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Abstract

Background: Wearable activity trackers, including fitness bands and smartwatches, offer potential for disease detection by
monitoring physiological parameters. However, their accuracy as specific disease diagnostic tools remains uncertain.

Objective: Wearable activity trackers, including fitness bands and smartwatches, offer potential for disease detection by
monitoring physiological parameters. However, their accuracy as specific disease diagnostic tools remains uncertain.

Methods: Ten electronic databases were searched for studies published from inception to 1 April 2023. Studies were eligible if
they used a wearable activity tracker to diagnose or detect a medical condition or event (e.g., falls) in free-living conditions in
adults. Meta-analyses were performed to assess overall area-under-curve (AUC, %), accuracy (%), sensitivity (%), specificity
(%) and positive predictive value (PPV, %). Subgroup analyses were performed to assess device type (Fitbit, Oura ring and
mixed). Risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Diagnostic Test Accuracy
Studies.

Results: 28 studies were included, involving a total of 1,226,801 participants (mean age range: 28.6 to 78.3). 16 studies (57.1%)
used wearables for diagnosis of COVID-19, 5 (17.9%) for atrial fibrillation, 3 (10.7%) for arrhythmia or abnormal pulse, 3
(10.7%) for falls and 1 (3.6%) for viral symptoms. The devices used were Fitbit (n=6), Apple watch (n=6), Oura ring (n=3), a
combination of devices (n=7), Emphatica E4 (n=1), Dynaport MoveMonitor (n=2), Samsung Galaxy Watch (n=1) and other/not
specified (n=2). COVID-19 detection: Meta-analyses showed a pooled AUC of 80.2% (95% CI: 71.0-89.3%), an accuracy of
87.5% (95% CI: 81.6-93.5%), a sensitivity of 79.5% (95% CI: 67.7-91.3%), and specificity of 76.8% (95% CI: 69.4-84.1%).
Atrial fibrillation detection: Pooled PPV was 87.4% (95% CI: 75.7-99.1%), sensitivity was 94.2% (95% CI: 88.7-99.7%) and
specificity was 95.3% (95% CI: 91.8-98.8%). Falls detection: Pooled sensitivity was 81.9% (95% CI: 75.1-88.1%) and
specificity was 62.5% (95% CI: 14.4-100%).

Conclusions: Wearable activity trackers show promise in disease detection, with notable accuracy in identifying atrial
fibrillation and COVID-19. While these findings are encouraging, further research and improvement are required to enhance
their diagnostic precision and applicability. Clinical Trial: PROSPERO ID: CRD42023407867.
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Summary

Background: Wearable activity trackers, including fitness bands and smartwatches, offer potential 

for disease detection by monitoring physiological parameters. However, their accuracy as specific 

disease diagnostic tools remains uncertain. 

Objective: The aim of this systematic review and meta-analysis was to evaluate whether wearable 

activity trackers can be used to detect disease and medical events. 

Method: Ten electronic databases were searched for studies published from inception to 1 April 

2023. Studies were eligible if they used a wearable activity tracker to diagnose or detect a medical 

condition or event (e.g., falls) in free-living conditions in adults. Meta-analyses were performed to 

assess overall area-under-curve (AUC, %), accuracy (%), sensitivity (%), specificity (%) and positive

predictive value (PPV, %). Subgroup analyses were performed to assess device type (Fitbit, Oura 

ring and mixed). Risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal 

Checklist for Diagnostic Test Accuracy Studies. 

Results: 28 studies were included, involving a total of 1,226,801 participants (mean age range: 28.6 

to 78.3). 16 studies (57.1%) used wearables for diagnosis of COVID-19, 5 (17.9%) for atrial 

fibrillation, 3 (10.7%) for arrhythmia or abnormal pulse, 3 (10.7%) for falls and 1 (3.6%) for viral 

symptoms. The devices used were Fitbit (n=6), Apple watch (n=6), Oura ring (n=3), a combination 

of devices (n=7), Empatica E4 (n=1), Dynaport MoveMonitor (n=2), Samsung Galaxy Watch (n=1) 

and other/not specified (n=2). COVID-19 detection: Meta-analyses showed a pooled AUC of 80.2% 

(95% CI: 71.0-89.3%), an accuracy of 87.5% (95% CI: 81.6-93.5%), a sensitivity of 79.5% (95% CI:

67.7-91.3%), and specificity of 76.8% (95% CI: 69.4-84.1%). Atrial fibrillation detection: Pooled 

PPV was 87.4% (95% CI: 75.7-99.1%), sensitivity was 94.2% (95% CI: 88.7-99.7%) and specificity 

was 95.3% (95% CI: 91.8-98.8%). Falls detection: Pooled sensitivity was 81.9% (95% CI: 75.1-

88.1%) and specificity was 62.5% (95% CI: 14.4-100%).

Conclusion:  Wearable activity trackers show promise in disease detection, with notable accuracy in 

identifying atrial fibrillation and COVID-19. While these findings are encouraging, further research 

and improvements are required to enhance their diagnostic precision and applicability.

Systematic review registration: PROSPERO ID: CRD42023407867. 
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INTRODUCTION 

As healthcare budgets around the world continue to soar, the need for cost-effective interventions 

that both reduce healthcare costs and improve patient outcomes has never been more urgent [1]. 

Early detection of medical conditions offers a pathway to achieve these goals, enabling prompt 

intervention during acute medical events or even pre-emptive action before such events occur [2]. 

Wearable activity monitors are emerging as a potential tool in this evolving landscape.

In recent years, wearable activity trackers have become ubiquitous tools, widely adopted for tracking

and enhancing physical activity and other lifestyle behaviours, helping to mitigate the risk of chronic 

diseases [3]. These devices measure a plethora of activity metrics, such as steps taken, distance 

covered, energy expenditure, physical activity intensities, and sleep patterns [4]. The scientific 

literature has witnessed a surge in original studies and systematic reviews and meta-analyses, 

focused on determining the reliability and validity of activity trackers for measuring activity levels 

[5, 6] and their effectiveness for intervening on daily activity patterns and downstream health 

outcomes [7-12]. These studies have shown that interventions utilising consumer-based wearable 

activity trackers can increase physical activity participation and lead to significant improvements in 

health outcomes, across a range of populations [7-12]. As wearable technology has progressed, 

wearable activity trackers offer increasing potential to move beyond activity metrics and aid in the 

early identification of diseases and other medical events.

Rapid  technological  advancements  have  significantly  extended  the  capabilities  of  contemporary

consumer-grade wearable activity trackers like Fitbits and Apple Watches [13]. Modern wearables

incorporate sophisticated sensors capable of monitoring a wide array of physiological parameters

beyond just movement, including heart rate, blood oxygen levels, sleep quality, and stress markers

[14].  While  this  expanded functionality  holds  promise for  disease  detection and monitoring,  the

evidence  supporting  the  use  of  consumer  wearables  for  such  applications  remains  limited.  For

example, Alban-Cadena et al.'s [15] systematic review evaluated wearable sensors for monitoring

Parkinson's  disease-related  gait  impairments  and  symptoms  like  tremor,  bradykinesia,  and

dyskinesia. However, most included studies were very small (10-20 participants) and were conducted

in controlled laboratory environments using specialised setups like multi-sensor accelerometer arrays

worn  on  the  ankles  and  spine.  While  offering  potential  for  home-based  rehabilitation,  the

generalisability of these findings to widely adopted, consumer-oriented wearable trackers designed
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for real-world, free-living conditions is unclear. 

Other  recent  systematic  reviews  have  evaluated  the  accuracy  of  wearable  tracking  devices  for

detecting specific health conditions such as arrhythmias [16], cardiovascular disease [17, 18], and

COVID-19  [19].  However,  these  reviews  have  notable  limitations.  Most  included  studies  were

conducted in controlled laboratory settings, limiting the generalisability of their  findings to real-

world, free-living conditions [16, 17, 19]. Additionally, these reviews focused narrowly on individual

clinical outcomes, preventing comparisons of wearables' detection accuracy across different medical

conditions  and  events.  For  example,  the  narrative  syntheses  highlighted  wearables'  potential  as

complementary  tools  for  detecting  cardiovascular  conditions  like  arrhythmias,  atrial  fibrillation,

myocardial infarction, and heart failure [16, 17]. Lee et al.'s [18] meta-analysis of 26 studies found

wearable devices had a pooled sensitivity of 94.80% and specificity of 96.96% for atrial fibrillation

detection.  In  contrast,  Cheong  et  al.  [19]  reported  lower  diagnostic  accuracy  for  COVID-19

detection, with area-under-the-curve (AUC) values ranging from 75% to 94.4% and sensitivity and

specificity ranging from 36.5% to 100% and 73% to 95.3%, respectively. Notably, all but one review

[18] used narrative synthesis  approaches [16,  17,  19],  limiting their  ability  to quantify detection

accuracy, and preventing readers from comparing detection accuracy across conditions reported in

the respective reviews. 

As wearable technology rapidly evolves,  with frequent introductions of new and more advanced

devices, the scientific evidence base for disease detection is growing, encompassing a wider range of

medical  conditions  and  events.  Consequently,  there  is  now  sufficient  data  to  warrant  a

comprehensive  systematic  review  with  meta-analyses,  allowing  quantitative  comparisons  of

wearables' detection accuracy across various conditions in real-world settings.

Our systematic review and meta-analysis aims to fill this crucial gap by comprehensively assessing

the  reliability  and  accuracy  of  consumer-grade  wearable  activity  trackers  for  detecting  and

monitoring a wide range of medical conditions and events in free-living, real-world settings. Unlike

previous reviews that relied on narrative synthesis approaches, our quantitative meta-analyses will

allow for robust comparisons of wearables' diagnostic performance across diverse conditions and

events. By rigorously evaluating evidence from studies conducted in real-world contexts, our review

will provide evidence to guide the responsible and effective implementation of wearable technology

for  early  detection  and  continuous  health  monitoring  by  researchers,  healthcare  providers,

policymakers, technology companies, and other stakeholders. As consumer adoption of wearables

continues  to  rise  rapidly  worldwide,  our  comprehensive  synthesis  will  assist  in  harnessing  their

potential while mitigating risks and ensuring appropriate use.

https://preprints.jmir.org/preprint/56972 [unpublished, peer-reviewed preprint]
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METHODS

Protocol and registration

The protocol for this systematic review was prospectively registered on PROSPERO (ID: 

CRD42023407867) and this manuscript is reported according to PRISMA [20] guidelines.  

Selection criteria and search strategy 

The inclusion criteria are summarised in Supplementary content 1. The inclusion criteria were 

developed using the population, exposure, outcomes and study type (PEOS) criteria as follows: 

Population: adult population (aged 18 years or older) in free living conditions, that have not been 

recruited based on a specific health condition or diagnosis; Exposure: use of a wearable activity 

tracker (e.g., Fitbit, Apple Watch or a research-grade accelerometer) for the detection of any disease 

or medical event (e.g., atrial fibrillation, the onset of infectious disease, falls). To be eligible, the 

wearable activity tracker had to be able to detect movement behaviour (i.e., include an 

accelerometer), but could also include other types of sensors (e.g., light sensor, temperature sensor). 

The wearable activity tracker had to consist of a single device worn on a single body location (e.g., 

on the wrist or chest, not across both); Outcomes: studies needed to assess actual diagnosis of a 

medical condition or occurrence of events that had clinical relevance (e.g., falls). Eligible studies 

needed to report an outcome related to diagnostic accuracy, such as specificity and/or sensitivity of 

the device for early detection of disease or medical events. Examples could include, but were not 

limited to, providing effect estimates of overall diagnostic accuracy (%), sensitivity (%) and 

specificity (%) with 95% confidence intervals (CIs). Study type: Validation studies conducted under 

free-living conditions that were reported in a peer-reviewed journal article were included. This 

included secondary analyses conducted within the context of observational studies, experimental 

studies or quasi-experimental studies. Both consumer-initiated studies, where existing consumers 

who had purchased their own wearables were invited to join a study, and researcher-initiated studies, 

where researchers recruited participants and provided them with wearables, were included, as they 

represent two complementary real-world contexts in which wearable devices are often implemented 

for disease detection and monitoring. Studies were included only if they evaluated wearable devices 

provided by healthcare providers or researchers as part of a formal monitoring program, and the 

detection of a specific clinical event or disease was a pre-specified outcome measure of the study. 

Studies examining consumer-driven self-tracking with personal wearables outside of a healthcare 

context were excluded. The following were also excluded: studies involving children or adolescents; 
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studies examining symptoms within people known to have a specific disease; wearable devices 

which cannot track activity levels (e.g., continuous glucose monitors); studies evaluating an array of 

wearable sensors worn at multiple body locations (e.g., watch plus skin patch) or pedometers; studies

measuring the association between an exposure and an outcome (for example, using odds ratios, 

relative risk, hazard ratios); lab- or hospital-based studies; and conference abstracts or dissertations.

Ten databases were searched (CINAHL, The Cochrane Library, Embase via OVID, MEDLINE via 

OVID, Emcare via OVID, JMIR publications, ProQuest central, ProQuest Nursing and Allied Health

Source, PsycINFO and Scopus) using subject heading, keyword and Medical Subject Headings 

(MeSH) term searches for terms related to “wearable device” and “detection” (see Supplementary 

content 2 for the full search strategy). We intentionally used broad search terms to ensure a 

comprehensive capture of the evidence base, including all types of medical conditions and events, 

without restricting our search to pre-defined diagnostic or event outcomes. Database searches were 

limited to peer-reviewed journal articles published in English-language from inception to 1 April 

2023. 

Data management and extraction

Search results were imported into ASReview (Version 2.0, ASReview Community, Utrecht, 

Netherlands), an open-source software artificial intelligence (AI) tool designed for screening studies 

for systematic reviews. Title/abstract screening was conducted in ASReview (Version 2.0, ASReview

Community, 2023) by paired independent reviewers (BS and DD, RC, TF, JB, IW, KS, CS, AM or 

EE). The software employs an active learning algorithm that iteratively selects the most relevant 

studies for inclusion based on the initial judgments made by the research team. Screening was 

stopped when 100 consecutive non-relevant articles were screened. Following title/abstract 

screening, results were then imported to EndNote x9 (Clarivate, Philadelphia, PA) where duplicates 

were removed, then exported into Covidence (Veritas Health Innovation, Melbourne, Australia) for 

full-text screening, data extraction and risk of bias scoring which was completed in duplicate by 

paired independent reviewers (BS and DD, RC, TF, JB, IW, KS, CS, AM or EE), with disagreements 

resolved by discussion. 

Data were extracted in duplicate by paired independent reviewers (BS and DD, RC, TF, JB, IW, KS, 

CS, AM or EE) using a standardised extraction form in Covidence. The risk of bias of the included 

reviews was assessed by two independent reviewers in duplicate using the Joanna Briggs Institute 

https://preprints.jmir.org/preprint/56972 [unpublished, peer-reviewed preprint]
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(JBI) Critical Appraisal Checklist for Diagnostic Test Accuracy Studies. Studies were rated out of 9 

for the following items: 1) enrolment of consecutive or random sample; 2) the avoidance of a case-

control design; 3) inappropriate exclusions; 4) the interpretation of index test results; 5) the pre-

specification of thresholds; 6) reference standard classification; 7) the interpretation of reference 

standard; 8) timing of tests; and 9) analysis.

Data synthesis and analysis

For each meta-analysis, data were combined at the study level. Separate meta-analyses were 

performed for i) COVID-19 detection, ii) atrial fibrillation or arrhythmia detection, and iii) falls 

detection. Outcomes of interest were analysed and data were pooled using sensitivity (%), specificity

(%), area-under-curve (AUC, %), accuracy (%) and positive predictive value (PPV), with 95% 

confidence intervals (CIs) as the effects measures. Sensitivity (%) denotes the percentage of 

individuals with the disease/condition correctly identified by the test, while specificity (%) represents

the percentage of those without the disease/condition correctly identified as negative. The AUC (%) 

quantifies the test's overall diagnostic accuracy, ranging from 0% to 100%, with higher values 

indicating better performance. Accuracy (%) reflects the proportion of all tests accurately classified, 

and PPV (%) indicates the likelihood that a positive test result correlates with the disease/condition 

being tested for. If 95% CIs were not reported in a study, they were calculated based on available 

data, using recommended formulas [21]. Publication bias was evaluated using funnel plots of effect 

sizes and standard errors and evaluating for asymmetries or missing sections within the plot, for 

meta-analyses that involved more than 10 studies. The Cochran’s Q test was used to assess statistical 

heterogeneity and the I2 statistic was used to quantify the proportion of the overall outcome attributed

to variability. The following cut-off values for the I2 statistic were used: 0 to 29% = no heterogeneity;

30 to 49% = moderate heterogeneity; 50 to 74% = substantial heterogeneity; and 75 to 100% = 

considerable heterogeneity [22]. Subgroup analyses were undertaken to evaluate device type (Fitbit, 

Apple watch, Oura ring and other) for outcomes that had at least 2 studies in each subgroup. 

Sensitivity analyses for the meta-analysis were performed by removing the study with the lowest 

sensitivity, specificity, AUC, accuracy or PPV. All meta-analyses were performed using Stata/MP 

(v16, Stata Corp, College Station, TX, USA).

The overall level of evidence was graded using the Oxford Centre for Evidence-Based Medicine 

2011 Levels of Evidence, as follows: grade A: consistent level 1 studies (i.e., individual RCTs); B: 
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consistent level 2 (i.e., individual cohort studies) or 3 studies (i.e., individual case-control studies) or 

extrapolations from level 1 studies; C: level 4 studies (i.e., case series) or extrapolations from level 2 

or 3 studies; or D: level 5 (i.e., expert opinion without explicit critical appraisal) evidence or 

inconsistent or inconclusive studies of any level [23]. Each outcome of interest was assigned a 

"Grade of Recommendation" based on meeting these criteria.

Deviations from the registered protocol

We planned to use the Effective Public Health Practice Project Quality Assessment Tool to assess 

study quality and risk of bias. However, during data extraction and quality assessment, we opted to 

use the JBI Critical Appraisal Checklist for Diagnostic Test for Accuracy Studies, as this instrument 

was more relevant to the included studies. Further, we were unable to conduct subgroup analyses for 

type of wearable for atrial fibrillation and fall detection, due to an insufficient number of studies. 

RESULTS

Of the 21,429 records identified following the database search, 28 were eligible (see Figure 1 for 

PRISMA flowchart including reasons for exclusions; see Supplementary content 3 for a complete list

of full texts that were excluded during the final stage of screening, with reasons). An overview of all 

included studies characteristics is shown in Table 1. There was a total of 1,226,801 participants 

(median [range] sample size: 264 [29 to 455,699]). Mean participant age ranged between 28.6 and 

78.3 (median=43.7) years and 21 (75%) studies involved female and male participants (gender was 

not reported in 7 [25%] studies). Sixteen studies (57.1%) evaluated COVID-19, five (17.9%) studies 

evaluated atrial fibrillation, three (10.7%) studies assessed a broad range of cardiac arrhythmias, 

three (10.7%) assessed falls and one (3.6%) assessed viral symptoms. The devices used in the studies

were Fitbit (n=6), Apple watch (n=6), Oura ring (n=3), a combination of various devices (i.e., studies

that used a combination of the Apple watch, Fitbit, Garmin and other devices, n=7), Empatica E4 

(n=1), Dynaport MoveMonitor (n=2), Samsung Galaxy Watch (n=1) and other/not specified (n=2). 

Median score for the JBI Critical Appraisal Checklist for Diagnostic Test Accuracy Studies was 6 

(range: 1 to 9) out of 9 (Supplementary content 4). 

There was sufficient data in the included studies to conduct meta-analyses for the following 

clinimetrics: (1) COVID-19 detection (accuracy, %; sensitivity, %; AUC, %; and specificity, %), (2) 
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atrial fibrillation detection (PPV, %; sensitivity, %; and specificity, %), (3) falls detection (sensitivity,

%; and specificity, %). 

Meta-analysis results

COVID-19 detection

Meta-analysis results of AUC, accuracy, sensitivity and specificity for COVID-19 detection are 

shown in Figure 2. Meta-analyses of nine studies showed a pooled AUC of 80.15% (95%: 71.03%-

89.27%) and five studies had a pooled accuracy of 87.54% (95% CI: 81.57%-93.51%). Pooled 

sensitivity from eight studies was 79.53% (95% CI: 67.73%-91.33%), and seven studies showed a 

pooled specificity of 76.79% (95% CI: 69.44%-84.13%). 

Subgroup analysis for device type for sensitivity and specificity are shown in Supplementary content 

5 and 6 respectively. A summary of sensitivity and specificity for the different devices is shown in 

Figure 3. Overall, the Fitbit had a sensitivity and specificity of 75.39% and 90.60% (respectively), 

the Oura ring had a sensitivity and specificity of 80.47% and 72.60% (respectively), and combined 

devices had a sensitivity and specificity 82.69% and 74.62% (respectively). 

Results of sensitivity analyses are shown in Supplementary content 7. Following removal of the 

worst performing study, AUC was 84.10%, accuracy was 88.65%, sensitivity was 85.62% and 

specificity was 78.57%. 

Grade of recommendation: B) Consistent level 2 studies supporting the use of wearable activity 

trackers for the detection of COVID-19. 

Atrial fibrillation detection

Pooled analyses of PPV, sensitivity and specificity for atrial fibrillation detection are shown in Figure

4. Meta-analysis of 4 studies showed a combined PPV of 87.43% (95% CI: 75.74%-99.12%). Pooled

sensitivity was 94.22% (95% CI: 88.68%-99.77%; 4 studies) and pooled specificity was 95.28% 

(95% CI: 91.80%-98.77%; 4 studies). 

Results of sensitivity analyses are shown in Supplementary content 8. Following removal of the 

worst performing study, PPV was 93.64%, sensitivity was 97.28% and specificity was 95.55%. 
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Grade of recommendation: B) Consistent level 2 studies supporting the use of wearable activity 

trackers for the detection of atrial fibrillation.  

Falls detection

Meta-analysis results of sensitivity and specificity for falls detection are shown in Figure 5. Meta-

analyses of 2 studies showed a specificity of 62.54% (95% CI: 14.43%-100%) and sensitivity of 

81.89% (95% CI: 75.07%-88.17%). There was an insufficient number of studies for subgroup 

analyses of device type, and sensitivity analyses for falls detection. 

Grade of recommendation: D) Inconsistent or inconclusive studies of any level for the use of 

wearable activity trackers to predict falls.  

DISCUSSION

In this study, we set out to systematically review and meta-analyse the current evidence regarding 

wearable activity trackers’ ability to detect medical conditions and events under free living 

conditions. To date, the majority of studies have focussed on the detection of COVID-19, with a 

smaller number of studies focused on cardiac conditions and falls. For COVID-19 detection, the 

devices generally demonstrated good sensitivity and specificity.  The most promising results were 

found for the detection of atrial fibrillation, for which the wearables showed high sensitivity and 

specificity. Whereas, for falls detection, the present findings devices showed moderate sensitivity but

lower specificity. These findings indicate that while these devices are becoming more dependable for

monitoring specific health conditions, their performance varies depending on the condition being 

detected.

The current body of evidence on the diagnostic potential of wearable activity trackers is notably 

skewed towards COVID-19 detection, a focus that is understandable given the pandemic's global 

impact and the consequent urgent need for monitoring solutions.  Researching the feasibility of 

detecting COVID-19 through wearables holds appeal due to the availability of widely used reference 

standards. Rapid and PCR tests, widely employed, allow for easy self-reporting of COVID-19 

diagnoses by many individuals. In contrast, accessing a reliable gold standard for other health 

outcomes poses significant challenges. However, what was surprising to note is the limited number 

of studies exploring these trackers for other health conditions, especially given that numerous 

wearables advertise features like sleep apnoea detection — a topic noticeably absent in our findings. 

Our extensive database search identified only a handful of studies each related to cardiac issues and 
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falls. This gap in the literature is striking considering the wide array of health conditions that could 

theoretically be monitored using wearable technology, given their ability to capture data related to 

heart rate, movement, skin temperature and more. Such capabilities would suggest that a broad 

spectrum of medical conditions could be measured, spanning cardiovascular and respiratory 

conditions to neurological and psychological disorders. It is important to note that we intentionally 

focussed on accuracy of data collected in free-living conditions (with a view to understanding current

day diagnostic capabilities). We note numerous laboratory-based studies that were excluded (e.g., 

[24, 25]) suggesting that a wider range of diagnostic outcomes may become available in future. 

Furthermore, many studies were excluded because they focused on monitoring of symptoms in 

people with a known diagnosis (for example, seizures in people with epilepsy [26], and freezing gait 

in Parkinson’s disease [27]) which was outside the scope of our study, but highlights wearable 

activity trackers’ potential for medical condition monitoring.

Our study revealed that wearable activity trackers demonstrate moderate-to-high sensitivity and 

specificity for COVID-19 detection. It is interesting to compare our results with those for other 

COVID-19 screening tests. A systematic review by Mistry et al. [28] on lateral flow devices (LFD) 

tests (also known as rapid antigen tests) evaluated 24 papers across 8 different LFD brands, covering 

over 26,000 test results. Their findings indicated that sensitivity ranged from 37.7% to 99.2% and 

specificity ranged from 92.4% to 100.0% [28]. Comparatively, our study's pooled sensitivity for 

wearable-detected COVID-19 was 79.5% (range: 51.3-100%), which is in line with the LDF results. 

However, our specificity of 76.8% (range: 63-90.6%) was slightly lower. According to UK 

government guidelines, the benchmarks for COVID-19 workplace screening are ≥68% for sensitivity

and ≥97% for specificity [29]. This suggests that while wearable activity monitor detection meets the

sensitivity criterion, it falls short on specificity. 

The most promising results were observed for the detection of atrial fibrillation, with figures that 

compare favourably to other clinical tests. For example, the sensitivity and specificity of 12-lead 

electrocardiogram for detecting atrial fibrillation has previously shown to range between 93% and 

97% [30, 31], which appears similar to our sensitivity and specificity of 94.2% and 95.3%, 

respectively. Over the course of 2022-2023, major brands such as Fitbit [32], Apple Watch [33], 

Garmin [34] and Samsung [35] received approval from the US Food and Drug Administration (FDA)

for their atrial fibrillation detection features. The relatively higher accuracy in identifying cardiac 

arrhythmias as compared to COVID-19 is perhaps expected, given that cardiac functions can be 
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deduced from wearables’ optical heart-rate sensor. In contrast, COVID-19 detection usually requires 

intricate algorithms that amalgamate multiple data points [36, 37].

While wearable activity trackers demonstrated effectiveness in detecting cardiac arrhythmia and 

COVID-19, our meta-analysis revealed that their accuracy in detecting falls was only moderate. The 

devices were generally effective in identifying actual falls, with a sensitivity of 81.9%. However, 

they also generated a significant number of false positives, as evidenced by a lower specificity of 

62.5%. This aligns with existing literature on the subject [38, 39]. It's crucial to note that our review 

specifically focused on the performance of these devices in real-world conditions among the general 

population. Most existing studies on fall detection with wearables have been conducted in controlled 

laboratory settings using simulated falls, where accuracy has generally been higher [38, 39]. The 

false positives in fall detection are likely due to the devices relying on accelerometry data, which can

misinterpret other rapid downward movements as falls. Further research is needed to refine the 

algorithms used in these devices to improve their performance in fall detection. Future studies might 

incorporate additional metrics, such as rapid changes in heart rate or galvanic skin response, which 

may accompany a fall, to enhance accuracy.

Our study offers several significant strengths, including being the first systematic review and meta-

analysis focused on the real-world accuracy of wearable activity trackers in detecting medical 

conditions and events. The review analysed a robust dataset from 28 studies, involving over one 

million participants, enabling a comprehensive meta-analysis of various outcomes. Instead of 

limiting our focus to specific diagnostic outcomes, we examined a broad range of medical 

conditions. Our search strategy was exceptionally thorough, encompassing 10 databases and 

reviewing over 21,000 studies to capture a wide array of diagnostic outcomes. Methodologically, we 

adhered to the PRISMA 2020 guidelines, which included conducting sensitivity and subgroup 

analyses, as well as evaluating the certainty of the evidence.

Study limitations must be acknowledged. There was considerable heterogeneity in the designs of 

included studies, such as their reference standards, diagnostic tests, and sample characteristics. Given

the size of the current evidence, there were too few studies to conduct separate subgroup analyses 

based on specific device models or software versions. Our review included both researcher-initiated 

and consumer-initiated studies to provide a comprehensive assessment of wearable activity trackers 

in real-world settings. Researcher-initiated studies typically involved smaller sample sizes and 
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controlled participant recruitment, while consumer-initiated studies often had larger sample sizes and

reflected more naturalistic usage patterns. While this combination enhances the generalisability of 

our findings, it also introduces heterogeneity. We acknowledge this as a limitation and suggest that 

future research should consider these differences when interpreting results. Additionally, our review 

only identified studies in the domains of COVID-19, cardiovascular conditions, and falls as eligible. 

While laboratory-based studies are being conducted for event detection in other health domains (such

as stress and respiratory conditions), our focus was intentionally on studies conducted in free-living 

conditions. This approach offers insights into the wearables’ event detection capabilities in real-

world settings, as opposed to artificial (e.g., laboratory) conditions.

Clinical Implications

The use of wearable activity trackers for detecting medical events is an emerging field with both 

significant promise and challenges. Wearable activity trackers demonstrate comparable ability to 

detect COVID-19 and atrial fibrillation compared with other clinical tests such as lateral flow tests 

and electrocardiogram. However, wearables offer the additional advantage of continuous, real-time 

monitoring for conditions requiring constant surveillance. As such, they may empower patients to 

take a more proactive role in their healthcare by giving them immediate feedback and data about 

their condition. They may also contribute to improved surveillance and resource planning for 

healthcare systems, which could be particularly useful in time of epidemics or pandemics. 

Certain wearable device features excel at detecting specific medical events. For COVID-19, devices 

combining heart rate monitors, skin temperature sensors, and accelerometers proved effective by 

detecting deviations from an individual's baseline across multiple physiological parameters. In 

contrast, for atrial fibrillation detection, FDA-approved devices relied on optical heart rate sensors 

providing photoplethysmography data, capable of identifying irregular heart rhythms characteristic 

of arrhythmias. Fall detection primarily utilizes accelerometer data, with wrist-worn placement 

crucial for sensing sudden deceleration and impact forces. However, false positives persist due to 

non-fall rapid movements. Looking ahead, integrating multiple sensors can enhance accuracy across 

various medical conditions. Yet, fundamental sensor limitations may remain. Aligning device 

capabilities with specific use cases and recognizing sensor shortcomings will inform future research 

and benchmarking efforts amid evolving technology.
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As consumer wearables gradually morph from being lifestyle tools to over-the-counter medical 

instruments, they present a range of challenges, including concerns about data privacy and security, 

which will require stringent protective measures. Furthermore, as wearable devices become 

increasingly sophisticated in detecting medical conditions like atrial fibrillation, they offer both 

benefits and pitfalls. On the positive side, these devices have the potential to identify asymptomatic 

atrial fibrillation episodes. This is enormously beneficial, since currently, stroke is the first 

manifestation in at least 25% of atrial fibrillation-related stroke cases [40]. Early detection could 

therefore lead to timely intervention and stroke prevention. However, healthcare professionals have 

reported an uptick in patient consultations triggered by atrial fibrillation alerts from wearables, 

resulting in a surge of medical tests such as electrocardiogram to confirm diagnoses [41]. While 

some clinicians see this as an advancement in patient-initiated healthcare, others question the 

necessity of such screening, particularly in patient subgroups where atrial fibrillation may have a 

relatively benign prognosis [42]. Moreover, the use of wearables can generate both false positives 

and negatives, potentially causing unnecessary anxiety, diagnostic tests, and treatments, or giving 

users a false sense of security. 

Future research

Our review reveals that the current peer-reviewed evidence base concerning the event detection 

capabilities of consumer wearable activity trackers in free-living conditions is limited to COVID-19, 

cardiac function and falls. This was somewhat surprising, given the potential of these devices to 

diagnose numerous other conditions. Our findings indicate a significant gap in the current literature, 

which was not apparent in previous reviews that typically focused on specific conditions and did not 

highlight the lack of studies across a broader range of conditions. Considering the diverse array of 

sensors incorporated in modern wearable activity trackers, these devices offer considerable potential 

for detecting and monitoring medical events across an extensive spectrum of health conditions into 

the future. This may include respiratory conditions, neurological disorders, mental health, stress and 

fatigue, and even environmental and allergic reactions. This will require research across the product 

design continuum, from algorithm training, to laboratory testing and free-living testing. This will be 

made all the more challenging by the rapid pace at which new devices and models are released into 

the market. In future, our meta-analysis could be updated to provide insight into the accuracy of such

diagnostics by condition, device and population.

Conclusions
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Our study provides a comprehensive overview of the current state of evidence regarding the 

diagnostic capabilities of consumer wearable activity trackers in real-world settings. While the 

devices show promise in detecting conditions like COVID-19 and atrial fibrillation with moderate-

to-high sensitivity and specificity, their performance in detecting falls is moderate, highlighting the 

need for further refinement of detection algorithms. The existing literature is notably skewed towards

COVID-19, leaving a significant gap in our understanding of how these devices can be utilised for a 

broader range of health issues. This gap, which was not apparent in previous reviews, underscores 

the necessity for future research to expand the scope of conditions studied. As wearable technology 

continues to evolve, it is crucial to address the challenges posed by false positives and negatives, data

privacy, and security concerns. This will ensure that the rapid advancements in this field can be 

matched by robust scientific validation, enabling these devices to realise their full potential as tools 

for healthcare monitoring and intervention.
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Table 1 Overview of characteristics of included studies (n=28). 

Author,
year

Country Sample  size,
gender

Age Wearable device Data  Input/  Vital
Signs Collected

Disease  or
medical
event 

Data Labelling/Data
Segmentation

Reference
standard

Algorithm or
statistical
model

Algorithm/
accelerometer
data  open  or
available  to
access?

Abir 2022 Qatar 120
Gender: NR

NR Fitbit Heart rate, steps COVID-19 At  least  20  days
before  the  symptom
onset  to  21  days
afterward.

Reverse
transcription-
polymerase  chain
reaction 

Long  Short-term
Memory
Variational
Autoencoder-
based anomaly
detection
framework

No /Yes

Alavi 2022 United States 3,318
F: 1,854 (56%)
M: 1,464 (44%)

Median
(range):  44
(19-79)

Fitbit,  Apple  Watch
& Garmin

Heart rate, steps COVID-19 3  days  before
symptom  onset,  for
the next 15 days.

COVID-19
diagnosis  for
asymptomatic  cases
and  self  reported
symptom  for
symptomatic
individuals

NightSignal,
RHRAD,
CuSum

Yes /Yes

Caillol
2021

France 256
F: 108 (42%)
M: 148 (58%)

66±6 Apple Watch Sinus rhythm Arrhythmia NR 12-lead ECG Cohen’s kappa No /No

Cleary
2022

United States 105
F: 53 (51%)
M: 52 (49%) 

28.6±2.8 Fitbit & Apple
watch

Heart  rate,  steps  and
sleep 

COVID-19 0–7 days after
symptom onset as test
periods.

COVID-19-positive
test 

RHRmetric,
SLEEPmetric,
STEPmetric,
SENSORmetric

Yes /Yes

D’Haese
2021

United States 867
F: 313 (36.1%)
M: 236 (27.2%)
Unknown:  318
(36.7%)

37.6±11.3 Oura Ring Body  temperature,
sleep,  activity,  heart
rate,  respiratory  rate,
heart rate variability

Viral
symptoms

3  days  before
symptom onset

Self-reported  viral
illness

Labelling  model
and  forecasting
model

Yes /No

Gadaleta
2021

United States 38,911
F: 23,736 (61%)
M: 15,175 (39%)

NR Fitbit & Apple
Watch

Heart  rate,  sleep,
activity

COVID-19 NR COVID-19  nasal
swab test

CatBoost
gradient boosting

Yes /Yes

Guo 2019 China 187,912
F:  24,938
(13.3%)
M:  16,2974
(86.7%)

34.7±11.5 Honor  Band  4,
Huawei  Watch  &
Honor Watch

Pulse rhythm Atrial
Fibrillation

NR Clinical  evaluation,
ECG, or 24-h Holter
monitoring

Kruskal-Wallis
test  and  a
photoplethysmog
raphy algorithm

Yes /No 

Hassantaba
r 2012

Italy 87
Gender: NR

NR Empatica E4 Galvanic skin
response,
temperature,  interbeat
interval,  oxygen
saturation

COVID-19 NR COVID-19-positive
test

Naïve  Bayes,
Random  Forest,
Ada  Boost,
Decision  Tree,
SVM,  k-NN,
deep  neural

Yes /No
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network  model
with
grow-and-prune
synthesis

Hirten
2021

United States 297
F: 204 (69.4%)
M: 93 (31.3%)

36.3±9.8 Apple watch Heart rate variability COVID-19 Defined  being
symptomatic  as  the
first day of a reported
symptom

COVID-19-positive
nasal swab PCR test

Mixed-effect
Cosinor model.

No /No

Liu 2021 Europe 87
F: 24 (27.6%)
M: 63 (72.4%)

46.5±10.5 Fitbit Heart rate COVID-19 NR COVID-19
diagnosis

Conventional
neural  network,
Multilayer
Perceptrons,
Long Short-Term
Memory
Networks,
conventional
convolutional
auto-encoder,
contrastive
conventional
convolutional
auto-encoder

No /No

Lockhart
2021

United States 171
Gender: NR
 

Fallers:
75.4±8.7
Non-fallers:
75.7±7.6

Inertial measurement
unit  (accelerometer
worn on sternum)

Trunk
kinematics

Falls NR Ten-meter walk test
and fall history

Modified
continuous
wavelet
transform
method

Yes /No

Lonini
2020

United States 29
F: 11 (50%)
M: 11 (50%)

42.9±15.9 Soft wearable sensor
(accelerometer  worn
on  suprasternal
notch)

RR  intervals,  steps,
RR and frequency
spectrum  of  cough
signals

COVID-19 Labelled snapshots as
COVID-19  positive
and
negative

COVID-19
diagnosis PCR test 

Logistic
Regression
(Supervised
machine
learning)

No /No

Lubitz
2022

United States 455,699
F:  323,365
(71%)
M:  132,334
(29%) 

Median
(IQR):  47
(35–58)

Fitbit Heart rate Atrial
Fibrillation

NR Single-lead  ECG
patch monitor

Fitbit  PPG
RhythmDetect
Software System
algorithm

No /No 

Mason
2022

United States 63,153
F: 24,374 (40%)
M: 36,632 (60%)
Other:  56
(<0.1%)

18-30  y:
n=8,555
(14%) 
31-40  y:
n=16,756
(27%) 
41-50y:
n=17,502
(29%) 
51-80y:
n=18,148

Oura Ring Heart  rate,  heart  rate
variability,  dermal
temperature,
respiratory  rate,
physical  activity
(METs)

COVID-19 NR COVID-19 PCR test Machine
learning, random
forest models 

No /No
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(30%) 
81+  y:
n=102
(0.2%)

Mishra
2020

United States 5,262
32 diagnosed
F: 25 (78.1%)
M: 7 (21.9%)

Mean
(range):  47
(27-67)

Fitbit Heart rate, steps COVID-19 Dates  of  symptom
onset and diagnosis to
define sick periods

COVID-19
diagnosis

RHR-Diff,
HROS-AD,
CuSum

Yes /Yes 

Natarajan
2020

United States 2,745
Gender: NR

40.7±12.3 Fitbit RR,  heart  rate,  and
HRV

COVID-19 Data  from 2nd  to  6th

day of symptom onset
labelled as sick

COVID-19
diagnosis PCR test 

CNN
(Supervised deep
learning)

No /No

Nestor
2023

Canada 6,926 
F: 6,012 (86.8%)
M: 914 (13.2%)

NR Fitbit Night-time  RR,  heart
rate,  HRV  and
symptom report

COVID-19 Days  between  self
reported symptom
onset  and  self-
reported
recovery  labelled  as
positive

COVID-19
diagnosis

XGBoost,
XGBoost and
GRU-D

No /Yes

Perez 2019 United States 419,297
F:  177,087
(42%)
M:  238,700
(57%)
Other:  396
(0.1%)
NR:  3,114
(0.7%)

41±13 Apple Watch Pulse rate Atrial
fibrillation

NR ECG patch Irregular  Pulse
Notification
Algorithm

No /No 

Ploux 2021 France 260
F: 109 (42%)
M: 151 (58%)

66±6 Apple Watch Sinus rhythm Arrhythmia NR 12-lead ECG NR No /No 

Quer 2021 United States 30,529
F: 18,922 (62%)
M:  11,  607
(38%)

NR Fitbit & Apple
Watch

Heart  rate,  sleep,
activity

COVID-19 First  date  of
symptoms
to seven days after
symptoms  considered
infectious

COVID-19
diagnosis

RHRMetric,
SleepMetric,
ActivityMetric,
SymptomMetric,
SensorMetric,
OverallMetric

Yes /Yes 

Skibińska
2021

Czech
Republic

54
Gender: NR

NR Fitbit,  Apple  Watch
& various others

Heart rate, steps, sleep COVID-19 NR COVID-19
diagnosis

XGBoost,  k-NN,
SVM,  Logistic
Regression
Decision  Tree
Random
Forest

Yes /Yes

Skibińska
2022

Czech
Republic

58
Gender: NR

NR Fitbit,  Apple  Watch
& various others

Heart rate, steps, sleep COVID-19 NR COVID-19
diagnosis

XGBoost,  k-NN,
Logistic
Regression,
Support
Vector  Machine
(SVM), Decision
Tree,  and

Yes /Yes
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Random
Forest.

Smarr 2020 United States 50
F: 22 (44%)
M: 28 (66%)

43.7±11.0 Oura ring Temperature,  heart
rate,  heart  rate
variability,
and respiration rate 

Fever  and
COVID-19

Onset of reporting of
symptoms

COVID-19
diagnosis

Wavelet analysis Yes /Yes 

Tison 2018 United States 9,750 
M: 5395 (55.3%)
F: 2195 (22.5%)
Unknown:  973
(10%)
NR:  1187
(12.2%)

 

Atrial
Fibrillation:
55.7±14.2
No  Atrial
Fibrillation:
41.5 ±11.9

Apple watch Heart rate, step count,
R-R interval

Atrial
Fibrillation

NR 12-lead ECG Deep  neural
network
development and
training

Yes /No 

van
Schooten
2016

Netherlands 319
F: 161 (50.5%)
M: 158 (49.5%)

75.5±6.9 Dynaport
MoveMonitor
accelerometer 

Daily-life gait quality Falls NR Self-reported  falls
(telephone  survey
and diary)

Principal
component
analysis

No /No 

Wyatt 2020 United States 264
F: 162 (61.4%)
M: 102 (38.6%) 

Median
(IQR):  55
(37.7-69.0)

Apple Watch Heart rate Abnormal
pulse

NR Electronic  health
record  data  of  12-
lead  ECG,  Holter
monitor and chest x-
ray. 

Chi-square tests. No /No

Weiss 2013 United States 71
F: 46 (64.8%)
M: 25 (35.2%)

78.3±4.7 DynaPort
accelerometer

Gait Quality Falls NR Self-reported falls Binary logistic
regression

No /No 

Zhu 2022 United States 204
Gender: NR

NR Samsung  Galaxy
Watch 

Photoplethysmograph
y

Atrial
Fibrillation

NR One-channel  ECG
(chest patch)

Sample-wise
signal  quality
estimator,  hybrid
decision  model,
high-level
decision
generator,  sensor
contact monitor

No /No

ECG: Electrocardiogram. 
F: Female.
IQR: Interquartile range. 
M: Male. 
NR: Not reported. 
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