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a b s t r a c t 

Understanding thermal transport at the submicron scale is crucial for engineering applications, especially in the 

thermal management of electronics and tailoring the thermal conductivity of thermoelectric materials. At the 

submicron scale, the macroscopic heat diffusion equation is no longer valid and the phonon Boltzmann transport 

equation (BTE) becomes the governing equation for thermal transport. However, previous thermal simulations 

based on the phonon BTE have two main limitations: relying on empirical parameters and prohibitive compu- 

tational costs. Therefore, the phonon BTE is commonly used for qualitatively studying the non-Fourier thermal 

transport phenomena of toy problems. In this work, we demonstrate an ultra-efficient and parameter-free compu- 

tational method of the phonon BTE to achieve quantitatively accurate thermal simulation for realistic materials 

and devices. By properly integrating the phonon properties from first-principles calculations, our method does 

not rely on empirical material properties input. It can be generally applicable for different materials and the 

predicted results can match well with experimental results. Moreover, by developing a suitable ensemble of ad- 

vanced numerical algorithms, our method exhibits superior numerical efficiency. The full-scale (from ballistic to 

diffusive) thermal simulation of a 3-dimensional fin field-effect transistor with 13 million degrees of freedom, 

which is prohibitive for existing phonon BTE solvers even on supercomputers, can now be completed within two 

hours on a single personal computer. Our method makes it possible to achieve the predictive design of realistic 

nanostructures for the desired thermal conductivity. It also enables accurately resolving the temperature profiles 

at the transistor level, which helps in better understanding the self-heating effect of electronics. 
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. Introduction 

Understanding the micro and nanoscale thermal transport is crucial

or many applications, such as thermal management of electronics, high-

fficiency thermoelectric energy conversion, and improved thermal bar-

iers [1] . For example, the shrinking size of semiconductor devices (tran-

istors) to submicrons imposes grand challenges on the heat dissipation

f electronics [1] . Accurate transistor-level thermal simulation can help

o achieve more efficient heat extraction from transistors [2] and better

nderstand the self-heating effects of electronics [3,4] . In the applica-

ions of thermal barriers and thermoelectric energy conversion, where

hermal conductivity is a key metric, designing nanostructures to ma-

ipulate thermal transport in these applications is an important strat-

gy [5,6] . Efficient and accurate thermal simulations can better guide

he design of these nanomaterials. 

At the submicron scale, it has long been recognized that macroscopic

eat diffusion equation is not valid [7] . Therefore, to study the micro

nd nanoscale effects of thermal transport, atomistic simulation meth-

ds are widely adopted [8,9] , especially the nonequilibrium Green’s

unction [10,11] , anharmonic lattice dynamics [12,13] , and molecular
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ynamics [14,15] . While these atomistic simulation methods can be uti-

ized to investigate the phenomena like the size effect of thermal conduc-

ivity and interfacial thermal resistance [8,9] , they are typically limited

n very small system size (several nanometers) and not capable of per-

orming thermal simulations of realistic systems in applications, such

s nanocomposite materials and electronic devices. The phonon Boltz-

ann transport equation (BTE) that governs the thermal transport at a

cale comparable to the mean free path (typically several nanometers

o several microns) [16] , provides the only promising solution that can

ossibly meet the requirements of thermal simulation in real applica-

ions. Unlike the electrical simulation with the electron BTE, which has

een a relatively mature tool for a long time [17] , the development of

hermal simulation with the phonon BTE is very challenging due to the

niquely large spread in phonon properties [18] . Many previous studies

ave tried to develop numerical solvers for the phonon BTE using vari-

us methods including deterministic methods [19,20] , statistical meth-

ds [21,22] and machine learning methods [23] . However, to date, the

omputational cost of phonon BTE is still believed to be prohibitive for

izes and geometries of realistic materials and devices [19,22,24] , and

hermal simulations of 3-dimensional problems are rare [17,19,22] . Two
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tudies have demonstrated the computational costs associated with sim-

lating 3-dimensional devices [19,22] . In one study [19] , the simulation

f a 3-dimensional toy device is far from steady-state but requires sev-

ral hours using hundreds of CPU cores. Another simulation shows even

arger computational costs [22] . Besides, many of these simulations rely

n empirical models for the input material properties [17,19,25,26] and

herefore cannot be used as a predictive tool for accurately simulating

hermal transport. 

In this study, we demonstrate a numerical method for nanoscale

hermal simulations with the phonon BTE. The present method has the

ollowing advantages: (1) by properly integrating the phonon proper-

ies from first-principles calculations into our method, it is accurate,

arameter-free and general for different material systems; (2) by de-

eloping a suitable ensemble of advanced numerical algorithms, our

ethod exhibits superiority in efficiency compared to existing solvers. 

. Methods 

In this section, we introduce the phonon BTE and the present method

or solving the phonon BTE. The present method solves the non-gray

honon BTE (details are provided in Sections 2.1 and 2.2 ) based on the

ramework of the discrete ordinates method (DOM) [19,27] . To ensure

he ability to address arbitrary geometries, unstructured spatial meshes

re adopted. In this method, we solve the two main challenges of pre-

ious solvers: dependence on empirical models for phonon properties

nd prohibitive computational costs. To solve the former challenge, we

ntegrate the phonon properties from first-principles calculations into

he method. First-principles prediction of phonon properties has been

roven to be comparable to experimental results [28] . However, first-

rinciples calculations provide properties for millions of phonon modes

28] , which are prohibitive to be directly sampled in the phonon BTE.

o resolve this issue, we develop a band discretization scheme combined

ith directional discretization to sample a small number of phonon

odes from the first-principle phonon modes and also ensure good accu-

acy. The details of the band discretization scheme and the directional

iscretization scheme are provided in Section 2.3 . To solve the chal-

enges of computational costs, we develop an ensemble of advanced nu-

erical algorithms to improve the efficiency of the solver in all aspects

ncluding reducing the number of degrees of freedom, improving the

onvergence rate of iterations, and optimizing the parallelization. The

etails are provided in Section 2.4 . 

.1. Non-gray phonon BTE 

When the characteristic length is comparable to the phonon mean

ree path, the thermal transport can be described by the non-gray

honon BTE. Under the relaxation time approximation, the phonon BTE

an be expressed as 

𝜔,𝑝 ⋅ ∇ 𝑒𝜔,𝑝, 𝐬 = −
𝑒𝜔,𝑝, 𝐬 − 𝑒

eq 
𝜔,𝑝 

𝜏𝜔,𝑝 
+ 𝑞̇𝜔,𝑝 (1) 

here 𝑒 = 𝑒 (𝐫, 𝐬 , 𝜔, 𝑝 ) is the distribution function of the phonon energy

ensity. 𝑒eq is the energy density distribution function of the equilibrium

tate, which follows the Bose–Einstein distribution. 𝐫 is the spatial coor-

inates. 𝜔, 𝑝 are the frequency and branch index. 𝐬 is the unit vector in

he direction of group velocity 𝐯 , which is assumed to be isotropic [29] .

is the relaxation time. 𝑞̇ is the volumetric heat generation term. The

olumetric heat generation can originate from moving electrons through

he electron-phonon interaction [30,31] . 

According to the energy conservation [19] , 𝑒
eq 
𝜔,𝑝 is related to 𝑒𝜔,𝑝, 𝐬 

hrough: 

eq 
𝜔,𝑝 = 𝐶𝜔,𝑝 𝑇𝐿 

𝑇𝐿 = 

1 
4 𝜋 ∫ ∑

𝑝 ∫ 𝜔max 
𝜔min 

𝑒𝜔,𝑝, 𝐬 
𝜏𝜔,𝑝 

𝑑 𝜔𝑑 Ω

∑
𝑝 ∫ 𝜔max 

𝜔min 

𝐶𝜔′ ,𝑝 
𝜏𝜔′ ,𝑝 

𝑑𝜔 

(2) 
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here 𝐶 is the volumetric heat capacity. 𝑇𝐿 is the lattice temper-

ture [32] . Ω is the control angle. The phonon information of 𝐶, 𝑣 and

was previously taken from empirical values [17,19,25,26] , but can

ow be obtained by the more accurate first-principles calculations [33] .

Eqs. 1 and 2 are the closed form of the phonon BTE. If proper bound-

ry conditions are specified, they can be numerically solved to obtain

he local energy density 𝑒 . The local temperature and heat flux can then

e calculated by 

 = 

1 
4 𝜋 ∫ ∑

𝑝 ∫ 𝜔max 
𝜔min 

𝑒𝜔,𝑝, 𝐬 𝑑 𝜔𝑑 Ω∑
𝑝 ∫ 𝜔max 

𝜔min 
𝐶𝜔,𝑝, 𝐬 𝑑𝜔 

𝐪 = ∫
∑
𝑝 
∫

𝜔max 

𝜔min 

𝐯𝜔,𝑝 𝑒𝜔,𝑝, 𝐬 𝑑 𝜔𝑑 Ω (3) 

.2. Boundary conditions 

i) At thermalizing boundaries, all phonons are emitted from the bound-

ary with a temperature of 𝑇1 , i.e. 

𝑒𝜔,𝑝, 𝐬 = −
𝐶𝜔,𝑝 

4 𝜋
𝑇1 ( 𝐬 ⋅ 𝐧 < 0) (4) 

where n is the exterior normal unit vector of the boundary. This

kind of boundary usually exists at the interface between metals and

semiconductors and the boundary away from the ballistic regime. 

ii) The specularly reflecting boundary condition is an adiabatic bound-

ary condition, in which the reflected angle of phonon equals the

incident angle of phonon, i.e. 

𝑒𝜔,𝑝, 𝐬 = 𝑒𝜔,𝑝, 𝐬𝑟 ( 𝐬 ⋅ 𝐧 < 0) (5) 

where 𝐬𝑟 is the incident direction before specularly reflecting to di-

rection 𝐬 , which is calculated by 𝐬𝑟 = 𝐬 − 𝐧 ( 𝐧 ⋅ 𝐬 ) . The specularly re-

flecting boundary is the symmetric boundary, which can cut the sym-

metry domain into one half [29,34] . 

ii) The diffusely reflecting boundary condition is another type of adi-

abatic boundary condition, in which the energy of the phonon re-

flected from the boundary is the same along each direction, i.e. 

𝑒𝜔,𝑝, 𝐬 =
1 
𝜋 ∫𝐬’ ⋅𝐧 > 0 𝑒𝜔,𝑝, 𝐬’ 𝐬

’ ⋅ 𝐧 𝑑Ω (6) 

The diffusely reflecting boundary condition exists at the surface of

the semiconductor or the dioxide layer [35,36] . 

v) The periodic boundary condition represents that two boundaries are

connected with each other, i.e. 

𝑒𝜔,𝑝, 𝐬 
(
𝐫B1 

)
= 𝑒𝜔,𝑝, 𝐬 

(
𝐫B2 

)
(7) 

where B1 and B2 are indexes of the two periodic boundaries. Some-

times, a temperature difference is applied between two periodic

boundaries to mimic a uniform temperature gradient, then Eq. 7 is

expressed as 

𝑒𝜔,𝑝, 𝐬 
(
𝐫B1 

)
= 𝑒𝜔,𝑝, 𝐬 

(
𝐫B2 

)
+ 1 

4 𝜋
𝐶𝜔,𝑝 Δ𝑇 

.3. Integrating phonon properties from first-principles calculations 

We integrate the phonon properties from first-principles calculations

nto numerically solving the phonon Boltzmann transport equation.

irst-principles calculations provide properties for millions of phonon

odes [28,33] . For example, in our first-principles calculations of sil-

con in this study, we have phonon properties for 70 × 70 × 70 × 6

honon modes. To integrate with phonon BTE, we use band discretiza-

ion and directional discretization. Note that the previous schemes for

honon properties from the first-principles calculations are all designed

or the phonon BTE without the heat generation term, which does not
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pply to simulation of many devices and materials [18,37] . For the band

iscretization, we first collect all phonon properties (including heat ca-

acity 𝐶, group velocity 𝐯 , and relaxation time 𝜏 from lattice dynam-

cs calculations) and find the maximum mean free path Λmax and mini-

um mean free path Λmin . Then we divide the mean free path domain

Λmin , Λmax ] into several bins [Λ0 , … , Λ𝑛 ] . For each bin, we obtain the

epresentative phonon properties as 

𝑛 = 

Λn ∑
Λ=Λn−1 

𝐶Λ

𝑣𝑛 = 

Λn ∑
Λ=Λn−1 

𝐶Λ𝑣Λ

Λn ∑
Λ=Λn−1 

𝐶Λ

𝜏𝑛 = 

Λn ∑
Λ=Λn−1 

𝐶Λ𝑣
2 
Λ𝜏Λ

𝑣𝑛 

Λn ∑
Λ=Λn−1 

𝐶Λ𝑣Λ

(8) 

The mode-level heat generation term depends on the type of heat

eneration. For example, the equilibrium mode-level heat generation

erm is proportional to the heat capacity of the phonon [29] . The mode-

evel heat generation originating from moving electrons through the

lectron-phonon interaction can be obtained from electron-phonon cou-

ling calculations [38,39] . For each bin, we obtain the heat generation

erm for representative phonon the mode-level heat generation as 

̇𝑛 =
Λ𝑛 ∑

Λ=Λ𝑛 −1 

𝑞̇Λ (9) 

These formulas obey the additivity of energy, heat flux, and thermal

onductivity. There are several integrations related to the phonon fre-

uency and branch. The band discretization transforms the integration

nto summation: 

∑
𝑝 
∫

𝜔max 

𝜔min 

𝑒𝜔,𝑝, 𝐬 

𝜏𝜔,𝑝 
𝑑𝜔 = 

∑
𝑝 

∑
𝜔 

𝑒𝜔,𝑝, 𝐬 

𝜏𝜔,𝑝 

∑
𝑝 
∫

𝜔max 

𝜔min 

𝐶𝜔,𝑝 

𝜏𝜔,𝑝 
𝑑𝜔 = 

∑
𝑝 

∑
𝜔 

𝐶𝜔,𝑝 

𝜏𝜔,𝑝 

𝑝 
∫

𝜔max 

𝜔min 

𝐯𝜔,𝑝 𝑒𝜔,𝑝, 𝐬 𝑑𝜔 = 

∑
𝑝 

∑
𝜔 

𝐯𝜔,𝑝 𝑒𝜔,𝑝, 𝐬 (10) 

There are also several integrations over the velocity directions. Di-

ectional discretization transforms those integrations into summations:

∫
Ω

𝑒𝜔,𝑝, 𝐬 𝑑Ω = 

𝜃max 

∫
𝜃min 

𝜑 

∫
𝜑min 

𝑒𝜔,𝑝, 𝐬 sin 𝜃𝑑𝜃𝑑𝜑 

= 

∑
𝑖 

∑
𝑗 

𝑤𝑖 𝑤𝑗 𝑒𝜔,𝑝, 𝐬𝑖,𝑗 sin 𝜃𝑖 

∫
Ω

𝑒𝜔,𝑝, 𝐬 𝐬 𝑑Ω = 

𝜃max 

∫
𝜃min 

𝜑 

∫
𝜑min 

𝑒𝜔,𝑝, 𝐬 𝐬 sin 𝜃𝑑𝜃𝑑𝜑 

= 

∑
𝑖 

∑
𝑗 

𝑤𝑖 𝑤𝑗 𝑒𝜔,𝑝, 𝐬𝑖,𝑗 𝐬𝑖,𝑗 sin 𝜃𝑖 

Ω

𝑒𝜔,𝑝, 𝐬 𝐬 ⋅ 𝐧 𝑑Ω = 

𝜃max 

∫
𝜃min 

𝜑 

∫
𝜑min 

𝑒𝜔,𝑝, 𝐬 𝐬 ⋅ 𝐧 sin 𝜃𝑑𝜃𝑑𝜑 

= 

∑
𝑖 

∑
𝑗 

𝑤𝑖 𝑤𝑗 𝑒𝜔,𝑝, 𝐬𝑖,𝑗 𝐬𝑖,𝑗 sin 𝜃𝑖 (11) 
909
here 𝑤𝑖 and 𝑤𝑗 are the weights of corresponding moving direction 𝐬𝑖,𝑗 
 {sin 𝜃𝑖 cos 𝜑𝑗 , sin 𝜃𝑖 sin 𝜑𝑗 , cos 𝜃𝑖 } and are obtained by the Gauss-Legendre

uadrature over the intervals [ 𝜃min , 𝜃max ] and [ 𝜑min , 𝜑max ] . Sometimes

e have multiple intervals of [ 𝜃min ,𝑛 , 𝜃max ,𝑛 ] and [ 𝜑min ,𝑚 , 𝜑max ,𝑚 ] for dif-

erent boundaries, which are decided by 𝐬′ ⋅ 𝐧 > 0 ( Eq. 6 ). We need

o collect all 𝜃min , 𝜃max , 𝜑min ,𝑚 , and 𝜑max ,𝑚 and then sort them as

𝜃1 , … , 𝜃𝑛 , 𝜃𝑛 +1 , … , 𝜃𝑁 

] and [𝜑1 , … , 𝜑𝑚 , 𝜑𝑚 +1 , … , 𝜑𝑀 

] . For each inter-

al [𝜃𝑛 , 𝜃𝑛 +1 ] and [𝜑𝑚 , 𝜑𝑚 +1 ] , we can obtain the direction and direction

eight according to the Gauss–Legendre quadrature. The total number

f sampled phonon modes is the number of bands multiply the num-

er of directions, which would be much smaller than the number from

rst-principles calculations. 

.4. Numerical method 

The numerical method contains several important components, in-

luding a spatial discretization method, an iterative method, and par-

llelization strategies. The spatial discretization transforms the spatial

artial derivative into algebraic expressions. The discretized form of the

TE is 

Δ𝑒𝑛 +1 
𝑖,𝜔,𝑝, 𝐬 

𝜏𝑖,𝜔,𝑝 
+ 1 

𝑉𝑖 

∑
𝑗∈𝑁( 𝑖) 

Δ𝑒𝑛 +1 
𝑖𝑗,𝜔,𝑝, 𝐬 𝐯𝑖,𝜔,𝑝 ⋅ 𝐧𝑖𝑗 𝑆𝑖𝑗 

= − 1 
𝑉𝑖 

∑
𝑗∈𝑁( 𝑖) 

𝑒𝑛 
𝑖𝑗,𝜔,𝑝, 𝐬 𝐯𝑖,𝜔,𝑝 ⋅ 𝐧𝑖𝑗 𝑆𝑖𝑗 −

𝑒𝑛 
𝑖,𝜔,𝑝, 𝐬 − 𝑒

𝑛,eq 
𝑖,𝜔,𝑝 

𝜏𝑖,𝜔,𝑝 
+ 𝑞̇𝜔,𝑝 , (12) 

here Δ𝑒𝑛 +1 
𝑖,𝜔,𝑝, 𝐬 = 𝑒𝑛 +1 

𝑖,𝜔,𝑝, 𝐬 − 𝑒𝑛 
𝑖,𝜔,𝑝, 𝐬 and 𝑛 is the iteration index. 𝑉𝑖 is the vol-

me of the spatial cell 𝑖 , 𝑁( 𝑖) is the sets of face neighbor cells of cell 𝑖 ,

𝑗 is the face between cell 𝑖 and cell 𝑗, 𝑆𝑖𝑗 is the area of the face 𝑖𝑗, and

𝑖𝑗 is the exterior normal unit vector of the face 𝑖𝑗 directing from cell

 to cell 𝑗. When the system is in the steady state, the left-hand side is

ero and only the right-hand side remains. In previous studies involving

nstructured meshes, only the first-order scheme of spatial discretiza-

ion was applied [19,27] . However, the first-order scheme will have a

imitation on the mesh size, which should be smaller than the mean free

ath of phonons to ensure the accuracy [19,27] . Considering the small

ean free path of some phonons (the phonon mean free path of silicon

s provided in Supplementary Material S3), this limitation can induce

xtremely large computational costs for large sizes. In this study, we

dopt the first-order up-wind scheme for the Δ𝑒𝑖𝑗 to ensure the sparsity

nd the second-order scheme for the 𝑒𝑖𝑗 to ensure the piece-wise lin-

ar results, which is crucial for eliminating the limitation of mesh size

40,41] . For the first-order up-wind scheme, the energy on the face is

he energy density of the cell in up-wind direction, i.e., 𝐬 ⋅ 𝐧 > 0 for this

ell. To achieve the second-order scheme, the energy density 𝑒𝑖𝑗,𝑠 on the

ace is calculated by 𝑒𝑖 + ∇𝑒𝑖 ⋅ 𝐥𝑖,𝑖𝑗 , where cell 𝑖 is also the cell in up-wind

irection and 𝐥𝑖,𝑖𝑗 is the vector between cell’s center of the cell and the

enter of the face. The gradient ∇𝑒𝑖 is calculated by the least squares

ethod, which performs well for unstructured meshes. 

Previous studies mainly adopted the sequential method to iteratively

olve the phonon BTE with unstructured meshes [19] . However, the

equential method encountered slow convergence rates for non-gray

olvers. A hybrid BTE-diffusion method was proposed to accelerate con-

ergence [42] . This method solves the phonon BTE for some bands and

olves the heat diffusion equation for other bands. However, the perfor-

ance of this method relies on the choice of a cutoff Knudsen number

the ratio of the mean free path over the characteristic length), which

s difficult to be decided for real 3-dimensional problems with multiple

haracteristic lengths. To iteratively solve the algebraic equations, we

dopt the synthetic iterative method [41] . This method was developed

or a structured solver of the phonon BTE without the heat generation

erm and largely improved the convergence rate of the phonon BTE.

n our method, we extend this method to unstructured meshes and in-

orporate the heat generation term. Following the derivation of Zhang

t al., a diffusion-type equation can be obtained from non-gray phonon
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TE with the heat generation term [41] 

eq 
𝜔,𝑝 = 𝐶𝜔,𝑝 𝑇𝐿 

bulk ∇2 𝑇𝐿 = ∇ ⋅
(
𝐪non −Fourier 

)
− 4 𝜋

∑
𝜔,𝑝 𝑞̇𝜔,𝑝 

non −Fourier = −
∑

𝜔,𝑝 𝑤𝜔,𝑝 

∑
𝑠 𝑤𝑠 

𝜏𝜔,𝑝 𝑣
2 
𝜔,𝑝 

𝐬𝐬 − 𝑘bulk 

(
𝜏𝜔,𝑝 

∑
𝜔,𝑝 𝑤𝜔,𝑝 𝐶𝜔,𝑝 ∕𝜏𝜔,𝑝 

)
𝐈
)
⋅ ∇ 𝑒𝜔,𝑝, 𝐬 

(13) 

here 𝑘bulk is the bulk thermal conductivity expressed as 𝑘bulk =
1 
3 
∑

𝜔,𝑝 𝑤𝜔,𝑝 𝐶𝜔,𝑝 𝑣
2 
𝜔,𝑝 

𝜏𝜔,𝑝 . This diffusion-type equation strengthens the

oupling of phonon bands and therefore facilitates fast convergence

rom the diffusive regime to the ballistic regime [41] . This equation is

olved by the finite volume method: 

𝑛 +1 ,eq 
𝑖,𝜔,𝑝 

= 𝐶𝜔,𝑝 𝑇
𝑛 +1 
𝐿,𝑖 

bulk 
∑

𝑗∈𝑁( 𝑖) 
𝑆𝑖𝑗 𝐧𝑖𝑗 ⋅ ∇ 𝑇 𝑛 +1 

𝐿,𝑖𝑗 

=
∑

𝑗∈𝑁( 𝑖) 
𝑆𝑖𝑗 𝐧𝑖𝑗 ⋅

(
𝐪non −Fourier 

)𝑛 + 1 
2 

𝑖𝑗 
− 4 𝜋

∑
𝜔,𝑝 

𝑞̇𝜔,𝑝 (14) 

𝐪non −Fourier 

)𝑛 + 1 
2 

ij 
= −

∑
𝜔,𝑝 𝑤𝜔,𝑝 

∑
𝑠 𝑤𝑠 

𝜏𝜔,𝑝 𝑣
2 
𝜔,𝑝 

𝐬𝐬 − 𝑘bulk 

(
𝜏𝜔,𝑝 

∑
𝜔,𝑝 𝑤𝜔,𝑝 𝐶𝜔,𝑝 ∕𝜏𝜔,𝑝 

)
𝐈
)
⋅ ∇ 𝑒𝑛 +1 

ij ,𝜔,𝑝, 𝐬 

(15) 

To solve this equation, we require the gradient on the faces of the

ells. We adopt the non-orthogonal correction to obtain the gradient for

nstructured meshes. 

The complete procedure of the present method is as follows, which

s also depicted in Supplementary Materials S1: 

Step 1 Set initial guess for equilibrium energy density 𝑒
eq 
𝜔,𝑝 . Step 2

olve the discretized form of the BTE ( Eq. 12 ) subject the boundary con-

itions to obtain the energy density 𝑒𝜔,𝑝 . For the matrix in each band and

irection, we solve it by using Generalized Minimal Residual method

GMRES) with Incomplete LU factorization (ILU) preconditioner. Step

 Calculate 𝐪non−Fourier based on Eq. 15 . Step 4 Solve the Eq. 14 to up-

ate the 𝑒
eq 
𝜔,𝑝 . The matrix is solved by using the biconjugate gradient

tabilized method (BICGSTAB) with ILU preconditioner. Step 5 Repeat

tep 2 to Step 5 until convergence. The iteration is converged when

 =

√ ∑𝑁cell 
𝑖 

( 𝑇 𝑛 
𝑖 
− 𝑇 𝑛 +1 

𝑖 
) 2 ∕𝑁cell 

𝑇max 
< 10 −5 and 𝜀 =

√ ∑𝑁cell 
𝑖 

(|𝐪 |𝑛 
𝑖 
−|𝐪 |𝑛 +1 

𝑖 
) 2 ∕𝑁cell 

|𝐪 |max 
< 10 −3 

s satisfied, where 𝑁cell is the number of spatial cells. The temperature

 and heat flux 𝐪 can be obtained according to Eq. 3 . 

Two frameworks of parallelization are widely used: the CPU paral-

elization based on the message passing interface (MPI) and the GPU par-

llelization. For the MPI parallelization, we adopt the direction-based

trategy for the CPU parallelization of our numerical method. Since the

umber of directions may be limited, we also apply the band-based par-

llelization when the number of CPU cores exceeds the number of di-

ections. In this strategy, the loops over the directions and bands are

xpanded and different CPU cores solve the equations in different di-

ections simultaneously. The matrix in Step 2 is solved by Petsc serial

ackage [43] . For Step 4, the matrix is solved by different CPU cores

n parallel using the Hypre package [44] . The overall procedure of CPU

aralleled version and the discussion on the parallelization strategy are

hown in Supplementary Materials S1. We also adopt the GPU paral-

elization. For the GPU version, in Steps 2 and 4, the matrix is solved

y the Viennacl package with GPU parallelization [45] . In all other

teps, different spatial cells are solved simultaneously by different CUDA

hreads in a GPU. The overall procedure of GPU paralleled version is also

hown in Supplementary Materials S1. The performance of paralleliza-

ion is provided in Supplementary Materials S6. 

We also verify the numerical implementation with analytical solu-

ions and reference results, which is provided in Supplementary Material

7. 

As will be shown later, this method has significant efficiency im-

rovements compared with the previous implementation of the unstruc-

ured DOM [19] . The significant efficiency improvement comes from
910
wo major improvements of the present method compared with the im-

licit DOM: (i) the piece-wise linear spatial distribution of solutions of

he present method largely reduces the convergent number of meshes

ompared with the piece-wise constant spatial distribution in implicit

OM (see Supplementary material S4 and S5); (ii) the synthetic iter-

tive method [41] adopted in the present method largely reduces the

umber of iterations although slightly increases the computational time

f the single iteration compared with the sequential iterative method

see Supplementary material S5). Apart from these two major improve-

ents compared with the implicit DOM, the optimized parallelization

see Supplementary material S6) and band discretization (see Supple-

entary material S4 and S5) combined with the directional discretiza-

ion in this method further ensure excellent efficiency. 

. Results 

In this section, we evaluate the performance of the present method.

e use the silicon system as an example. The phonon properties of sil-

con are obtained from our own first-principles calculations based on

he anharmonic lattice dynamics method [28,33] . In our first-principles

alculations, 70 × 70 × 70 q -points are used to sample the Brillouin

one. As such, we have phonon properties for 70 × 70 × 70 × 6 phonon

odes. The bulk thermal conductivity of silicon is 156.5 W/m-K, which

s close to the value of the literature [28,33] . By adopting our discretiza-

ion scheme combined with directional discretization, we only need to

ample 960 phonon modes in our subsequent calculations. In this sec-

ion, we first validate the present method on the silicon thin film (in-

lane), which has widely recognized experimental results. To demon-

trate the success of the present method on nanoscale simulations, we

hen investigate the thermal transport of a typical 3-dimensional device:

ilicon fin field-effect transistor (FinFET). The present method can also

e applied to other materials and devices. The excellent computational

erformance is emphasized by comparing it with the state-of-the-art im-

lementation of unstructured DOM [19] . 

.1. Validation against experimental results on silicon thin film 

Due to the difficulty of the nanoscale thermal measurement, quanti-

ative validation by experiments is rare [48] . The measurements on size-

ependent in-plane thermal conductivity of silicon thin films are widely

ecognized experimental measurements [19,46,47] . We first validate

ur method using these experimental results [46,47] . The schematic of

n-plane thermal transport in the silicon thin film is shown in Fig. 1 a. A

niform temperature gradient is imposed in a thin film with a thickness

 along the 𝑥 direction. Since the length in the 𝑧 direction is much larger

han that in the 𝑦 direction and the 𝑧 direction is perpendicular to the

ransport direction, this problem can be simplified as a 2-dimensional

roblem ( Fig. 1 b). To simulate this problem, we extract a section of

he thin film. Since the length in the 𝑥 direction is large, the periodic

oundary condition (see Methods section) is applied at the left and right

oundaries ( Fig. 1 b). Since the surfaces of experimental samples often

ave large roughness or are coated by an amorphous layer [49] , the dif-

usely reflecting boundary condition, which is equivalent to the rough

urface and the amorphous layer [35,36] , is applied at the top and bot-

om boundaries. After a convergence test, we adopt 15 phonon bands, 64

irections (i.e., sample 960 phonon modes), and 2900 triangular meshes

o solve the phonon BTE for this problem. 

It shows the in-plane thermal conductivity of the silicon thin film

 Fig. 1 c). The thermal conductivity is calculated as 𝑞∕|∇ 𝑇 |, where 𝑞

s the heat flux and |∇ 𝑇 | is the temperature gradient (see the Meth-

ds section). It can be seen that the in-plane thermal conductivity of

he silicon thin film decreases with the thickness, as a result of the

ffects of boundary scattering [7] . When the thickness decreases, the

oundary scattering, which impedes thermal transport, becomes more

rominent. The predicted results using the present method are compared
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Fig. 1. Validation against experimental results on in-plane thermal transport in the silicon thin film . (a) The schematic of in-plane thermal transport in the 

silicon thin film with a thickness of 𝐿 . (b) The simulation cell of in-plane thermal transport in the silicon thin film. A uniform temperature gradient 𝑑 𝑇 ∕𝑑 𝑥 is imposed 

in a thin film along the 𝑥 direction. (c) Comparison of in-plane thermal conductivity predicted by the present method and experimental results [46,47] . 

Table 1 

The dimensionless geometrical parameters of the FinFET . 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 𝐿7 𝐿8 
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ith the previous experimental results in Fig. 1 c [46,47] . Our predic-

ion matches the experimental results very well. These results demon-

trate that our simulation based on the present method not only cap-

ures the nanoscale effect, but also matches the experimental data with-

ut any fitting parameters, which shows good accuracy of the present

ethod. 

.2. Temperature prediction of silicon FinFET 

We then take the 3-dimensional transistor: silicon FinFET as an ex-

mple to further demonstrate the performance of the present method.

he structure and the boundary condition setup of the FinFET are shown

n Fig. 2 a, which is extracted from Ref. [50] . The thermalizing boundary

s the boundary that is in contact with the metal electrode (source and

rain) or away from the hot spot (substrate) [17,51] . The thermalizing

oundary is set as 300 K to mimic a test environment at room temper-

ture [52] . The diffusely reflecting boundary describes the boundary

ontact with an amorphous layer [35,36] . As such, we set the bound-

ry that is in contact with the dielectric layer (amorphous silicon ox-

de) [50] as the diffusely reflecting boundary (as shown in Fig. 2 a). The

ther boundaries are all set as specularly reflecting boundaries, which

imic the symmetric boundary between two devices [29,34] . The hot

pot is set as a semi-ellipse with two axles of 𝐿7 and 𝐿8 near the drain,

hich is typically discovered in an enhancement transistor [17] . The

imensionless geometrical parameters are presented in Table 1 . We test

he absolute values for these parameters at different scales, by multi-

lying the ratio scales of 1 nm, 10 nm, 100 nm, and 1 μm (i.e., these

ases have fin-width of 12 nm, 120 nm, 1.2 μm and 12 μm) for checking

he performance of our method from the ballistic regime to the diffu-

ive regime. The total volumetric heat generation rates 4 𝜋
∑
𝜔,𝑝 

𝑞̇𝜔,𝑝 inside

he hot spot (See Methods section) are 1019 , 1017 , 1015 , 1013 W∕ m3 for

n-width of 12 nm, 120 nm, 1.2 μm and 12 μm respectively. These

olumetric heat generation rates are chosen so that temperature pro-
911
les for different cases are the same if they are solved by the heat dif-

usion equation, in which we adopt the bulk thermal conductivity of

ilicon: 156.5 W/m-K (the result is shown in Fig. 2 c). The mode-level

eat generation rates are assumed to be uniformly distributed in differ-

nt directions and proportional to the heat capacity for different bands,

imicking an equilibrium heat source [29] . The properties of the heat

eneration in this study are set for demonstration purposes. To capture

he rigorous heat generation due to phonons emitted by hot electrons,

he electron BTE considering electron-phonon coupling is required to

olve simultaneously [2,4,39,53] . After a convergence test, we adopt

5 phonon bands, 64 directions (i.e., sample 960 phonon modes) and

4,442 hexahedron meshes (The convergence test is provided in Supple-

entary material S4). The unstructured hexahedron meshes to discrete

inFET are shown in Fig. 2 b as an example. 

The temperature profiles for different scales predicted by the present

ethod are shown in Fig. 2 d–h. When the size decreases, the difference

etween the results of the BTE simulation and the results of the heat dif-

usion simulation is greater. In the case of the 12 nm fin-width, the max-

mum temperature rise predicted by the BTE is 74 K and about 26 times

reater than that predicted by the heat diffusion equation ( Fig. 2 h),

hich indicates significant non-Fourier effects. These non-Fourier ef-

ects arise when ballistic transport and boundary scattering, which im-

ede thermal transport, become prominent at small sizes [7] . Higher

emperature rise would limit electrical performance of nanoscale de-

ices more seriously [3] , which is crucial for understanding the self-

eating effect. Although this result cannot be quantitatively validated

ith experimental data, such a trend has also been discovered in exper-

ments qualitatively: when the size of the transistor is small, the temper-

ture of the transistor is larger than that predicted by the heat diffusion

quation [25] . The difference between the BTE simulation and the heat

iffusion equation reduces with increasing size. When the fin-width is

2 μm, the difference between the BTE simulation and the heat diffu-

ion simulation is negligible, which indicates that the thermal transport

s nearly diffusive. The small difference between the BTE simulation

nd the heat diffusion simulation in this large case indicates that the

ontribution of the extremely large mean free path phonons in silicon

See Supplementary Material S3) is also resolved by the present method.

rom the results above, one can see that full 3-dimensional nanoscale

imulations from the ballistic regime to the diffusive regime are now

ossible with our method. 
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Fig. 2. Temperature prediction of the silicon FinFET . (a) The structure, boundary conditions and the hot spot of the silicon FinFET. (b) An example of unstructured 

meshes. (c) Temperature distribution predicted by the macroscopic simulation. (d–h) Temperature distribution predicted by the present method for the phonon BTE 

with the fin-width of (d) 12 μm, (e) 1.2 μm, (f) 120 nm, and (h) 12 nm. Note that the color scale differs for each figure. 

Fig. 3. Computational time of the FinFET simulation . (a) The computational time of simulating the silicon FinFET by the present method and the implicit DOM 

[19,27] . (b) The ratio of the computational time of the implicit DOM [19,27] over the computational time of the present method. 
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.3. Computational performance of FinFET simulation 

To make it possible for predictive thermal design of realistic mate-

ials and devices, simulation efficiency is vital. To demonstrate the ex-

ellent efficiency of the present method, the computational times of the

bove cases are summarized in Fig. 3 . We test the performance on a clus-
912
er of Intel Xeon Scalable Cascade Lake 6248 CPU and a single NVIDIA

eForce RTX 3060. The computational times using 16 CPU cores, a sin-

le GPU, and 128 CPU cores are presented. In all cases, the simulation

an be completed within several hours. It should be noted that larger

omputational cost is needed for more diffusive cases, due to the larger

umber of iterations needed to reach convergence [41] . In our GPU im-
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Fig. 4. Comparison of temperature distribution predicted by BTE simulations with first-principles properties and empirical models . (a) Temperature 

distribution predicted by BTE simulation with first-principles properties. (b) Temperature distribution predicted by BTE simulation with empirical properties model 

in Ref. [54] . (c) Temperature distribution predicted by BTE simulation with empirical properties model in Ref. [55] . Note that the color scale differs for each figure. 
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f  
lementation, a full-scale thermal simulation of a 12 μm FinFET, which

s nearly diffusive, can be completed within 1.9 h. Since the NVIDIA

eForce RTX 3060 is a commonly used GPU in personal computers,

e actually demonstrate that with the present method, it is feasible to

erform an accurate nanoscale thermal simulation of the 3-dimensional

roblem using a single personal computer. 

To further demonstrate the excellent performance of the present

ethod, we compare the computational time of the present method

ith a state-of-the-art implementation of the unstructured phonon BTE

olver (implicit DOM) [19,27] . The details of the previous implicit DOM

olver are provided in Supplementary Material S2. In the previous study

19] , the CPU parallelization of implicit DOM is discussed. We adopt the

astest strategy to do the parallelization for implicit DOM. The acceler-

tion rate is comparable to that in the previous study (See Supplemen-

ary material S6). After convergence tests, we adopt 128 directions and

80,000 hexahedron meshes to do the simulation using implicit DOM.

hese numbers are on the same order as those used in the previous study

or a 3-dimensional structure [19] . We still use 15 phonon bands (the

ame as in the present method) since previous studies adopt empirical

odels and the band discretization scheme for first-principles properties

s lacking in implicit DOM. We provide the computational time of the

mplicit DOM when using 128 CPU cores. It can be seen that the compu-

ational time of the implicit DOM is much larger than that of the present

ethod. The computational time for the largest size (12 μm fin-width)

s unaffordable due to the extremely slow convergence rate in the dif-

usive limit [19,27] . For this case, we estimate this time by multiplying

he time of one iteration for 880,000 spatial meshes by the number of

terations for the 14,000 meshes because the convergence rate is similar

or different numbers of meshes for the same case. We also show the

atio of the computational time of the implicit DOM over the computa-

ional time of the present method. The implicit DOM takes 32 times to

,733 times more computational time than our method. The 1,733 times

aster computation for the nearly diffusive case is especially important

ince it makes the simulation of large sizes affordable and only requires

ess than one hour with 128 CPU cores. As such, the full 3-dimensional

olution of phonon BTE from the ballistic to diffusive regime are very

fficient with our method. Even larger cases fall in to diffusive regime

nd can be calculated with a heat diffusion equation solver. 

Next we compare results of first-principles based phonon properties

nd empirical models to show the unique accuracy of first-principles

ased phonon properties. We choose two empirical models [54,55] ,

hich are widely adopted in other literature [20,27,41] . The details

f these two models are provided in Supplementary Material S3. The

emperature field predicted by these models is shown in Fig. 4 bench-

arked by the first-principles properties used in the present method.

omparing the temperature distribution profiles, it can be seen that Em-

t

913
irical Model 1 from Ref. [54] largely overestimates the temperature rise

f the silicon FinFET. The maximum temperature rise predicted by Em-

irical Model 2 from Ref. [55] is more accurate, but still has a nearly

0% error compared with the first-principles phonon properties. The

eason for the difference can be understood by the difference in the

ean free path accumulated thermal conductivity and the mean free

ath accumulated heat capacity (Fig. S2). The model in Ref. [55] has

ery similar properties compared with the first-principles properties and

ould be a good approximation for silicon properties. The model in Ref.

54] shows a large difference in properties that may be due to the un-

ertainties in fitting or ignoring the contribution of optical phonons.

part from the possible large error, the empirical model is limited to

pecific materials. The present method can both have good accuracy

nd be easily extended to other materials because of the generality of

rst-principles properties [33] . 

. Discussion 

The present method adopts the framework of DOM, which is the

epresentative framework of the deterministic method. Apart from the

eterministic method, there are two other frameworks: the statisti-

al Monte Carlo method (MC) [22] and a machine learning method

physics-informed neural networks) [23] . When discussing the deter-

inistic method with the MC method and machine learning method, the

fficiency of the deterministic method is sometimes thought to be short-

oming [22,23] . The recently developed machine learning method also

hows better efficiency compared with the implicit DOM [23] . How-

ver, the present method has demonstrated the excellent efficiency of

he deterministic method. Simulating the complicated transistor struc-

ure using the present method is even much faster than training time

n predicting toy problems using machine learning methods [23] . Also

ompared with the machine learning methods which have the risk of

isconvergence [56] , the present method can always converge to cor-

ect results. The deterministic method also has no statistical error in the

C method [22] and our method is also much faster than the previous

C method [22] . Additionally, for the device simulations, since many

ommercial electrical simulation packages adopt deterministic methods

52] , the present method can be more easily integrated with these pack-

ges. Although some electron BTE solvers are based on MC methods,

dopting deterministic methods for the phonon BTE also has the advan-

age of overcoming the convergence problem because of the absence of

tatistical error [57] . As such, the present method has many advantages

ver other frameworks and can potentially replace the current heat dif-

usion solver to act as a predictive thermal design tool for nanostruc-
ured materials and nanoscale devices. 
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Finally, we note that solving the matrix parallelly is the bottleneck

o the overall efficiency of our method (See Supplementary Material

6). Since the present method is designed for unstructured meshes, the

ost stable method to solve the matrix in this method is the General-

zed Minimal Residual method (GMRES) or biconjugate gradient stabi-

ized method (BICGSTAB) with the incomplete LU factorization (ILU)

reconditioner. A major limitation is the parallelization of the ILU pre-

onditioner [58] . If an efficient parallel ILU preconditioner can be de-

eloped, the efficiency of the present method can be further improved. 

. Conclusion 

In this study, we demonstrate an efficient and parameter-free compu-

ational method for nanoscale thermal simulation with the phonon BTE.

n this method, we integrate the phonon properties from first-principles

alculations into the phonon BTE solver and develop a suitable ensemble

f advanced numerical methods for solving the phonon BTE. The accu-

acy of the method is demonstrated with the widely recognized experi-

ental results: the in-plane thermal conductivity of silicon thin film. The

esults match the experimental data without any fitting parameters. The

fficiency of the method is demonstrated in the full-scale thermal simu-

ation of the 3-dimensional silicon FinFET with difference characteristic

izes, which can be completed within two hours on a personal computer.

he computational time can be reduced by thousands of times compared

ith a state-of-the-art unstructured method. Our method makes it pos-

ible to achieve the predictive design of realistic nanostructures for the

esired thermal conductivity. It also enables accurate resolution of the

emperature profiles at the transistor level, which helps in better under-

tanding the self-heating effect of electronics. 

During the peer review process, we noticed a thorough review of the

omputation of submicron thermal transport with the phonon BTE by

azumder [59] . As pointed out in this review, providing better phonon

roperties for the phonon BTE, solving the phonon BTE for realistic 3D

evice structures, and making better use of advanced parallel processing

aradigms are major challenges that require further research [59] . We

elieve this work provides a solution to address these challenges. 
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