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Abstract
In recent years, the integration of deep learning techniques with biophotonic setups has opened new horizons in
bioimaging. A compelling trend in this field involves deliberately compromising certain measurement metrics to
engineer better bioimaging tools in terms of e.g., cost, speed, and form-factor, followed by compensating for the
resulting defects through the utilization of deep learning models trained on a large amount of ideal, superior or
alternative data. This strategic approach has found increasing popularity due to its potential to enhance various
aspects of biophotonic imaging. One of the primary motivations for employing this strategy is the pursuit of higher
temporal resolution or increased imaging speed, critical for capturing fine dynamic biological processes. Additionally,
this approach offers the prospect of simplifying hardware requirements and complexities, thereby making advanced
imaging standards more accessible in terms of cost and/or size. This article provides an in-depth review of the diverse
measurement aspects that researchers intentionally impair in their biophotonic setups, including the point spread
function (PSF), signal-to-noise ratio (SNR), sampling density, and pixel resolution. By deliberately compromising these
metrics, researchers aim to not only recuperate them through the application of deep learning networks, but also
bolster in return other crucial parameters, such as the field of view (FOV), depth of field (DOF), and space-bandwidth
product (SBP). Throughout this article, we discuss various biophotonic methods that have successfully employed this
strategic approach. These techniques span a wide range of applications and showcase the versatility and effectiveness
of deep learning in the context of compromised biophotonic data. Finally, by offering our perspectives on the exciting
future possibilities of this rapidly evolving concept, we hope to motivate our readers from various disciplines to
explore novel ways of balancing hardware compromises with compensation via artificial intelligence (AI).

Introduction
The integration of deep learning with biophotonic

technologies1,2 heralds an unprecedented era in imaging
and microscopy, characterized by transformative
enhancements in the realm of image reconstruction3,4.
Central to this innovative shift is the concept of neural
network-based data processing, a powerful approach that
has gained significant traction within the field of bioi-
maging. Neural network compensation hinges on a
deliberate strategic compromise—a calculated choice to

sacrifice certain measurement metrics in exchange for
their later restoration or enhancement through the
application of deep learning models trained on a sub-
stantial amount of data. This strategic trade-off can serve
different purposes, including increasing temporal resolu-
tion and imaging speed, simplifying hardware configura-
tions, and reducing costs. It also introduces novel ways to
deal with typical peripheral bioimaging issues, such as
phototoxicity5 and photobleaching6,7, a concern when
dealing with sensitive biological specimens.
In this Review article, we cover a multitude of imaging

systems8–21 that involve deliberate impairments, includ-
ing to the point spread function (PSF), signal-to-noise
ratio (SNR), sampling volume, and pixel resolution, which
are recuperated along with enhancements to one or more
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of the following: spatial/temporal resolution, field of view
(FOV), depth of field (DOF) and space-bandwidth pro-
duct (SBP). These intricately calculated trade-offs, while
necessitating the initial relinquishment of specific metrics,
can offer significant practical benefits through the appli-
cation of deep learning-based inference, as illustrated in
Fig. 1.
Our exploration encompasses a review of over a dozen

such biophotonic approaches, each of which skillfully
leverages the compensatory capacities of deep learn-
ing8–21. These endeavors show how artificial intelligence
(AI) can help overcome a variety of bioimaging chal-
lenges, furthering the field of biophotonics. Table 1 pre-
sents some of the main articles that are covered in this
Review and highlights the compromised/compensated
metrics involved in each case. Our extensive Review is an
attempt to delineate the synergistic relationship that exists
between deep learning and biophotonics and is divided
into three sections: (i) refocusing and deblurring, (ii)
reconstruction with less data, and (iii) improving image
quality and throughput. Though there is some overlap
among methods for each section, as indicated by the
symbols listed in Table 1, we assigned each technique to
the category most pertinent to the metrics that are con-
ceded and subsequently restored or enhanced. Each seg-
ment comprises a few representative major studies that
help illustrate the powerful assistance that deep learning
can lend in advancing biophotonic technologies.

Refocusing and deblurring
The process of obtaining high-fidelity, all-in-focus

images without the artifact of motion-blur is crucial in
the analysis of biophotonic data. Traditional refocusing

methods, as illustrated in Fig. 2a, often rely on mechanical
scanning techniques wherein multiple images are cap-
tured at different focal planes in a serial ‘stop-and-stare’
fashion. These images are then algorithmically analyzed to
identify the best in-focus image and the focal position.
This process requires extensive data acquisition and
processing time.
There is also the method of remote focusing, which

allows for rapid and precise adjustments to the focus
without disturbing the sample22,23. This approach does
not generally require physical movements of an entire
piece of equipment, such as moving the objective lens or
the sample mounting stage. Remote focusing also reduces
the overall acquisition time and can significantly enhance
the throughput of an imaging system. However, it should
be noted that even remote focusing techniques involve
moving parts, such as mirrors or lenses, within the optical
path, and they can exhibit residual wavefront aberrations
that limit their focusing performance across the entire
lateral FOV24. This added hardware complexity and per-
formance limitations can introduce challenges in the
system design and maintenance, potentially offsetting
some of the operational benefits. Transitioning from a
mechanical to a completely computational PSF refine-
ment (Fig. 2b) can be enabled using neural network-based
refocusing approaches.
One of the most important metrics for adequate image

refocusing and deblurring that has seen successful com-
promises and improvements through deep learning is the
PSF, which characterizes the spatial extent of a point
source in the acquired image, and its enhancement is
pivotal for achieving sharper, more detailed images25. An
out-of-focus or blurry image thus corresponds to a

Compensation
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High resolution
Low resolution

High SNR Low SNR

Dense
sampling

Sparse
sampling

Cost Form factorSpeed

Deep learning

Compromise

Fig. 1 Schematic illustrating the concept of neural network-based image processing and reconstruction of compromised photonic data in terms of
resolution, sampling density, and SNR. Deep learning compensation results in speed, cost, and/or size benefits
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situation where the PSF is in some way enlarged and
distorted. Deep learning has already demonstrated its
ability to enhance the PSF9,26–28, improving high-
resolution imaging. In the specific context of neural net-
work compensation, numerous studies have already made
significant strides8–11,26. These works, harnessing the
power of deep learning, have not only managed to
accelerate or greatly facilitate the imaging process but
have also expanded the capabilities of microscopy systems
to capture finer details and provide crisper, higher-quality

images. In this section, we discuss various leading meth-
ods of PSF engineering and refinement, leveraging AI in
fluorescence and brightfield microscopy, holography, and
phase contrast microscopy.
One such technique is the single-shot autofocusing

method termed Deep-R8. In this method, offline auto-
focusing29 is rapidly and blindly achieved for single-shot
fluorescence and brightfield microscopy images acquired
at arbitrary out-of-focus planes (Fig. 2c). Deep-R sig-
nificantly accelerates the autofocusing process (about 15-

Table 1 Neural network-based image processing and reconstruction methods using compromised data with the
corresponding trade-offs and overall benefits8–21,42,64
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fold faster) using an automated focused image inference,
and all without any hardware modifications or the need
for prior knowledge on defocus distances. A similar
operation is accomplished with the network termed
W-Net9, which comprises a cascaded neural network and
a double helix PSF30, representing a noteworthy

advancement in the context of virtual refocusing and
consequential enhancement of the DOF. This deep
learning-based offline autofocusing approach enhances
the quality of image reconstruction while extending the
DOF by ~20-fold. The W-Net model was developed as a
sequence of two neural networks designed to enhance

Refocusing and deblurring
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Fig. 2 Refocusing and deblurring. a Traditional mechanical scanning technique where multiple defocused images are captured at different focal
planes (N > 1 images). These images are then analyzed to identify the sharpest in-focus image, requiring extensive data acquisition and processing
time. b Deep neural network-based approaches to image refocusing (computational or optical). c Deep-R blindly autofocuses a defocused image
after its capture8. d Structure of W-Net, containing two cascaded neural networks: (1) virtual image refocusing network and (2) cross-modality image
transformation network optimized for DH-PSF9. e The GANscan method resolves deliberately motion blurred scans that save on time using models
trained with relatively slow scans10. f The FCFNN20 model uses just one coherent out-of-focus image, which is then analyzed through an established
pipeline to acquire a focus prediction, following which the microscope’s optics are mechanically adjusted [figure adapted with permission from ref #
20 © Optical Society of America]
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image quality through computational refocusing and
reconstruction. The first part of the model works on
adjusting a PSF-engineered input image to target specific
planes within the sample volume. Following this initial
calibration, the second network takes over, utilizing the
virtually refocused images to conduct a comprehensive
image reconstruction, as shown in Fig. 2d. This process is
guided by a cross-modality transformation (wide-field to
confocal)31, ultimately producing images that are com-
parable in quality to those obtained from confocal fluor-
escence microscopy. One way to view and combine these
two approaches is: a compromised PSF is exploited for
purposes of speed and simplicity, and then rectified using
AI.
Deep learning-enabled refocusing has also been

extensively demonstrated in holographic microscopy
imaging32–40. Among such models is the enhanced
Fourier Imager Network (eFIN) framework11. eFIN is a
highly versatile solution for simultaneous hologram
reconstruction, pixel super-resolution, and image auto-
focusing. eFIN enables sharper and higher-resolution
imaging while maintaining image quality and is designed
for both phase retrieval and holographic image
enhancement on low-resolution raw holograms through
its inference process. Building on the foundational
Fourier Imager Network (FIN)41—a network that
achieves better hologram reconstruction than convolu-
tional neural networks (CNNs) by synergistically utiliz-
ing both the spatial features and the spatial frequency
distribution of its inputs—eFIN showcases notable
advancements in its model structure, particularly
through the incorporation of a simplified U-Net within
its Dynamic Spatial Fourier Transform (SPAF) module,
which utilizes input-dependent kernels and better adapts
to inputs with varying features. This innovative archi-
tecture enables eFIN to seamlessly combine pixel super-
resolution with autofocusing functionalities within a
singular framework. A distinctive feature of eFIN is its
proficiency in autofocusing across an extensive axial
range of ±350 μm, coupled with its remarkable ability to
accurately estimate the axial positions of input holo-
grams by leveraging physics-informed learning techni-
ques34, thereby eliminating the reliance on actual axial
distance measurements.
An altogether different kind of deep learning enhance-

ment of the PSF is found in the rapid brightfield and
phase contrast scanning method known as GANscan10.
This powerful approach harnesses generative adversarial
networks (GANs)42 to restore sharpness of images
extracted from motion-blurred videos (Fig. 2e). In this
case, the PSF is elongated horizontally and narrows the
horizontal spatial frequencies. Adjusting for this defect,
GANscan enables ultra-fast image acquisition through
motion-blurred scanning. The resulting acquisition rate

matches the leading-edge Time Delay Integration (TDI)43

technology’s performance, achieving 1.7–1.9 gigapixels
within 100 s. Such a technique offers an efficient and cost-
effective way to accomplish rapid digital pathology scan-
ning using only basic optical microscopy hardware. Like
the other methods in this section, GANscan serves to
repair a damaged PSF, which then entails general imaging
benefits.
Another approach20 demonstrates the same end goal

of autofocusing with a phase contrast modality, but this
time in a direct mechanical and signal processing fash-
ion. Unlike the methods previously mentioned, this
technique employs a neural network to predict the
physical focal offset, which then prompts a change to the
optical hardware. The PSF manipulation is, in this case,
mechanical in nature, which precludes the injection of
any false AI-generated image data. Using just one or a
few off-axis light emitting diodes (LEDs), the method
allows for a significant speedup in obtaining in-focus
images, a critical factor for accurately capturing dynamic
biological processes in real-time. The “fully connected
Fourier neural network (FCFNN)” employed in this
technique is designed to exploit the sharp features
resulting from coherent illumination, allowing it to make
accurate focus predictions from a single image (Fig. 2f).
This concept aligns closely with some of the recent
advancements in digital holography, where similar
principles have been employed for rapid, post-
experimental digital refocusing44.
It should be noted that many of these methods have

successfully achieved real-time operation, demonstrating
their practical viability. Techniques including Deep-R
and W-Net operate at a speed of ~0.34 mm2/s on an
Nvidia RTX 2080Ti graphics processing unit (GPU)8,9,
making them suitable for dynamic and live imaging sce-
narios due to their rapid autofocusing capabilities.
Additionally, eFIN can support real-time applications by
integrating pixel super-resolution and autofocusing
within a single framework at a speed of ~0.85 mm2/s on a
consumer-grade GPU11. The fully connected Fourier
neural network20 (FCFNN; Fig. 2f) with 2–3 orders of
magnitude fewer parameters is also well-suited for real-
time focus predictions and adjustments, optimizing
hardware use to maintain focus during dynamic biolo-
gical processes.
All these exemplary PSF optimizing instances collec-

tively underscore the transformative potential of deep
learning in microscopic image refocusing and deblurring,
a critical factor in the pursuit of high-resolution imaging
within the domain of biomedical imaging. By leveraging
neural network compensation, these approaches speed up
imaging and enhance microscopy systems, resulting in
faster acquisition of sharper, high-definition images with
better DOF.
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Reconstruction with less data
The quest for efficient image reconstruction in bio-

photonics often grapples with the challenge of data

scarcity. In order to obtain high-quality images, especially
for three-dimensional (3D) or quantitative systems, a large
volume of measurements needs to be acquired, which
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entails longer imaging durations, more data, and in the
case of live biological specimens, exacerbation of pro-
blems such as photoxicity5 and photobleaching7.
Purposely undersampling measurement data is thus a

critical strategy in deep learning-enhanced biophotonics.
This concept involves deliberately reducing the amount of
data acquired during the imaging process, often entailing
certain compromises in measurement metrics. However,
the emerging trade-offs allow for various advantages,
including increased imaging speed, reduced data acqui-
sition requirements, and minimized photodamage to
delicate samples. In this section, we explore how this
practice has successfully been applied across a range of
modalities, including Fourier ptychography, 3D fluores-
cence microscopy, optical coherence tomography (OCT),
and digital holography, highlighting the diverse applica-
tions of this approach in enhancing biophotonic imaging
with relatively sparse data.
Typical image reconstruction processes require many

input acquisitions that are then fed into an algorithm to
generate a decent result (Fig. 3a). Employing a specially
trained deep learning network, however, one may begin
with a limited set of input data, a significant reduction
from the traditional multi-layered stack, allowing for the
minimization of initial data requirements without a
meaningful loss in image quality (Fig. 3b). An example
that applies this idea is the single-shot Fourier ptycho-
graphic microscopy method15, which introduces an
important approach of strategically undersampling data
and employing neural network compensation to none-
theless achieve high-resolution image reconstruction.
Fourier ptychography is a computational imaging tech-
nique that enables high-resolution, wide-field imaging
beyond the single-shot numerical aperture (NA) of the
optical system employed. This method reconstructs a
high-resolution image by stitching together information
from a series of low-resolution images taken at different
illumination angles45. Fourier ptychographic microscopy
traditionally requires illuminating and capturing images
from multiple LEDs in an array sequentially46. However,

recent innovations have demonstrated that acquisition
times can be significantly shortened through the use of
multiplexed LED patterns47. Traditionally, the recon-
struction of objects in Fourier ptychography, hindered by
the loss of phase information in intensity images, relies on
iterative algorithms that demand significant computa-
tional resources. Recent advancements have illustrated
that deep learning can serve as an effective substitute for
these iterative processes, streamlining the reconstruction
method48. In this single-shot imaging methodology, the
conventional ptychography LED illumination pattern is
optimized using deep learning techniques, allowing for
the acquisition of fewer images without compromising the
SBP (Fig. 3c). Through the joint optimization of the LED
illumination pattern and reconstruction network para-
meters, the deep learning model not only mitigates the
impact of undersampling but also significantly reduces the
acquisition time by a factor of e.g., 6915.
Another illustration of undersampling data can be

shown with the deep learning-assisted volumetric fluor-
escent microscopy system that uses a model called
Recurrent-MZ12. This recurrent neural network (RNN)49-
based volumetric image inference framework utilizes 2D
images sparsely captured by a standard wide-field fluor-
escence microscope at arbitrary axial positions within the
sample volume. Through a recurrent CNN, Recurrent-
MZ incorporates 2D fluorescence information from a few
axial planes within the sample to digitally reconstruct the
sample volume over an extended DOF, as shown in
Fig. 3d. This approach significantly increases the imaging
DOF of objective lenses and reduces the number of axial
scans required to image the same sample volume, thereby
advantageously undersampling data while maintaining
imaging quality. These findings reveal that the Recurrent-
MZ framework substantially enhances the DOF of a 63×/
1.4 NA objective lens, achieving a remarkable 30-fold
decrease in the necessary axial scans for imaging the same
sample volume. This RNN-based framework has also been
applied to undersampled image data in holographic
microscopy33.

(see figure on previous page)
Fig. 3 Reconstruction with less data. a Schematic representation of a typical reconstruction process. It consists of a dense set of input data and a
standard algorithm. b With deep learning, a significant reduction from the traditional multi-layered stack is achieved for image reconstruction. This
input is then fed into a neural network, which interprets and reconstructs the data. c Optimization of LED configuration using deep learning for
Fourier ptychography with the resulting amplitude and phase components. An example from the evaluation dataset is provided for comparison,
showcasing the phase component of the iterative Fourier ptychography reconstruction, which serves as the ground truth, alongside the output of
the neural network, together with a cross-sectional analysis15 [figure adapted with permission from ref # 15 © Optical Society of America]. d The
Recurrent-MZ volumetric imaging framework is illustrated through examples of 3D imaging of C. elegans, showcasing the initial input scans, the
output processed by the network, and the established ground truths for comparison12. e The SS-OCT system acquires raw OCT fringes, from which
the target image of the network is derived by directly reconstructing the original OCT fringes. By processing an undersampled image through a
trained network model, an OCT image free of aliasing is produced, closely aligning with the ground truth. The provided example involves a 2×
undersampled OCT image14. f Following a swift process of transfer learning, the RNN few shot hologram model demonstrates excellent
generalization capabilities on test slides of new types of samples (lung tissue sections)
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Similarly, in the context of OCT, the method known as
Swept-Source OCT (SS-OCT)14 leverages a deep
learning-based image reconstruction approach to gen-
erate OCT images using undersampled spectral data.
OCT is a non-invasive interferometric imaging technique
capable of delivering 3D insights into the optical scatter-
ing characteristics of biological matter50. This neural
network-based SS-OCT approach eliminates spatial
aliasing artifacts using less spectral data and without
necessitating any hardware modifications to the optical
setup. By training a deep neural network (DNN) on
mouse embryo samples imaged by an SS-OCT system,
researchers were able to blind-test the network’s ability to
reconstruct images using 2–3 fold undersampled spectral
data, as shown in Fig. 3e. The results showcase the net-
work’s potential to increase imaging speed without com-
promising image resolution or SNR.
The concept of compensating specifically for less

training data with DNNs has also been applied to the
process of hologram reconstruction51. One such tech-
nique uses a few-shot transfer learning style for holo-
graphic image reconstruction13 that facilitates rapid
generalization to new sample types using small datasets.
Researchers pre-trained a convolutional RNN33 on a
dataset with three different types of samples and ~2000
unique sample FOVs, which served as the backbone
model. By transferring only specific convolutional blocks
of the pre-trained model, they dramatically reduced
(by ~90%) the number of trainable parameters while
achieving equivalent generalization to new samples. An
example of this on lung tissue image reconstruction is
shown in Fig. 3f. Such an approach significantly accel-
erates convergence speed, reduces computation time,
and improves generalization to new sample types, all
while undersampling training data.
Many of these methods can potentially be used in real-

time settings. For instance, the neural network-based SS-
OCT approach highlights optimized inference time (as
low as 0.59 ms on a cluster of 8 NVIDIA Tesla A100
GPUs) and is suitable for integration with existing OCT
systems14. Techniques like single-shot Fourier ptycho-
graphic microscopy15 and Recurrent-MZ12 leverage deep
learning to process sparse data rapidly, demonstrating at
least one order of magnitude of acceleration compared to
conventional methods. These methods inherently support
faster data processing and reduced acquisition times,
which are crucial for real-time imaging scenarios. As
another example, the few-shot transfer learning approach
for holographic image reconstruction13 facilitates rapid
generalization to new sample types with small datasets,
making it conducive to real-time imaging applications.
With the rapid advancement of GPUs and neural proces-
sing units, efficient communication and control between
the hardware and software may become the bottleneck for

real-time applications. Future research could investigate
extending these approaches to near real-time finetuning on
individual samples, patients, and hardware.
The aforementioned methods highlight the strategic

utilization of undersampled data in biophotonics and
demonstrate how deep learning contributes to maximiz-
ing the advantages of this approach. Through deliberate
compromise in data acquisition, these methodologies
achieve enhanced imaging speed, reduced resource
requirements, and minimized sample photodamage while
maintaining or even improving imaging quality.

Improving image quality and throughput
This section presents various deep learning-enabled

approaches to enhance the quality of the biophotonic data
and the throughput of the overall system using modest,
cost-effective, or comprised equipment empowered by
DNNs. In a similar vein to the previous methods dis-
cussed above, this approach leverages the power of neural
networks to transform relatively suboptimal imaging data
into high-quality representations, crucial for accurate
biological analysis, all while forgoing some aspects of the
optical hardware, including power, cost, and form-factor.
As depicted in Fig. 4a, traditional imaging systems using

simplified devices invariably produce images of com-
paratively low quality in terms of SNR, spatial resolution,
aberrations, and DOF. Rather than having to rely on
hardware-intensive setups to achieve first-rate results, it is
possible to compensate for these deficiencies using DNNs.
Figure 4a showcases the application of a neural network
to process images captured from a cost-effective optical
microscope. Here, the network acts on a single low-
quality image, eliminating the need for multiple captures
and complex optical systems, and outputs an image that
closely resembles one obtained from a high-end benchtop
microscope.
With respect to image quality, maintaining a high

SNR52 is of paramount importance. Achieving a higher
SNR is critical for improving the sensitivity and accu-
racy of imaging techniques, especially in challenging
conditions or when dealing with low light levels. Deep
learning has emerged as a potent tool to augment SNR
in such circumstances, leading to more reliable and
informative imaging outcomes. A notable example of
such an approach has been utilized on a type of mobile-
phone microscopy16. While mobile phones have enabled
cost-effective imaging technologies, their optical inter-
faces may introduce distortions/aberrations in imaging
microscopic specimens, tampering with the SNR and
image quality. Deep learning networks can correct these
spatial and spectral aberrations, producing high-reso-
lution, denoised, and color-corrected images that
match the performance of benchtop microscopes with
high-end, diffraction-limited objective lenses. This
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method standardizes optical images for clinical and
biomedical applications, augmenting SNR and overall
image quality (Fig. 4b).

A similar strategy was also presented in the paper titled
“Deep learning enables fast, gentle stimulated emission
depletion (STED) microscopy”21. In the realm of STED
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microscopy53, a technique that resolves features beyond
the diffraction limit, the realization of super-resolution
often comes at the cost of increased photobleaching and
photodamage due to the necessity of high-intensity illu-
mination. The use of deep learning in this paper aligns
with the strategy of intentionally reducing pixel dwell time
—thus sacrificing SNR and potentially image clarity—to
improve the speed of imaging and reduce damage to
biological samples, all while compensating for the sacri-
ficed metrics using deep learning, as shown in Fig. 4c.
Another technique that is coupled with a similar power-

saving process is stimulated Raman scattering microscopy
(SRS)54, a label-free imaging modality that offers chemical
contrast based on the vibrational properties of molecules
within a sample. It operates on the principle of Raman
scattering, where incident light interacts with the mole-
cular vibrations of the sample, leading to a shift in the
energy of the scattered light. Deep learning has now been
integrated with this technique to deliver a promising
solution to significantly improve the SNR of SRS images19.
As depicted in Fig. 4d, a U-Net is trained to denoise SRS
images of coronal mouse brain sections acquired with low
SNR. The trained denoiser model also demonstrates
external generalization to different imaging conditions,
such as varying zoom and imaging depth, and augmenting
SNR across various scenarios.
Another method involving overlapping FOVs17 effec-

tively broadens the throughput of a microscopic imaging
system by addressing the inherent limitation of the SBP in
conventional microscopes. In traditional settings, the SBP
requirements of a microscope hinders the capability to
process wide areas quickly and efficiently without sacri-
ficing spatial details. This overlapped imaging system17

includes a multi-lens array that circumvents the SBP
bottleneck by capturing stacked images containing more
information in a single snapshot, which can then be
intricately processed and analyzed by an optimized
machine learning model. This increases the throughput of

the imaging process by a factor proportional to the
number of FOVs that are integrated, allowing for a more
efficient analysis of specimens, which is critical in bio-
medical research and disease diagnosis. This approach
starts by lighting up different independent sample FOVs
with LEDs. These are then imaged simultaneously
through a multi-lens array onto a collective sensor,
creating an overlapped composite image. To analyze this
aggregate image, a CNN is designed to pinpoint and
recognize distinct features or objects within it. Figure 4e
shows an instance of this method, demonstrated through
the model’s ability to locate a target blood cell from an
image of 2 overlapped FOVs. This technique directly
aligns with the strategy of using deep learning to com-
pensate for and correct the compromised elements of
biophotonic imaging setups, facilitating advancements in
imaging capabilities. This approach not only augments the
throughput of microscopic analysis but also exemplifies
the major impact of deep learning in expanding the
operational envelope of conventional biophotonic ima-
ging methods. If the composite image were to be unra-
veled into its individual FOV constituents using DNNs,
this capability could be used to significantly enhance
various detection processes in different sample types, such
as tissue sections.
Lastly, an imaging configuration making use of a low

light source in structured illumination microscopy
(SIM)18 showcases how deep learning improves SNR
when imaging under extremely dim conditions. SIM,
which works by illuminating the sample with patterned
light, typically in the form of stripes or grids, and cap-
turing multiple images as the pattern is shifted and
rotated, thereby surpassing the optical diffraction limit,
typically requires intense illumination and multiple
acquisitions55. Deep learning facilitates the production of
high-resolution, denoised images of faintly illuminated
samples, as shown in Fig. 4f with microtubules. By
enabling imaging with at least 100× fewer photons and 5×

(see figure on previous page)
Fig. 4 Improving image quality and throughput. a Schematic representation of a neural network-enabled pipeline for image quality improvement
of data taken with simplified and/or inexpensive optics. b Deep learning enhanced mobile-phone microscopy with a CNN trained to denoise, color-
correct, and extend the depth of field with examples of blood smears and lung tissue sections. c Low exposure STED SNR enhancement through
UNet-RCAN. The example shown compares noisy images (exposure time of 50 ns), ground-truth images (exposure time of 1 μs), and images
processed by UNet-RCAN on β-tubulin (STAR635P) in U2OS cells21 [figure adapted from ref #21, licensed under CC BY 4.0, http://creativecommons.
org/licenses/by/4.0/]. d Reconstruction of low power (LP) SRS coronal mouse brain images and deep learning denoised versions, as well as two-color
(lipids-green, proteins-blue) SRS images of a coronal mouse-brain slice with the ground truth as high power (HP) SRS images19 [figure adapted with
permission from ref # 19 © Optical Society of America]. e The process of overlapped microscopy imaging involves illuminating various independent
FOVs of samples using LEDs, followed by capturing these through a multi-lens array onto a shared sensor, resulting in an overlapped composite
image. A CNN-based analysis framework is applied to detect and identify specific features within this composite image. This technique is exemplified
by the model finding a target from an overlap of 3 images17 [figure adapted with permission from ref # 17 © Optical Society of America]. f Example of
the low light SIM pipeline. For training the U-Net model, either fifteen (using three different illumination angles (Nθ= 3) and five phase patterns
(Nψ= 5)) with faint illumination or three SIM raw data images (a single phase pattern for fewer raw data acquisitions) are employed as input, while
high SNR SIM reconstructions serve as the ground truth. This approach is shown with examples on microtubules18 [figure adapted from ref #18,
licensed under CC BY 4.0, http://creativecommons.org/licenses/by/4.0/]
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fewer raw data acquisitions (using fewer phase patterns in
the illumination), this technique significantly boosts SNR,
allowing for multi-color, live-cell super-resolution ima-
ging with the added benefit of reduced photobleaching.
As highlighted through these examples, deep learning

has significantly contributed to augmenting the SNR in
biophotonics, enhancing the quality and reliability of
imaging outcomes. These examples showcase how deep
learning methods have effectively reduced noise, cor-
rected distortions, and improved imaging volume, ulti-
mately enhancing the SNR or the overall throughput of
biophotonic imaging.
Furthermore, each of these methods presents a viable

potential for real-time applications. For instance, deep
learning-enabled mobile-phone microscopy could be
integrated into portable and less power-intensive setups,
allowing for immediate high-quality imaging and analysis
in the field. The denoising of SRS images using a U-Net
may be implemented in real-time19 to instantly improve
image quality during live imaging of specimens, which is
crucial for fast biological studies. Similarly, the overlapped
microscopy technique17 coupled with CNNs can possibly
process composite images to identify target features on-
the-fly, enhancing the speed and efficiency of large-scale
analyses. SIM18 can leverage deep learning to reconstruct
high-resolution images from fewer acquisitions56, thus
facilitating live-cell imaging without compromising on
temporal resolution. These advancements illustrate the
potential for deploying deep learning models in real-time
settings, thereby transforming the practical applications of
biophotonics imaging techniques and enabling more
efficient and dynamic imaging workflows.
The techniques discussed in this section exemplify the

effectiveness of applying deep learning to enhance image
quality under suboptimal imaging conditions. These
methods leverage the power of neural networks to com-
pensate for hardware limitations, improve low image SNR,
correct aberrations, and produce high-quality image data
from cost-effective or compromised equipment. By doing
so, they might facilitate the acquisition of reliable data
while minimizing costs, increasing speed, reducing com-
plexity, and minimizing photodamage.

Discussion and future perspectives
The innovative integration of deep learning with biopho-

tonic imaging represents a paradigm shift in bioimaging,
offering a novel pathway to surpass traditional limitations
and unlock new capabilities. This Review has shown how
strategic compromises in measurement metrics, such as to
the PSF, SNR, sampling density, and pixel resolution, can be
effectively counterbalanced by designing and deploying spe-
cialized deep learning models. This approach not only sub-
stantially recovers lost information, but also enhances
imaging parameters critical for advanced biophotonic

applications, such as the resolution, FOV, DOF, and SBP.
The successful applications of these strategies across various
biophotonic methods underscore the transformative poten-
tial of deep learning in bioimaging, pushing the boundaries of
what is achievable in terms of temporal resolution, imaging
speed, accessibility, and cost-effectiveness.
An intriguing prospect with regards to this

compromise–compensate scheme is the potential to
combine different imaging defects strategically to further
enhance or expedite imaging processes. For example,
researchers can leverage a compromised PSF alongside
low SNR to accelerate image acquisition. By deliberately
introducing these imperfections, it is possible to optimize
imaging speed without significant loss of critical infor-
mation. The creative fusion of defects could offer exciting
prospects for real-time imaging in applications where
rapid results are imperative.
The synthesis of different deep learning methods also

opens a realm of interesting possibilities. Consider inte-
grating overlapped microscopy with a GANscan acquisi-
tion strategy. Overlapping multiple FOVs on a single
image sensor can significantly increase detection
throughput. When fused with GANscan’s already accel-
erated imaging capabilities, the result could revolutionize
high-throughput imaging systems. There is, however, a
legitimate concern that the adoption of these techniques
in conjunction could face considerable pushback, for
instance in scenarios where the precision and reliability of
bioimaging are non-negotiable. The decision to leverage
compromised imaging metrics for the sake of enhancing
certain aspects of the imaging process, such as speed or
FOV, necessitates a thorough and rigorous understanding
of the trade-offs involved. It is essential to emphasize that
the utility of these deep learning-enabled compromises is
highly contingent upon the specific needs and constraints
of the imaging task at hand.
Practically determining what constitutes a tolerable loss

of initial information should be based on the specific bio-
medical application that the system is endeavoring to
enhance. This is the ultimate measure of pertinence and
means that the decisive metric should be the final accuracy
of scientific classifications or pathology examinations, for
example. The true measure of success in these scenarios is
how well the imaging system can support such scientific
findings or clinical decisions and contribute to, for exam-
ple, accurate diagnoses, which are critical for patient out-
comes. Therefore, future research should focus on
validating imaging techniques based on their impact on
specific biomedical targets of success, as opposed to mere
technical quality metrics such as peak signal-to-noise-ratio
(PSNR) or structural similarity index (SSIM).
Moreover, it should be noted that these methods fre-

quently employ advanced models to predict missing
information by learning from paired image datasets. Using
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deep learning-based techniques in this context poses a risk
of obscuring rare phenomena and introducing biases that
may counteract efficient measurement efforts. Deep
learning models rely on existing data, where uncommon
events are typically underrepresented. Consequently, these
models may not adequately detect unexpected features,
leading to generalization failure on shifted data distribu-
tions. Hence, it is vital to treat compromises or trade-offs
gingerly to ensure that the integrity of scientific discoveries
is not compromised and no regulations are overlooked.
Uncertainty quantification (UQ) approaches of neural
networks can be employed to mitigate potential risks
caused by artifacts and hallucinations generated by these
models. Most common UQ methods utilize Bayesian sta-
tistics57–59 and ensemble learning60, effectively providing
quality control for neural networks’ outputs without access
to the reference or ground truth data. Specifically for
inverse imaging problems with known forward processes,
Huang et al. demonstrated a cycle-consistency-based UQ,
leveraging forward-backward cycles between physical for-
ward models and corresponding trained neural net-
works61. Alternatively, generalization issues can be
mitigated by performing transfer learning, parameter
finetuning13,62,63, and physics-informed learning34.
In clinical diagnostics, where the accuracy and relia-

bility of imaging data are critical for patient care, the
acceptance of assorted optical flaws to expedite imaging
processes might be especially risky. Conversely, in
research settings where speed and scalability of imaging
are more crucial, such compromises might be more
readily welcomed. This underscores the importance of
system-specific considerations in the application and
wide adoption of these advanced imaging techniques.
Therefore, it is imperative for researchers and practi-
tioners to critically evaluate the potential benefits and
limitations of deep learning-enhanced bioimaging meth-
ods within their specific contexts. The potential for hal-
lucinations produced by various networks warrants
careful examination. Since biomedical data often contain
many subtle yet critical features that may be overlooked
by inexperienced eyes, these models must be rigorously
evaluated, especially when applied in separately trained
systems. Moreover, using AI-generated content for
training can amplify errors and reduce the accuracy of
image reconstructions or transformations. It is essential
to consider these factors diligently, along with appro-
priate labeling for medical professionals or experts deal-
ing with these data to clearly indicate the generated
results may be subject to contamination or hallucina-
tions/artifacts. Understanding the precise requirements
of their applications will allow the users to make more
informed decisions about when and how to incorporate
these innovative techniques, ensuring that the advance-
ments in biophotonic imaging truly meet the nuanced

demands of their work without unnecessarily sacrificing
the quality or fidelity of the imaging data.
Finally, the path to Food and Drug Administration

(FDA) approval with any of these systems remains a
challenging milestone if the proposed systems are aimed
to be used for diagnosing patients. Regulatory authorities
often scrutinize compromised data, as it may raise con-
cerns about unreliable medical results. However, the
exponential growth in deep learning functionality and
the vast wealth of data that is more and more at our
disposal have the potential to address these concerns
robustly. Deep learning algorithms, when rigorously
validated and transparently documented, may prove, in
time, their full reliability and safety. Furthermore, the
generalization of AI models to learn from diverse data-
sets and adapt to different imaging conditions could
mitigate the risks associated with compromised data.
Demonstrating the significant benefits of deep learning
in biophotonics will, however, demand utmost adherence
to stringent regulatory frameworks and a comprehensive
awareness of the potential pitfalls that need to be care-
fully examined, disclosed, and controlled, ideally in a
self-supervised and autonomous manner, without access
to ground truth.
As we stand on the cusp of this rapidly advancing field,

it is clear that the future holds immense promise for
myriad further innovations and breakthroughs.
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