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Abstract

Extensive studies have revealed the ecological and evolutionary significance of phenotypic plasticity, but little is known about how it is
inherited between generations and the genetic architecture of its transgenerational inheritance. To address these issues, we design a
mapping study by growing Arabidopsis thaliana RILs in high- and low-light environments and further growing their offspring RILs from
each maternal light environment in the same contrasting environments. This tree-like design of the controlled ecological experiment
provides a framework for analysing the genetic regulation of phenotypic plasticity and its non-genetic inheritance. We implement the
computational approach of functional mapping to identify specific QTLs for transgenerational phenotypic plasticity. By estimating and
comparing the plastic response of leaf-number growth trajectories to light environment between generations, we find that the maternal
environment affects phenotypic plasticity, whereas transgenerational plasticity is shaped by the offspring environment. The genetic
architecture underlying the light-induced change of leaf number not only changes from parental to offspring generations, but also
depends on the maternal environment the parental generation experienced and the offspring environment the offspring generation
is experiencing. Most plasticity QTLs are annotated to the genomic regions of candidate genes for specific biological functions. Our
computational-experimental design provides a unique insight into dissecting the non-genetic and genetic mechanisms of phenotypic
plasticity shaping plant adaptation and evolution in various forms.

Introduction
Phenotypic plasticity, referred to as the production of multiple
phenotypes by the same genotype in different environments, is
an ecological process. It is now widely regarded as one of the
fundamental mechanisms by which the organism copes with
environmental change to evolve [1–8]. Phenotypic plasticity is
shaped by the dynamic interplay between environmental fac-
tors and genes. Environmental influences modulate phenotype
expression through the regulation of the gene’s epigenetic mod-
ifications, such as histone modifications, RNA interference, and
DNA methylation [9–11]. Studying the genetic basis of phenotypic
plasticity has received growing interest in the past three decades,
especially in recent years with the advent of high-throughput
genomic techniques [7, 12–17].

An essential step to predict how phenotypic plasticity shapes
evolution includes the characterization of its transgenerational
inheritance through genetic and nongenetic alterations. Many
studies have begun to investigate the adaptive significance of
transgenerational plasticity in various environments [18–21].
However, it is still not known what the transgenerational pattern
of inheritance of phenotypic plasticity is, or if and how this
transgenerational inheritance is governed by specific genes. In the

current literature, no experimental and computational strategies
have been integrated to reveal these fundamental questions
regarding the unified genetic and nongenetic (epigenetic)
mechanisms of phenotypic plasticity, despite their significance
for understanding the origin of evolutionary novelties.

Here, we design an experiment in which a recombinant inbred
line (RIL) panel of Arabidopsis thaliana offspring, derived from
maternal high- and low-light environments, are respectively
planted in the same high- and low-light conditions as their
maternal environments (Fig. 1A). Here, we design an experiment
in which a recombinant inbred line (RIL) panel of A. thaliana off-
spring derived from maternal high- and low-light environments
are, respectively, planted in contrasting light conditions (Fig. 1A).

As a fuel for photosynthesis, light influences plant growth and
development [22–24], widely used as an environmental factor
to study plant phenotypic plasticity [25, 26]. We measure the
grow trajectories of leaf number for each RIL from parental
and offspring generations in high- and low-light conditions.
This design allows us to investigate how the leaf phenotype of
the same genotype varies between two environments within
the same generation (within-generational phenotypic plasticity,
WPP), between two generations under the same environment
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(transgenerational phenotypic plasticity, TPP), and between two
maternally experiencing environments (maternal phenotypic
plasticity, MPP) (Fig. 1B). By comparing the difference of WPP
expressed in the offspring generation and its parental generation,
we can test how phenotypic plasticity is inherited across
generations. While the significance test of TPP informs us of how
maternal environment influences offspring phenotypes, MPP is
to describe the phenotypic plasticity of maternal environment.
We performed statistical tests to determine the significance
of differences in leaf number growth trajectories. These tests
help us assess whether the observed differences are statisti-
cally significant, meaning they are unlikely to have occurred
by chance.

A phenotypic trait can be better described by multiple values
measured at different time points during plant development [27,
28]. The current suite of single-locus-based GWAS methods, while
fundamental for exploring genome-wide associations between
individual markers and phenotypes, may not be optimal for
studying complex traits. Unlike static traits, developmental traits
exhibit changes over time and in response to environmental
factors. Hence, we can analyse their developmental process
by constructing a functional map. This approach is based on
mathematical models of organ development to map QTLs,
thereby providing a better understanding of the spatiotemporal
dynamics of individual traits [29–31]. Functional mapping has
been leveraged to composite functional mapping (coFunMap)
that can map a mathematical derivative of two or more traits [32].
Phenotypic plasticity is measured as the difference of trait values
at a series of time points between two environments. As thus, we
implement coFunMap to characterize the genetic architecture of
developmental phenotypic plasticity. The resulting findings help
us answer (i) whether maternal light environment influences
offspring traits, (ii) whether there is genetic variation for
maternal light effects, and (iii) whether this maternally induced
genetic variation is different from that in intragenerational
plasticity.

Results
Adaptive maternal environment
We use the logistic growth equation to fit the mean growth
trajectories of leaf number for all RILs from each of six treatments,
parental high light (H) vs. parental low light (L), offspring high light
(HH) vs. offspring low light (HL) from parental H, and offspring
high light (LH) vs. offspring low light (LL) from parental L (Fig. 1A).
We find that there is pronounced variation in leaf number among
RILs under each treatment (Fig. S1, see online supplementary
material). Mean curves differ strikingly in growth rate and asymp-
totic leaf number among these treatments (Fig. 1C), including dif-
ferences in growth trajectories between two light environments.
We examine leaf numbers at the mature stage of plant develop-
ment to investigate light-induced phenotypic plasticity (Fig. 2). As
expected, plants develop more leaves in low light than in high
light; for example, parental RILs grow seven more leaves in the
low than high light (P < 0.05). We find that offspring RILs derived
from a maternal low light develop four more leaves in the low
light than in the high light (P < 0.01) and, also, offspring RILs from
a maternal high light develop fewer leaves in the high than low
light, despite being to a lesser significance level (P < 0.05). Taken
together, the offspring tend to perform similarly to their parents
in an environment that is the same as that which their parents
have experienced.

Maternal effects on phenotypic plasticity
The merit of our reciprocal design (Fig. 1A) lies in its capacity to
disentangle different forms of phenotypic plasticity (Fig. 1B) and
their respective contributions to plant adaptation and evolution.
Depending on its origin, phenotypic plasticity can be classified
into three forms. The first is WPP (within-generational phenotypic
plasticity) that occurs within the same generation. There are two
sub-forms of WPP, one occurring within the parental generation
(pWPP = L – H) and the other within the offspring generation
(oWPP involving oWPP_H = HL – HH and oWPP_L = LL – LH). If
oWPP is different from pWPP, then this implies that maternal
environment has an influence on phenotypic plasticity. As illus-
trated in Fig. 3A, we identify a pronounced influence of maternal
light environment on the sensitivity of offspring’s leaf number to
light environment. A reduced magnitude of oWPP_H and oWPP_L,
compared to pWPP, suggests that phenotypic plasticity of leaf
number is sensitive to the change of maternal light environment.
It is also interesting to find that the magnitude of oWPP is depen-
dent on maternal environment, with maternal low-light envi-
ronment producing larger phenotypic plasticity than maternal
high-light environment, i.e., oWPP_L > oWPP_H (P < 0.05) (Fig. 3A).
This implies that offspring from a more favorable maternal envi-
ronment tend to be more stable compared to those from a less
favorable maternal environment.

The second form of phenotypic plasticity occurs between dif-
ferent generations, called TPP (transgenerational phenotypic plas-
ticity) (involving TPP_H = HH – H and TPP_L = LL – L) (Fig. 3B). If TPP
is significant, this means that maternal environment has an influ-
ence on offspring phenotypes. We find that TPP in leaf number is
significant (P < 0.01) and positive in sign, suggesting that, by devel-
oping and transmitting a ‘memory’, maternal light environment
promotes the leaf growth of offspring, expected to enhance their
adaptability in the same environmental condition. The strength
of this promotion depends on the type of maternal environment,
with a larger strength by maternal high-light environment than
by maternal low-light environment (P < 0.01). This suggests that
a more favorable maternal environment can increase offspring
leaf number (and, therefore, its correlated fitness [33]) to a larger
extent than a less favorable maternal environment. The third
form is expressed as MPP (maternal phenotypic plasticity) includ-
ing MPP_H = HH – LH and MPP_L = LL – HL (Fig. 3C). The former two
forms describe how and how much maternal environment affect
offspring performance and phenotypic plasticity, whereas MPP
informs the phenotypic plasticity of maternal environment. We
find that MPP in leaf number is significant (P < 0.05), suggesting
that maternal environment is a determinant of offspring leaf
traits. In a more favorable high-light environment of the offspring,
maternal environment is more plastic and, therefore, produces
larger leaf number variation than in a less favorable low-light
environment (P < 0.05).

The genetic mechanisms of phenotypic plasticity
By viewing developmental phenotypic plasticity as a growth trait,
we use coFunMap to map QTLs for WPP, TPP, and MPP in leaf
number (Fig. 4). We identify 84 QTLs, all of which are located
in chromosome 1, for WPP at the parental generation, 81 QTLs,
located in chromosomes 2 and 4, for WPP_H at the offspring gener-
ation, and 24 QTLs, all located in chromosome 4, for WPP_L at the
offspring generation (Fig. 4A). We find that WPP QTLs are different
not only between different generations, but also depending on
maternal light environment.
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Figure 1. A reciprocal design of ecological experiment using Arabidopsis. A A panel of RILs derived from two grandparents are planted in a high-light
(H) and low-light (L) treatment, respectively, and their offspring from the H maternal environment are planted in the H treatment (HH) and in the L
treatment (HL) and from the L maternal environment planted in the H treatment (LH) and in the L treatment (LL). B Different forms of phenotypic
plasticity, including within-generational, transgenerational, and maternal, each defined by the difference between a pair of relevant treatments. C The
mean growth curves of leaf number over all RILs under six treatments, fitted by the logistic growth equation.
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Figure 2. Asymptotic growth of leaf number (±SE) for RILs in six
treatments. High Light and Low Light on the x axis denote the H and L
maternal light environments, respectively. SE elucidates leaf number
variation across RILs.

We identify 50 QTLs, distributed in chromosomes 1, 3, 4, and 5,
for TPP_H, and 34 QTLs, distributed in chromosomes 1, 2, and 3,
for TPP_L (Fig. 4B). It appears that TPP QTLs are distributed more
sporadically in the chromosomes than WPP QTLs. The type of
TPP QTLs depends on maternal environment. We find 40 QTLs,
distributed in chromosomes 2 and 4, for MPP_H, and 28 QTLs,
distributed in chromosomes 1 and 2, for MPP_L (Fig. 4C).

The overwhelming majority of QTLs do not overlap among
these types of phenotypic plasticity (Fig. 5; Tables S1-S7, see
online supplementary material), suggesting that plasticity QTLs
are maternal environment-specific. We identify a number of QTLs
in different genomic regions for phenotypic plasticity, which may
function differently among modules. We implement functional

clustering to sort all QTLs for each type of phenotypic plasticity
into distinct modules based on their similarity of temporal genetic
effects. We classify pWPP QTLs into six modules (Fig. 5A), oWPP_H
QTLs into five modules (Fig. 5B), and oWPP_L QTLs into four
modules. Curves of modules from pWPP QTLs and oWPP QTLs
differ from one another, showing the impact of gene × maternal-
environment interaction on phenotypic plasticity. Also, for the
offspring generation, module curves of oWPP_H QTLs differ from
those of oWPP_L QTLs, indicating the contribution of gene ×
maternal-environment × offspring-environment interaction to
phenotypic plasticity. For the same sub-form of WPP, different
modules exhibit distinct temporal patterns of genetic effects
on leaf number, implying that genes from different modules
perform different functions. We perform GO analysis of genes
within the module and find that modules vary dramatically in
terms of molecular functions, cellular components, and biological
processes. Modules M1 and M3 are rich in genes encoding
hydrolase activity and transferase activity important for plant
growth, development and fruit ripening [64]. M1 and M3 also
contain genes involved in photosynthesis and light stimulus
response, typically located in chloroplasts. In general, pWPP
contains different types of genes and functions from oWPP, and
the same is true for oWPP_H vs. oWPP_L (Fig. 5).

We classify TPP_H QTLs into five modules (Fig. S3A, see online
supplementary material) and TPP_L QTLs into five modules
(Fig. S3B, see online supplementary material). We find that
modules of TPP_H QTLs are very different from those of TPP_L
QTLs. Curves of TPP_H modules are S-shaped, whereas curves
of TPP_L modules display somewhat periodic shapes with time.
Genes in a different module have specific functions. For example,
Module 1 of TPP_L QTLs is rich in genes for glutathione binding
and glutathione transferase activity, both of which are involved in
the response mechanisms and phytoremediation of plants under
various stresses [65, 66]. M1 also contains genes for glutathione
binding and glutathione transferase activity, which may exert
repairing and detoxifying functions in Arabidopsis leaves under
low light stress, allowing Arabidopsis to better adapt to low light
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Figure 3. Three forms of phenotypic plasticity of asymptotic leaf
number growth expressed as the difference between a pair of relevant
treatments. A Mean within-generational phenotypic plasticity (±SE),
displayed in the parental generation (left bar), the offspring generation
from the H maternal environment (middle bar), and the offspring
generation from the L maternal environment (right bar). B Mean
transgenerational phenotypic plasticity (±SE), inherited from the
maternal H environment (left bar) and the maternal L environment
(right bar). C Mean maternal phenotypic plasticity formed in the H
maternal environment (left bar) and in the L maternal environment
(right bar), each displayed between the H and L offspring environments.
Different letters on the bars indicate the significance of difference
between the bars. SE elucidates leaf number variation across RILs.

environment by increasing leaves number. We classify MPP_H
QTLs into four modules (Fig. S4A, see online supplementary
material) and MPP_L QTLs into four modules (Fig. S4B, see online
supplementary material). Genetic effect curves of MPP QTLs differ
strikingly from those of WPP QTLs and TPP QTLs. Also, the effect
curves are different between MPP_H QTLs and MPP_L QTLs. It
appears that inter-module differences in effect curve shape are

more considerable for MPP_L QTLs than for MPP_H QTLs. GO
analysis shows that each module from MPP_H QTLs or MPP_L
QTLs contains a different set of genes that function differently in
terms of molecular function, cellular component, and biological
processes.

Discussion
Phenotypic plasticity is influenced by a combination of factors
including environmental conditions and regulation of gene
expression (e.g., epigenetic regulation), which combine to deter-
mine an individual’s ability to adapt to environmental changes
[9–11]. Growing evidence suggests that specific epigenetic mod-
ifications exist to serve as a mechanism driving the organism’s
offspring to develop a ‘memory’ of their maternal environment
in a quest to better adapt to the same environmental condition
[11, 34–42]. The possibility of the existence of such maternally
driven epigenetic marks leads us to characterize their underlying
genetic basis as an essential step to improve our understanding
of evolution. By specifying the processes of (i) how phenotypic
plasticity is carried over from parental to offspring generations,
(ii) at which level transgenerational plasticity is expressed, and (iii)
whether the maternal ‘memory’ is environment-dependent, we
want to map specific genes underlying each of them. To our best
knowledge, our study here presents one of the most systematical
characterization of genetic control over the transgenerational
inheritance of phenotypic plasticity.

Our study was based on an ecological experiment by growing
an RIL panel of Arabidopsis Thaliana in two contrasting environ-
ments and reciprocally growing the offspring from each mater-
nal environment in the same set of two contrasting environ-
ments. The choice of Arabidopsis Thaliana as a research mate-
rial stems from its unique advantages. Its RILs maintain geno-
type stability, making it one of the classic models for study-
ing phenotypic plasticity. Additionally, its characteristics as a
small model plant, rich genomic information, and diverse genetic
resources provide abundant options for research. Thus, we can
precisely quantify the difference of the same genotype between
its parental and offspring generations, i.e., transgenerational plas-
ticity. In summary, this design allows phenotypic plasticity to be
defined across both time and space. On space, we define WPP at
either parental or offspring generation, whereas across time, TPP
is defined under each maternal environment. While TPP describes
how maternal environment influences offspring traits and WPP
describes how maternal environment influences the phenotypic
plasticity of offspring traits, the third form of phenotypic plastic-
ity, MPP, can characterize the phenotypic plasticity of maternal
environment.

We find that the number of leaves follows different growth
trajectories in low- and high-light conditions, with values being
always higher in the former than in the latter. Under low-light
conditions, A. thaliana may produce more leaves, possibly by
upregulating light signaling factors such as the HY5 gene, to
increase leaf numbers and enlarge leaf surface area for enhanced
light capture, thereby compensating for reduced light intensity.
Such a physiological response of plants to light factors is subject
to maternal reprogramming. Offspring derived from the maternal
light environment display a reduced magnitude of phenotypic
plasticity (Fig. 2). However, light-induce response is much stronger
for offspring derived from a low-light maternal environment than
those from a high-light maternal environment. This difference is
due to the fact that offspring derived from a low-light maternal
environment grow much more leaves in a low light than in a
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Figure 4. Cyclic Manhattan plots of P values for phenotypic plasticity through the whole Arabidopsis genome (composed of five chromosomes
represented by distinct colors) calculated by coFunMap. A Within-generational phenotypic plasticity displayed in parental (inner cycle) and offspring
generations (two outer cycles). B Transgenerational phenotypic plasticity in the H (inner cycle) and L maternal environment (outer cycle). C Maternal
phenotypic plasticity expressed in the H offspring environment (inner cycle) and the L offspring environment (outer cycle). The chromosomal
distribution of SNPs is denoted by a colored metric.

high light, whereas offspring derived from a high-light mater-
nal environment only grow slightly more leaves in a low light
than in a high light. This finding suggests that offspring tend
to produce a phenotype similar to their parents in the same
environment experienced by the parents. In a previous study, Gal-
loway [37] found that American tumbleweed grown in a maternal
light environment had significantly higher seed sterilization rates.
Progeny of plantain treated with parent nutrients accumulated
more biomass and greater storage of root carbohydrates [43].
Our finding about leaf number plasticity in Arabidopsis gains
additional insight into the function of maternally induced envi-
ronment as an adaptive trait [38].

Currently, there are several methods for genome-wide asso-
ciation analysis, such as single-locus (sGWAS), metabolomics
(mGWAS), gene expression (eGWAS), and haplotype (hGWAS)
methods [44–46]. However, these approaches have limitations
in deciphering the complete genetic mechanisms underlying
complex traits. For traits exhibiting dynamic changes over
time, such as biomass, root development, and leaf number,
employing functional mapping methods incorporating time series
functions may be more effective. Compared to previous genetic
mapping of phenotypic plasticity, our study based on a reciprocal
ecological design of a mapping population is more powerful in
several aspects. First, our phenotypic plasticity is defined as

being dynamic. Any biological trait can be better described by
a developmental process. Functional mapping of developmental
phenotypic plasticity has proven to be more powerful than static
mapping approaches [32].

Second, our study allows the genetic architecture of WPP, TPP,
and MPP, which can capture multifaceted features of phenotypic
plasticity, to be disentangled under a unified framework. WPP
describes how the organism responds to extrinsic environmental
factors, such as light, temperature, or density. WPP differs not only
between different generations (affected by the maternal environ-
ment), but also between the offspring environments. We found
that there is little overlap in genetic control among different types
of WPP (Fig. 4; Fig. S2, see online supplementary material). TPP
specifies how the organism changes its phenotype in response to
intrinsic generational environment. Many previous studies show
that TPP is adaptive [18–21], and our study adds more knowl-
edge, showing that the strength of TPP is environment-dependent.
There is also little commonality for the QTLs for high light-
exposed TPP and low light-exposed TPP (Fig. 4; Fig. S2, see online
supplementary material). MPP is understood as the phenotypic
plasticity of maternal environment and can also be understood
as how maternal environment affects offspring performance. The
strength of MPP is dependent on the environment the offspring
is experiencing, which is controlled by a unique set of QTLs

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/11/8/uhae172/7698933 by guest on 19 Septem

ber 2024

https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae172#supplementary-data
https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae172#supplementary-data
https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae172#supplementary-data
https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae172#supplementary-data


6 | Horticulture Research, 2024, 11: uhae172

Figure 5. Modularity analysis of WPP QTLs. A Six QTL modules for pWPP including the heat map of gene functions, time-varying pattern of mean gene
effects for each module, and the BIC plot finding an optimal number of QTL modules. B Five QTL modules for oWPP derived from the H maternal
environment, including the heat map of gene functions, time-varying pattern of mean gene effects for each module, and the BIC plot finding an
optimal number of QTL modules. C Four QTL modules for oWPP derived from the L maternal environment, including the heat map of gene functions,
time-varying pattern of mean gene effects for each module, and the BIC plot finding an optimal number of QTL modules.

(Fig. 4; Fig. S2, see online supplementary material). Little overlap
was detected for the QTLs affecting different forms of pheno-
typic plasticity, implying that various adaptive responses of the
organism, subject to natural selection through divergent genetic
and epigenetic systems, facilitate multiple avenues for producing
diverse evolutionary novelties.

Third, we implement an advanced statistical model [47] to clas-
sify all plasticity QTLs into distinct modules, each with a different
temporal pattern of genetic effects (Fig. 5; Figs. S3-S4, see online
supplementary material). GO analysis helps us identify specific
biological functions for each module; for example, some modules
mediate chloroplasts and their photosynthesis, some mediate
physiological responses to light and toxic substance, and some
mediate phytoremediation. Taken together, tremendous genetic
divergence among different forms of phenotypic plasticity and
among different QTL modules may help the organism maintain
its robustness to various environmental perturbations.

Perhaps the most significant merit of this study is to system-
atically characterize the impact of maternal environment on off-
spring traits and their phenotypic plasticity. Because plants lack
a capacity to escape the change of their environment, they may
enable maternal effects as a capacity to sense and perceive envi-
ronmental cuing between generations to enhance offspring fit-
ness [38]. Our detailed characterization of the genetic architecture
underlying maternal environment provides a different dimension
of understanding the evolutionary mechanisms by which seden-
tary organisms cope with heterogeneous environments. We find
different genetic systems that mediate the phenotypic plasticity
of offspring traits derived from high-light maternal and low-
light maternal environments. Different genetic systems are also
detected for transgenerational plasticity derived from these two
maternal environments. We further find that the genetic archi-
tecture of maternal-environmental plasticity varies, depending
on the offspring environment. Taken together, we identify high
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complexities of genetic control over maternal environment, which
may explain why sedentary plants can adapt to a wide range
of environmental fluctuations in the wild. A follow-up study by
sequencing epigenetic marks can strengthen and validate our
findings and interpretation about maternally induced phenotypic
plasticity.

Conclusion
As a capacity for plants to adapt to changing environment [1], phe-
notypic plasticity of ecological and evolutionary significance [4, 5,
48] has long been an important subject of plant biological research
[2–5, 17, 25, 49–51]. More recently, the study of phenotypic plastic-
ity has been expanded to biomedical fields where the change of
health state can be explained through the underlying theory of
phenotypic plasticity [52]. The genetic mapping of different forms
of phenotypic plasticity by our design may not only inform plant
researchers of how it is evolving, but also provide unique insight
into studying the genetic basis of health-related plasticity.

Materials and methods
Reciprocal design of an ecological experiment
Plant materials used in this study are a RIL mapping population
derived from 10 generations (F10) of self-fertilization between two
A. thaliana ecotypes, Landsberg erecta (Ler) and Shahdara (Sha) [53].
This population contains 100 RILs, each of which was planted with
20 replicates under high- and low-light conditions laid out in an
artificial climate chamber at Beijing Forestry University Green-
house. We used standard containers and methods commonly
employed for A. thaliana cultivation. Two chambers each with a
different level of light were maintained at a constant temperature
of 22◦C and with adequate water and fertilization. The light
conditions included a high light intensity of 141.2 μmol/(sm2) and
a low light intensity of 89.8 μmol/(sm2), with the light duration
set to 16 h/d. The number of leaves of each plant was measured
from one week after planting for 8 consecutive weeks. These data
collected were from RILs at the parental generation.

After Arabidopsis fruit pods were matured, we collected and
mixed seeds of all individual plants from each RIL under each
light condition. We transplanted seeds from each RIL, originating
from distinct maternal light environments, into seedlings with
20 replicates per RIL under two light conditions, mirroring those
used for the parental RILs (Fig. 1A). The same measure schedule
of leaf number was taken to produce the data for RILs at the
offspring generation. We averaged leaf numbers of 20 replicates
per RIL as the trait value of this line per light treatment. Devel-
opmental phenotypic plasticity is quantified by the time-varying
differences of traits value between different light environments,
between different generations, and between different maternal
environments.

Genotyping
To genotype the panel of RILs, genomic DNA was extracted from
leaves of each line using the TIANGEN DP305 kit. Sequencing was
performed using Illumina sequencing technology. Raw sequence
data quality was assessed using FastQC software, and reads were
further processed and filtered for quality using fastp software
to remove low-quality reads [54]. The Arabidopsis reference
genome and annotation information were downloaded from
the EnsemblPlants database. Using the available high-quality
sample sequences and reference information from the TAIR
website (https://www.arabidopsis.org/download/index-auto.jsp?

dir=%2Fdownload_files%2FSequences%2FAssemblies, accessed
on 1 October 2022), the reads of each sample were compared to
the Arabidopsis reference genome with the bwa software to obtain
the genome sequence of each lineage sample [55].

Variant calling was performed using SAMTOOLS software to
detect single nucleotide polymorphisms (SNPs) at the population
level. Subsequent SNP filtering was conducted using VCFtools
based on predefined criteria. After processing, a total of 107
samples with 1 023 325 genome-wide SNP markers were obtained.
Following exclusion of certain phenotypic and genotypic deletion
lines, as well as removal of duplicate markers, 417 495 high-
quality SNPs remained for further analysis. Detailed annotation
of SNP loci, including chromosome, start position, genotype, locus
function, and gene labeling information, was conducted using
ANNOVAR software. Data analysis was then performed using both
phenotypic and genotypic data collected during the experiment.

Statistical and bioinformatics analysis
Phenotypic plasticity is measured as the phenotypic difference of
a trait expressed in two distinct environments. Thus, mapping
phenotypic plasticity is equivalent to mapping environment-
induced trait differences. Unlike traditional mapping studies,
our mapping model is based on time trajectories of phenotypic
traits. Functional mapping (FunMap) combines the mathematical
aspects of trait development into a mapping framework, allowing
the QTLs for growth curves to be characterized [29, 31]. Sang et al.
[32] extended FunMap to the case of a composite trait that is
expressed as a mathematical function of two or more traits. This
extended model, called coFunMap, was used to map all different
forms of phenotypic plasticity of leaf number trajectories and find
significant plasticity QTLs from a panel of genome-wide SNPs.

Let xi = (xi(t1), . . ., xi(tT)) and yi = (yi(t1), . . ., yi(tT)) denote leaf
numbers measured at a series of time points (t1, . . ., tT) for the ith
RIL in two light environments X and Y, respectively. Developmen-
tal phenotypic plasticity is defined as the environment-dependent
difference in the leaf number of the ith RIL over time, which is
calculated as

zi = (zi (t1) , . . . , zi (tT)) ≡ ((
xi (t1) − yi (t1)

)
, . . . ,

(
xi (tT) − yi (tT)

))
(1)

where the size and sign of each element at a specific time point
reflect the degree and pattern of how the ith RIL responds to
environmental change from X to Y over the time course. Consider
a SNP s with Js genotypes. Let njs denote the observation of geno-
type js (js = 1, . . ., Js). According to Sang et al. [32], we formulate a
likelihood of coFunMap with developmental phenotypic plasticity
at SNP s, expressed as

Ls (z) =
Js∏

js=1

njs∏
i=1

fs
(
zi; μjs , Σs

)
(2)

where fs(·) is a T-dimensional normal distribution with mean
vector μjs for genotype js and residual covariance matrix Σ at SNPs.
Based on the definition, the mean vector can be expressed as

μjS = (
μjs (t1) , . . . , μjs (tT)

)

= (
μx

js (t1) − μ
y
js

(t1) , . . . , μx
js (tT) − μ

y
js

(tT)
)

= (
μx

js (t1) , . . . , μx
js (tT)

) − (
μ

y
js

(t1) , . . . , μy
js

(tT)
)

(3)

where μjs (t) is the mean phenotypic plasticity of SNP s genotype
js at time point t (t = 1, . . .., T), μx

js
and μ

y
js

are the mean values of
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the leaves number of SNP s genotype js at time point T, expressed
in the X and Y environments, respectively. We consider that the
time-dependent variation of leaf number in Arabidopsis follows an
S-shaped curve described by a logistic equation [56–61]. Therefore,
we modeled the genotypic mean of leaves number in each envi-
ronment as

μx
js (t) = ax

js

[(
1 + bx

js · exp
( − rx

js t
)]−1 (4A)

μ
y
js

(t) = ay
js

[(
1 + by

js
· exp

( − ry
js

t
)]−1 (4B)

where growth parameters (a, b, r) are the asymptotic growth,
the parameter that describes the initial growth, and the average
specific growth rate of the curve, respectively, which are genotype-
and environment-specific; i.e., two sets of growth parameters
for each genotype are used for curve fitting for two different
environments.

The statistical power of coFunMap also could be attributed to
covariance modeling [31, 32, 62, 63]. The structure of the resid-
ual covariance matrix of developmental phenotypic plasticity is
described below

Σs =

⎛
⎜⎜⎝

σ2
s (t1) · · · σs (t1, tT)

...
. . .

...
σs (tT, t1) · · · σ2

s (tT)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ2
sx (t1) · · · σsx (t1, tT)

...
. . .

...
σsx (tT, t1) · · · σ2

sx (tT)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

σ2
sy (t1) · · · σsy (t1, tT)

...
. . .

...
σsy (tT, t1) · · · σ2

sy (tT)

⎞
⎟⎟⎠ (5)

where the time-dependent variance σ2
s (t1) (and covariance

σ2
s

(
t, t′

)
, t,t’ = 1, . . ., T) of phenotypic plasticity in the two

settings is the sum of the temporal variances of σ2
sx(t) and

σ2
sy(t) (and covariances σsx

(
t, t′

)
and σsy

(
t, t′

)
), assuming that

the two environments are independent of each other. The two
environment-related covariance matrices in equation (5) contain
longitudinal information; therefore, using an autoregressive
model, such as the first-order structured antedependence SAD(1)
model [32], to fit the structure of the covariance can increase the
parsimony of the model. SAD(1) has the advantages of allowing
the variance and covariance to vary over time without additional
parameters and the existence of closed forms of matrix inverse
and determinant that facilitate efficient computation.

To test whether a SNP is a significant QTL for developmental
phenotypic plasticity, we tested two hypotheses [29, 32]. In the null
hypothesis that there is no QTL, we estimate the likelihood value
of the data assuming the existence of only a single mean curve.
In the alternative hypothesis that there is a QTL, we estimate the
likelihood value of the data under equation (2). The log-likelihood
ratio (LR) under these two hypotheses is calculated as a test statis-
tic, which is compared with the genome-wide critical threshold
at 5% significance level determined from 100 permutation tests.
The threshold is the 0.95 quantile of the LR values calculated from
reshuffling data.

Functional clustering
CoFunMap can estimate genotypic curves of leaf number at each
plasticity QTL and further calculate and draw its genetic effect
curves. We implemented functional clustering [47] to classify all
plasticity QTLs into distinct modules in which QTLs from the

same module are more similar in their temporal pattern to each
other than to those from different modules. An optimal number
of modules among all detected QTLs was determined according
to BIC (Tables S8-S14).

If numerous QTLs are detected for phenotypic plasticity, we
implement functional clustering to classify these QTLs into dif-
ferent modules in each of which QTLs follow a more similar
temporal pattern of genetic effects than those from other mod-
ules. To do so, we first estimate the genetic standard deviations
(GSD) of phenotypic plasticity of SNP s (s = 1, . . ., S) at any time
point t using the maximum likelihood estimates (MLEs) of the
growth parameters modeled for the mean vectors (4A) and (4B)
calculated as

gs (t) =

√√√√√ 1
n

Js∑
js=1

njs

(
μjs (t)

)2 −
⎛
⎝ 1

n

Js∑
js=1

njs μjs (t)

⎞
⎠

2

(6)

We formulate a mixture-based likelihood for time-varying
GSDs at all significant SNPs, expressed as

L
(
g
) =

S∏
s=1

[
π1f1

(
gs; u1, Σ

) + · · · + πLfL

(
gs; uL, Σ

)]
(7)

The supplementary text describes specific procedures for func-
tional clustering. We assume that QTLs from the same modules
have similar biological functions. We perform gene enrichment
analysis of a set of QTLs from each module using the Bulk
GO Annotation Tool described in the Arabidopsis Information
Resource (TAIR) (http://arabidopsis.org). We annotate QTLs from
each module in terms of molecular function, biological process,
and cellular component.
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