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Dear Editor,
Trichomes are the specialized structures found on the sur-

face of plants, categorized into glandular secretory trichomes
(GSTs) and non-glandular trichomes based on their secondary
metabolism capability [1]. Artemisia annua possesses both of the
two types of trichomes, i.e., non-glandular T-shape trichomes
(TSTs) and peltate GSTs, the latter being the primary site for the
synthesis and accumulation of the specific antimalarial compo-
nent, artemisinin [2]. Significant research efforts have been ded-
icated to elucidating the molecular mechanisms governing GST
initiation and the metabolic pathways involved in artemisinin in
A. annua [3, 4]. However, the comprehensive metabolism land-
scape of GSTs remains incompletely understood [5].

Here, we reported an A. annua mutant, which was acciden-
tally discovered, exhibiting developmental defects in GSTs, named
TRICHOME DEVELOPMENTAL DEFECTS 1 (tdd1) (Fig. 1a and b).
Previous studies suggest that the GST cells are expected to possess
denser cytoplasm indicative of secretory activity [6]. However, the
cells of defective GSTs in tdd1 were occupied by large vacuoles
(Fig. 1c), revealing a compromised capacity for the secretion of
secondary metabolites.

Because artemisinin was primarily accumulated in GSTs, we
determined the contents of artemisinic acid, dihydroartemisinic
acid, and artemisinin, which are the key products in the
artemisinin biosynthesis pathway, in young and mature leaves of
tdd1 and WT. Artemisinin, artemisinic acid and dihy-
droartemisinic acid were virtually undetectable in neither young
nor mature leaves of tdd1 (Fig. 1d). This result demonstrated
that the mutation of GSTs can lead to the obstruction of the
artemisinin metabolic pathway.

To further uncover the metabolic difference between tdd1
and WT, young and mature leaves were collected for LC–MS
based nontargeted metabolites analysis and GC–MS based volatile
organic compounds (VOCs) analysis by MetWare (Wuhan, China)

as described previously [7]. A total of 836 distinct nontargeted
metabolites, classified into 10 classes, were detected (Fig. 1e).
Among these, 52 metabolites were undetectable in both YL and
ML of tdd1, primarily comprising to flavonoids (15) and terpenoids
(14) (Fig. 1f). In the past decade, most studies have focused on the
accumulation of artemisinin in GSTs, neglecting the potential
effects of flavonoids [8]. Therefore, the nontargeted metabolome
data can expand our understanding of the potential GST-specific
flavonoids in A. annua. Accordingly, 131 VOCs including 11 classes
were identified (Fig. 1e). There were 38 VOCs (mainly terpenes)
undetected, in both YL and ML of tdd1 (Fig. 1f). Apparently,
according to our data, GST could be a specific site for the
biosynthesis of many secondary metabolites, especially terpenes
and flavonoids.

Multi-omics integration provides a comprehensive approach
to elucidate the genetic and biochemical underpinnings of
metabolism [9]. To get an insight into the transcriptional changes
relevant to the metabolic defect of tdd1, we built transcriptomic
profiles for shoot apical meristems, young leaves, and mature
leaves of tdd1 and WT. Given the substantial disparity in
artemisinin accumulation between tdd1 and WT, we deeply
analysed the expression profile of enzymes in the artemisinin
biosynthesis pathway. Notably, there was a certain difference
in gene expression pattern within the MVA and MEP pathways
between tdd1 and WT (Fig. 1g). Specifically, most genes in the
MVA pathway were slightly upregulated in tdd1, while most genes
in the MEP pathway were downregulated, reflecting different
metabolic fluxes related to GSTs defect. The GST-specific genes
in the artemisinin biosynthesis pathway, including ADS, CYP71AV,
DBR2, ALDH1, and ADH1, were also barely expressed in all tissues
of tdd1, which precisely corresponded to the dramatic artemisinin
accumulation block. Although the proportion of GSTs in the
leaves is small, the GSTs defect still leads to changes in both MVA
and MEP pathways. This further underscores the significance
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Figure 1. GSTs developmental defects in Artemisia annua lead to dramatic metabolic changes. (a) GSTs of WT and tdd1, images were taken under blue
light or UV. (b) Scanning electron microscope (SEM) observations of GSTs. (c) Transmission electron microscopy (TEM) observation of GSTs. Cl,
chloroplast; ER, endoplasmic reticulum; G, Golgi body; M, mitochondria; N, nucleus; O, osmiophilic material; OL, osmiophilic layer; V, vacuole. (d) The
content of artemisinic acid, dihydroartemisinic acid and artemisinin (mg/g, Dried Weight, DW) in young leaves (YL) and mature leaves (ML) of WT and
tdd1. Data are given as means ± SD (n = 3). (e) Overview of the nontargeted metabolites, and VOCs. The metabolite per row is Z-score standardized to
−2 to 2. (f) Number of metabolites undetected in tdd1. Heatmap of genes involved in the artemisinin biosynthesis pathway (g), other
terpenes/terpenoids biosynthesis pathways (h), and the flavonoid biosynthesis pathway (i). The heatmaps represented log2 FC (tdd1/WT FPKM values).
Each row of the heatmap represents one gene and each column represents one group. Abbreviations: The MVA pathway: AACT, Acetyl-CoA
C-acetyltransferase; HMGS, Hydroxymethylglutaryl-CoA synthase; HMGR, 3-hydroxy-3-methylglutaryl CoA reductase; MVK, Mevalonate kinase; PMK,
Phosphomevalonate kinase; PPMD, Diphosphomevalonate decarboxylase; IDI, Isopentenyl-diphosphate delta-isomerase; The MEP pathway: DXS,
1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase; MCT, 2-methyl-D-erythritol-4-phosphate
cytidylyltransferase; CMK, 4-(Cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase; MCS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase;
HDS, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl-diphosphate reductase; The artemisinin biosynthesis
pathway: FPS, farnesyl pyrophosphate synthase; ADS, Amorpha-4,11-diene synthase; CYP71AV1, cytochrome P450 dependent hydroxylase; ADH1,
Alcohol dehydrogenase 1; CPR, cytochrome P450 oxidoreductase; ALDH1, aldehyde dehydrogenase 1; DBR2, double bond reductase 2; Other terpenes
biosynthesis pathways: LAS, linalool synthase; LS, limonene synthase; CIN, cineole synthase; BPS, beta-pinene synthase, BFS, beta-farnesene synthase;
CPS, beta-caryophyllene synthase; GAS, germacrene A synthase; ECS, 8-epi-cedrol synthase; SQS, squalene synthase; BAS, beta-amyrin synthase; The
flavonoid biosynthesis pathway: PAL, phenylalanine ammonialyase; 4CL, coumarate-CoA ligase CHS, chalcone synthase; C4H,
cinnamate-4-hydroxylase; CHI, chalcone isomerase; FNS, flavone synthase; F3H, Flavanone 3-hydroxylase; FLS, flavonol synthase; DFR,
fihydroflavonol 4-reductase; LDOX, leucoanthocyanidin dioxygenase; UFGT, UDP-glycose flavonoid glycosyltransferase.
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of GSTs in A. annua. The synthesis of volatile terpenes shows a
strong correlation with the MEP pathway [10]. Therefore, the loss
of the volatile terpenes in tdd1 may lead to a metabolic inhibition
in the MEP pathway, which corresponds to the down-regulation
of the genes of the MEP pathway. Otherwise, the complex and
variable metabolic crosstalk between the MEP and MVA pathways
might cause the upregulation of the gene of MVA pathways. In
brief, tdd1 is an excellent mutant material to uncover the related
mechanism.

To elucidate the variations in terpenes/terpenoids accumula-
tion, we investigated the expression profile of the genes involved
in the other terpenes/terpenoids biosynthesis pathways (Fig. 1h).
Genes, including CPS (AA493140), GAS (AA450520, AA493970),
BAS (AA329590, AA329600), LAS (AA257900, AA408270), CIN
(AA458740), and CPS (AA068310, AA251590) showed dramat-
ically low expression levels in tdd1. Integrated analysis of
metabolomic and transcriptomic results suggested a substantial
impediment in terpenes/terpenoids metabolism was largely
hampered in tdd1. The genes with low expression levels, which
exhibited the same pattern as the GST-specific genes in the
artemisinin biosynthesis pathway, may play a crucial role in
the synthesis and accumulation of GST-specific terpenes/ter-
penoids.

Since flavonoids constituted the majority of undetectable
metabolites in tdd1, we further investigated the expression levels
of the enzymes involved in flavonoid biosynthesis pathways.
As a result, 33 DEGs were identified and changed in varying
degrees between tdd1 and WT (Fig. 1i). Notably, genes such as 4CL
(AA605090), CHS (AA325220), CHI (AA107840) and FLS (AA061500)
exhibited extremely low expression levels in all samples from
tdd1. It suggested a possible involvement of the correlated genes
in the synthesis of the flavonoids that were absent in tdd1.

In summary, this study displays a systematical landscape of
the transcriptional and metabolic changes between tdd1 and WT,
arising from the GSTs defect, and identifies specific genes that
conduce to the disparate metabolites’ accumulation, thereby lay-
ing the foundation for future investigations on the contribu-
tions of these genes to the GSTs-specific terpenes/terpenoids and
flavonoids biosynthesis.
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