrated by utilizing the
three-layer passive S-DNN in Fig. 3c. During the experi-
ment, two horn antennas are utilized to represent the base
station and user, respectively (see Fig. S4c, top). The
incident angle of the base station is fixed at 13.5°, and the
incident angle of the user changes from −13.5° to 10.5° at
a step size of 3°. From the output energy distribution of
ten detection regions in Fig. 4c, S-DNN achieves super-
resolution DOA estimation for the base station and the
user. With the output of passive S-DNN, RIS can optimize
the beamforming phase and establish a communication
link between the base station and the user, realizing an
average detected amplitude gain of 17.9 dB (see Fig. 4c,
bottom). Without S-DNN, the RIS cannot precisely steer
the beam, so the user antenna can only detect the ambient
noise.
The reconfigurable S-DNN utilizes time-division mul-

tiplexing for both DOA estimation and beamforming,
based on the programmability and high modulation
accuracy of stand-alone RIS (see Fig. 4b). The trained
phase modulation layer for DOA estimation and the
beamforming phase for the user angle at −5° and 11°,
under the known base station angle of −13.5°, are shown
in Fig. 4d, top-left and top-right, respectively. We utilize
the optoelectronic architecture to improve the angular
estimation accuracy at the user angular range of [−15°,

15°], which achieves an RMSE of 0.19° (see Fig. S18). To
facilitate the beamforming, we further evaluate the DOA
estimation and beamforming communication perfor-
mances by placing the user at the angular range of [−7°,
13.5°] (see Fig. 4d, bottom). The reconfigurable SDNN
achieves the high-precision angle estimation with an
RMSE of 0:44°. Based on the angles of the base station and
different users, as detailed in Supplementary Section 10,
the reconfigurable S-DNN optimizes beamforming phases
and converts it to 400-channel voltages to configure the
modulation elements, realizing an average detected
amplitude gain of 16.1 dB at the user antenna. Besides, as
illustrated in Fig. S19, with the advantage of reconfigur-
able layers, the source number estimation can also be
conducted to provide additional prior information to
S-DNN for a multi-source super-resolution DOA esti-
mation task. Figure 4e further illustrates the advantages of
S-DNN for DOA estimation over the conventional
method using MUSIC, especially under low snapshots and
input SNR (see Supplementary Section 12). With the
same number of modulation elements, S-DNN only
requires a single snapshot and can achieve higher angular
resolution with more robust estimation results to input
noise than MUSIC, facilitating RIS-based communication
with low latency.

Discussion
The network size of S-DNN can easily be scaled up to

have more meta-atoms, diffractive layers, and detection
regions. Compared with the single-layer model, multi-
layer S-DNN has a higher degree of freedom and larger
network scale to perform the multi-level diffractive
modulation of the input EM field, which achieves more
accurate DOA estimation for multiple targets. Besides,
the multi-layer S-DNN has the capability for the DOA
estimation of more targets distributed at different
angular intervals. More meta-atoms at each layer cor-
respond to a larger perception aperture for facilitating
higher angular resolution (see Fig. S7). Furthermore,
the number of detection regions at the S-DNN output
plane can be increased from 10 to 20, thus increasing
the field-of-view while maintaining angular resolution
(see Fig. S20). Three five-layer S-DNNs with 10, 15, and
20 detectors, realizing 3° resolution with a field-of-view
size of 30°, 45°, and 60°, were evaluated with two-source
test datasets and can achieve high confidence values of
99%, 97%, and 90%. As shown in Fig. S20a, S-DNN is
optimized to move the super-oscillatory angular fre-
quency regions into the frequency region so that the
detectors can capture the angular frequency higher than
the diffraction limit. Nonetheless, the increased field-
of-view will increase the size of super-oscillatory
angular frequency regions, making the detection more
challenging.
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Based on the dispersion resistance of S-DNNs with
broadband training, S-DNN is capable of accurately esti-
mating DOA with a high confidence value above 95% with
a 9 GHz maximum bandwidth from 23 to 32 GHz (see Fig.
S15). We further analyze the bandwidth of S-DNNs under
different target numbers (see Fig. S21). As the number of
sources increases from 1 to 5, it becomes more challen-
ging for S-DNN to achieve multi-source DOA estimation,
which results in reduced bandwidth. By increasing the
layer number of meta-structures, the performance of
S-DNN can be substantially improved to achieve more
target source estimation and wider bandwidth. In this
work, we implement the S-DNN models with 1D DOA
estimation that separately estimate the elevation and
azimuth angles. The experimental system can be upgra-
ded to a 2D rotation stage to characterize S-DNNs with
2D DOA estimation. Higher angular resolutions in Fig. 2c
and Fig. S7 can be approached during the experiments by
utilizing the in-situ training methods39,41 for training
reconfigurable S-DNNs to adapt the model to systematic
errors.
The detection channels of VNA can be scaled up to ten

channels to have an upper bound estimation latency of
67 ns. Then, the computing speed of the constructed four-
layer passive S-DNN, each layer with 32 × 32 meta-atoms,
is 6.94 TOPS, which increases to 3.78 POPS by increasing
the layer number to five with 512 ´ 512 meta-atoms at
each layer (see Supplementary Section 13). The passive
layer of S-DNN does not require the power supply, and
the energy consumption of each reconfigurable LC RIS
panel with 20 ´ 20 elements is ~0.5W. To facilitate the
implementation, the radio frequency switch, e.g.,
TLSP10T26.5G40GA (Talent Microwave Inc.), can be
utilized to achieve fast switching of the ten detection
regions, where the switching speed is 100 ns and the
detection speed is 67 ns, for total response speed of
1.67 µs. Notice that the state-of-the-art multi-channel
radio direction-finding device Rohde & Schwarz
DDF5GTS includes ~9 antennas to implement the
MUSIC algorithm with an angular resolution of less than
20°, which has the estimation latency of 1 ms and the
power consumption of 650W. S-DNN only requires a
single snapshot to achieve an estimation latency of 1.67 µs
and 67 ns with the radio frequency switch and ten-
channel VNA, respectively, improving the estimation
latency for more than two and four orders of magnitude,
respectively. Future works aim to develop a metasurface
power detector42 as a cost-effective alternative to the
expensive VNA, enabling precise measurement of the
field distribution at the S-DNN output plane as well as
enhancing system integration. Besides, due to the mixing
of different target signals into one channel for sampling,
the MUSIC algorithm fails to process coherent targets. In
contrast, S-DNN directly processes the EM field from

target sources to map the EM waves from different angles
to corresponding detection regions over the broadband
frequency ranges, allowing it to process multiple coherent
or incoherent sources. Besides, previous RIS-based angle
estimation methods38,43,44 failed for multi-target estima-
tion and consumed massive electronic computing
resources; the S-DNN addresses the challenge of posi-
tioning multiple mobile users and has substantially
improved energy efficiency.
DOA estimation at the speed of light makes it ideal for

autopilot and high-speed rail communications, as illu-
strated in Fig. 1. Equipped with a high-power emitter,
S-DNN can be applied to radar target detection and
tracking, as well as satellite navigation and positioning.
Additionally, S-DNN can use reconfigurable transmissive
metasurfaces28 to continuously switch the phase dis-
tribution to achieve 1° angular resolution in the angular
range of �45°; 55°½ �. Reconfigurable S-DNN can also be
applied to different tasks by training and deploying dif-
ferent models, such as object recognition45, holographic
imaging46, varifocal meta-devices47, encrypted informa-
tion transmission48, pupil phase retrieval49, and broad-
band application50,51. Different tasks can also be
multiplexed into different wavelengths in parallel with the
wavelength-division multiplexing52 and polarization
multiplexing53. In summary, we have presented a dif-
fractive photonic computing paradigm to directly process
EM waves for all-optical DOA estimation. The proposed
approach enables integrated in-memory sensing and
computing with low latency and power consumption that
facilitates the application in intelligent wireless commu-
nication networks.

Materials and methods
The principle of S-DNN for DOA estimation
The principle of super-resolution diffractive neural

network, i.e., S-DNN, for DOA estimation with 1D or 2D
mode is demonstrated in Fig. S1b. The S-DNN takes the
electromagnetic (EM) field distribution of incident waves
generated from a target signal source at the far-field plane
as the input to recognize its belonging angular interval.
Let the input plane center of S-DNN as the coordinate
origin, then the EM field distribution of a target source at
the z0 axial plane with an elevation angle of θ and an
azimuth angle of φ can be approximated as the far-field
plane wave:

E x; y; λð Þ ¼ A0 exp jkðx sin θ þ y cos θ sinφÞf g þ nnoise

ð1Þ
where A0 ¼ A expðjkz0 cos θ cosφÞ is the constant com-
plex value with A, k ¼ 2π=λ, and λ 2 λ1; λ2½ � being the
amplitude, vacuum wavenumber, and working wave-
length, respectively; nnoise denotes the spatial random
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Gaussian noise. The far-field distance (z ¼ z0) is set to be
larger than the Rayleigh distance for generating planar
optical wavefront, where different z0 causes the uniform
phase delay of the wavefront that doesn’t affect the
estimation results of the designed S-DNN in this work.
Equation (1) shows that different target sources with
different elevation angle θ and azimuth angle φ generate
different phase patterns at the input plane of S-DNN.
S-DNN classifies the input phase patterns of different

target sources into different angular intervals, which
estimates the elevation and azimuth angles separately
under 1D estimation mode and simultaneously under 2D
estimation mode. For the multiple input targets, the input
field is the superposition of multiple plane waves with
different incident angles, and S-DNN can map the energy
of each plane wave to the detection region corresponding
to the respective incident angle. Therefore, the angles of
incident plane waves can be determined by finding the
top-K values of intensity measurements among detection
regions for K incident angles. We set K ¼ 1; ¼ ; 10,
representing that K different incident angular intervals
have targets. The proposed method utilizes the diffractive
super-resolution characteristic of passive or reconfigur-
able S-DNN with spatial or temporal multiplexing to
perform the coarse-to-fine angular estimation for the wide
field-of-view and high-resolution DOA estimation.

The network configurations of S-DNN
The S-DNN is designed to work at a 5 G mmWave

communication frequency band with the wavelength
range from λ1 to λ2 and the central wavelength of λ0. In
this design, the modulation element size is set to
approximate λ0/2 for both passive and reconfigurable
implementations. We specify ten detection regions on the
output plane, each corresponding to an input angular
interval, measuring the intensity of output EM fields and
performing the nonlinearity to obtain the DOA estima-
tion results. The size of each detection region is set to be 5
λ0/8* 5λ0/8 to match the size of the waveguide probe,
which is used to detect EM fields. Ten waveguide probes
are placed in ten detection regions with a separation
distance exceeding four wavelengths, where the mutual
coupling effect can be negligible. In this work, the fre-
quency range was set between 25 and 30 GHz for passive
S-DNNs and between 25 and 27.5 GHz for reconfigurable
S-DNNs.
To improve the accuracy of the numerical model, for

each diffractive modulation layer with a modulation ele-
ment number of N ×N and a modulation element size of
M ×M, the grid size was set to be M/4 ×M/4 with a grid
number of 4N × 4N. We set N= 32 and M= λ0=2 for
passive S-DNNs in the experiment, corresponding to an
aperture size D= 16λ0. Moreover, each PIS had a sub-
strate thickness of 3 mm and was added to the

surrounding frame with a width of 50 mm to facilitate
the support and alignment, resulting in a size of
274.54 mm× 274.54 mm. The diffractive layer distance
and the output plane to the last layer distance were set to
5λ0 to enable the fully connected neural network struc-
ture. Besides, to narrow the search space and reduce the
variation of the adjacent elements of the phase modula-
tion layer, the sigmoid function was used to constrain the
material thickness to 0–H with H ¼ λ0 and phase mod-
ulation values to 0–2π for the passive and reconfigurable
S-DNNs, respectively.

The design and fabrication details of PIS and RIS
For the passive S-DNNs, since the central working

frequency is 27.5 GHz, corresponding to the central
wavelength λ0 = 10.9 mm, the modulation element size of
PIS was set to be 5.45 mm. After evaluating the passive
S-DNN with CST Studio Suite (Dassault Systèmes Simulia
Corp.) with open space boundary conditions, the 3D
models are exported for fabrication. PIS is made by
mixing polytetrafluoroethylene F4B (PTFE-F4B) material
with uniform nano-ceramics and glass fiber cloth. This
material has superior spatial isotropic properties and has a
stable dielectric constant ε with minimal loss when used
at frequencies below 40 GHz. In this work, we utilize three
types of PTFE materials, including F4BTME350,
F4BTMS350, and RO3035, with the dielectric constant of
4:03þ 0:04i, 3:65þ 0:04i, and 3:89þ 0:016i, respectively.
F4BTME350 is the PTFE glass fiber cloth nano-ceramic
copper clad laminate, and F4BTMS350 is the PTFE
superfine glass fiber cloth ceramic-filled substrate. Both
F4BTME350 and F4BTMS350 materials are manu-
factured by Wangling Company in Taizhou, China. The
RO3035 material is produced by Elec & Eltek and is
prepared by laminating 0.5 mm thick RO3035 material
(PTFE ceramic material) and 0.1 mm RO4450F material
(PTFE ceramic fiberglass cloth semi-cured sheet) from
Rogers Corporation. The F4B material layer is fabricated
with the precision computer numerical control (CNC)
machine tools to form diffractive elements. Since the
CNC machine tool has an axial machining precision of
~0.1 mm, the phase modulation bit depth of PIS is ~7-bit.
For the construction of reconfigurable S-DNNs, the

developed liquid crystal-based RIS system has 20 ´ 20
effective programmable meta-atom elements, where the
400-channel modulation voltages are programmed with
FPGA. Each element of LC RIS has a 5-bit phase mod-
ulation precision with a size of 5.5 mm × 5.5 mm, com-
prising an antenna layer, an LC phase shifter layer, and a
reflective layer. The modulation voltage changes the
dielectric constant of the LC phase shifter layer and
modulates the phase of incident EM fields. The LC RIS
works under the reflection mode (see Fig. S2b), which can
be programmed to perform beamforming communication
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or switch between different models for the DOA estima-
tion at different angular ranges.

The training details of S-DNN
The forward EM field propagation of S-DNN is mod-

eled over a broadband wavelength range, where the
models of passive and reconfigurable diffractive modula-
tion layers are detailed in Supplementary Sections 1 and 2.
The Rayleigh-Sommerfeld diffraction, implemented
with the angular spectral method (ASM), was utilized to
model the broadband EM field propagation between
layers52. The angular spectrum method is written in
Python and developed on top of the popular machine-
learning library, Pytorch. The zero padding was included
at the periphery of diffractive layers to ensure the
boundary condition of the numerical model. The outputs
of S-DNN are measured with detectors and compared
with the ground truth targets of the DOA estimation task
to define the loss function. During the training, the net-
work coefficients are optimized with the error back-
propagation method to minimize the loss function. We
utilized the mean square error (MSE) loss to facilitate
more robust models for physical experiments and cross-
entropy (CE) loss to demonstrate its potential angular
resolution upper bound. The learning rate, batch size, and
epoch number were set to 0.01, 128, and 100, respectively.
Notice that the broadband modulation model of PIS in
Supplementary Section 1 is an approximate model with
respect to the EM field modeling for facilitating the
effective training of passive S-DNN. Thus, for the four-
layer S-DNN, we further utilize the dual adaptive training
method (DAT)39 under the supervision of full-wave EM
field simulation results that are obtained from the time-
domain finite integration technology in CST. The DAT is
utilized to fine-tune the material thickness of each dif-
fractive element during the training so that the designed
passive S-DNN can adapt to the model deviation.

Experimental system
All the experimental results of S-DNN were obtained by

measuring the magnitude of the S21 parameter using the
Keysight P5006B vector network analyzer (VNA) in a
microwave anechoic chamber. To obtain the DOA esti-
mation results of S-DNN, the VNA generated an
mmWave signal at Port 1 and connected it to two hor-
izontally polarized antennas as sources through a power
divider. A waveguide probe as detector was connected to
Port 2 of the VNA via cables to measure the magnitude of
the S21 parameter to obtain the intensity of network
output detection regions. The distance between the hor-
izontally polarized antennas and the S-DNN was 5.5 m to
ensure the far-field condition, so the incident wavefront of
the S-DNN was approximated as a plane wave. The two
antennas were placed on the sliding guide rail to adjust

the position and spacing, respectively. The waveguide
probe was fixed on the XY mechanical platform to scan
the output energy distribution of S-DNN. The XY
mechanical platform was driven by two vertically placed
stepper motors, which precisely controlled the movement
of the waveguide probe in both horizontal and vertical
directions within a range of 65 cm with 0.01 mm accuracy.
The scanning position of the waveguide probe was
determined by ten detection regions, and the scanning
step size was λ0=8. The S-DNN was fixed on the angular
rotation stage with the rotation axis located at the center
of the S-DNN. The angular rotation stage was driven by a
stepper motor to rotate within the range of ½0°; 360° � in
the azimuth direction with a rotation accuracy of 0:01°, so
as to precisely control the angle of the incident plane
wave. The customized scanning program of the angular
rotation stage and XY mechanical platform commu-
nicated with the VNA to perform the measurements, and
the output energy distributions corresponding to different
incident angles were obtained.
In the case of the reconfigurable S-DNN measurements,

we placed the waveguide probe obliquely in front of the
RIS with a distance of 15λ0 to avoid occlusion between the
waveguide probe and the incident wave. Since the RIS had
a 45° linear polarization, the waveguide probe and the
transmitting antenna were rotated 45° with a custom-
made adapter plate. During the beamforming measure-
ment with RIS, the two 45° linear polarization antennas
were connected to the two ports of the VNA as source
and detector, respectively. The S-DNN and RIS shared an
identical coordinate system and were positioned adja-
cently, ensuring consistency in the incident angle. To
minimize multipath propagation and reflection, the
experimental environment (except the S-DNN) was cov-
ered with microwave absorbing material.

Generating training and testing datasets for S-DNN
The training and testing datasets of S-DNN for DOA

estimation were obtained by generating the far-field plane
waves from different target sources with the elevation
angle of θ and the azimuth angle of φ, and setting with
random z0 for random initial phase value. In this work,
both training and testing datasets have 10,000 samples for
each DOA estimation task. We include the spatial random
Gaussian noise nnoise to the input fields and set the signal-
to-noise ratio (SNR) to 10 dB during the training and
testing. For example, in the first stage of the wide field-of-
view DOA estimation task in Supplementary Fig. 1b, we
train S-DNN to estimate the azimuth angular interval by
setting the field-of-view to 100° with an angular range
φ 2 �45°; 55°½ �. The angular range was divided into ten
intervals φi; i ¼ 0; ¼ ; 9f g, each with 10° angular
range φi 2 �45° þ 10i;�35° þ 10i½ �, corresponding to
ten detection regions with ground truth labels of No.
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i (i ¼ 0; ¼ ; 9) on the output plane, respectively. For each
10° angular interval of φi, we generate 1,000 phase dis-
tributions according to Eq. (1) by randomizing azimuth
angles: φij ¼ �45°þ 10iþ ð�35° þ 10i� ð�45° þ 10iÞÞ �
xj, where xj denotes a random value between 0 and 1 with
j ¼ 1; ¼ ; 1000. Furthermore, we set the random value of
the elevation angle θ within the same angular range of
�45°; 55°½ � for each phase distribution, which enables the
azimuth angular interval estimation with S-DNN that is
robust to the elevation angle variation. Therefore, there
are in total 10,000 training samples, each corresponding
to an azimuth angle of φij with a ground truth label of i.
Besides, to improve the model performance for multiple
input targets, we further generate the multi-target training
samples in addition to the single-target training samples,
where the EM field of each multi-target sample is
obtained by superimposing the EM field of the single-
target samples. The testing dataset is generated in the
same way. To facilitate the model evaluation and experi-
ment, the angles around the angular interval boundary
with a range of one-tenth of each angular interval were
not sampled in the boundary-free testing datasets.
The same training and testing dataset generation

method was utilized for other S-DNN models with dif-
ferent field-of-views and range of angular intervals. In the
second stage of the super-resolution DOA estimation task
at local azimuth angular regions in Supplementary Fig. 1b,
each 1°angular range of ten intervals of the S-DNN model
with a field-of-view of 10° and φ0 2 �5°; 5°½ � can be for-
mulated as: φ0

i 2 �5°þ i;�4°þ i½ �, i ¼ 0; ¼ ; 9. Therefore,
the training and testing samples can be generated as: φ0

ij ¼
�5° þ iþ ð�4° þ i� ð�5° þ iÞÞ � xj. We also include the
random value of the elevation angle θ0 within the same
angular range �5°; 5°½ � to enable the robustness of esti-
mation of the elevation angle. With the generated training
and testing datasets, the S-DNN learns to perform the
DOA estimation task by mapping the incident plane
waves from single or multiple target sources to the
detection regions on the output plane. The target at the
i-th angular interval is mapping to the No. i detection
region.
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