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Understanding thermal transport at the submicron scale is crucial for engineering applications, especially in the
thermal management of electronics and tailoring the thermal conductivity of thermoelectric materials. At the
submicron scale, the macroscopic heat diffusion equation is no longer valid and the phonon Boltzmann transport
equation (BTE) becomes the governing equation for thermal transport. However, previous thermal simulations
based on the phonon BTE have two main limitations: relying on empirical parameters and prohibitive compu-
tational costs. Therefore, the phonon BTE is commonly used for qualitatively studying the non-Fourier thermal
transport phenomena of toy problems. In this work, we demonstrate an ultra-efficient and parameter-free compu-
tational method of the phonon BTE to achieve quantitatively accurate thermal simulation for realistic materials
and devices. By properly integrating the phonon properties from first-principles calculations, our method does
not rely on empirical material properties input. It can be generally applicable for different materials and the
predicted results can match well with experimental results. Moreover, by developing a suitable ensemble of ad-
vanced numerical algorithms, our method exhibits superior numerical efficiency. The full-scale (from ballistic to
diffusive) thermal simulation of a 3-dimensional fin field-effect transistor with 13 million degrees of freedom,
which is prohibitive for existing phonon BTE solvers even on supercomputers, can now be completed within two
hours on a single personal computer. Our method makes it possible to achieve the predictive design of realistic
nanostructures for the desired thermal conductivity. It also enables accurately resolving the temperature profiles

at the transistor level, which helps in better understanding the self-heating effect of electronics.

1. Introduction

Understanding the micro and nanoscale thermal transport is crucial
for many applications, such as thermal management of electronics, high-
efficiency thermoelectric energy conversion, and improved thermal bar-
riers [1]. For example, the shrinking size of semiconductor devices (tran-
sistors) to submicrons imposes grand challenges on the heat dissipation
of electronics [1]. Accurate transistor-level thermal simulation can help
to achieve more efficient heat extraction from transistors [2] and better
understand the self-heating effects of electronics [3,4]. In the applica-
tions of thermal barriers and thermoelectric energy conversion, where
thermal conductivity is a key metric, designing nanostructures to ma-
nipulate thermal transport in these applications is an important strat-
egy [5,6]. Efficient and accurate thermal simulations can better guide
the design of these nanomaterials.

At the submicron scale, it has long been recognized that macroscopic
heat diffusion equation is not valid [7]. Therefore, to study the micro
and nanoscale effects of thermal transport, atomistic simulation meth-
ods are widely adopted [8,9], especially the nonequilibrium Green’s
function [10,11], anharmonic lattice dynamics [12,13], and molecular
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dynamics [14,15]. While these atomistic simulation methods can be uti-
lized to investigate the phenomena like the size effect of thermal conduc-
tivity and interfacial thermal resistance [8,9], they are typically limited
in very small system size (several nanometers) and not capable of per-
forming thermal simulations of realistic systems in applications, such
as nanocomposite materials and electronic devices. The phonon Boltz-
mann transport equation (BTE) that governs the thermal transport at a
scale comparable to the mean free path (typically several nanometers
to several microns) [16], provides the only promising solution that can
possibly meet the requirements of thermal simulation in real applica-
tions. Unlike the electrical simulation with the electron BTE, which has
been a relatively mature tool for a long time [17], the development of
thermal simulation with the phonon BTE is very challenging due to the
uniquely large spread in phonon properties [18]. Many previous studies
have tried to develop numerical solvers for the phonon BTE using vari-
ous methods including deterministic methods [19,20], statistical meth-
ods [21,22] and machine learning methods [23]. However, to date, the
computational cost of phonon BTE is still believed to be prohibitive for
sizes and geometries of realistic materials and devices [19,22,24], and
thermal simulations of 3-dimensional problems are rare [17,19,22]. Two

2667-3258/© 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.fmre.2022.06.007
http://www.ScienceDirect.com/science/journal/26673258
http://www.keaipublishing.com/en/journals/fundamental-research/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fmre.2022.06.007&domain=pdf
https://cstr.cn/BRID-03220.00.03007
https://cstr.cn/BRID-08558.00.92907
mailto:hua.bao@sjtu.edu.cn
https://doi.org/10.1016/j.fmre.2022.06.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Hu, Y. Shen and H. Bao

studies have demonstrated the computational costs associated with sim-
ulating 3-dimensional devices [19,22]. In one study [19], the simulation
of a 3-dimensional toy device is far from steady-state but requires sev-
eral hours using hundreds of CPU cores. Another simulation shows even
larger computational costs [22]. Besides, many of these simulations rely
on empirical models for the input material properties [17,19,25,26] and
therefore cannot be used as a predictive tool for accurately simulating
thermal transport.

In this study, we demonstrate a numerical method for nanoscale
thermal simulations with the phonon BTE. The present method has the
following advantages: (1) by properly integrating the phonon proper-
ties from first-principles calculations into our method, it is accurate,
parameter-free and general for different material systems; (2) by de-
veloping a suitable ensemble of advanced numerical algorithms, our
method exhibits superiority in efficiency compared to existing solvers.

2. Methods

In this section, we introduce the phonon BTE and the present method
for solving the phonon BTE. The present method solves the non-gray
phonon BTE (details are provided in Sections 2.1 and 2.2) based on the
framework of the discrete ordinates method (DOM) [19,27]. To ensure
the ability to address arbitrary geometries, unstructured spatial meshes
are adopted. In this method, we solve the two main challenges of pre-
vious solvers: dependence on empirical models for phonon properties
and prohibitive computational costs. To solve the former challenge, we
integrate the phonon properties from first-principles calculations into
the method. First-principles prediction of phonon properties has been
proven to be comparable to experimental results [28]. However, first-
principles calculations provide properties for millions of phonon modes
[28], which are prohibitive to be directly sampled in the phonon BTE.
To resolve this issue, we develop a band discretization scheme combined
with directional discretization to sample a small number of phonon
modes from the first-principle phonon modes and also ensure good accu-
racy. The details of the band discretization scheme and the directional
discretization scheme are provided in Section 2.3. To solve the chal-
lenges of computational costs, we develop an ensemble of advanced nu-
merical algorithms to improve the efficiency of the solver in all aspects
including reducing the number of degrees of freedom, improving the
convergence rate of iterations, and optimizing the parallelization. The
details are provided in Section 2.4.

2.1. Non-gray phonon BTE

When the characteristic length is comparable to the phonon mean
free path, the thermal transport can be described by the non-gray
phonon BTE. Under the relaxation time approximation, the phonon BTE
can be expressed as

eq

€o.ps ~ Cop

w,ps —

V,, - Ve,

w,p + qw,p (1)

Tw,p

where e = e(r, s, o, p) is the distribution function of the phonon energy
density. e®! is the energy density distribution function of the equilibrium
state, which follows the Bose-Einstein distribution. r is the spatial coor-
dinates. w, p are the frequency and branch index. s is the unit vector in
the direction of group velocity v, which is assumed to be isotropic [29].
7 is the relaxation time. ¢ is the volumetric heat generation term. The
volumetric heat generation can originate from moving electrons through
the electron-phonon interaction [30,31].

According to the energy conservation [19], er,, is related to e,

w,p.,S
through:
Zlqp = Cw pTL
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where C is the volumetric heat capacity. T, is the lattice temper-
ature [32]. Q is the control angle. The phonon information of C, v and
7 was previously taken from empirical values [17,19,25,26], but can
now be obtained by the more accurate first-principles calculations [33].

Egs. 1 and 2 are the closed form of the phonon BTE. If proper bound-
ary conditions are specified, they can be numerically solved to obtain
the local energy density e. The local temperature and heat flux can then
be calculated by

fz fwmx wpsdwdg

@min

Sl

Dmin

Dmax
q= /Z/w Vo.p wpsda)dQ

'min

wps do

©)

2.2. Boundary conditions

(i) Atthermalizing boundaries, all phonons are emitted from the bound-
ary with a temperature of 7}, i.e.

. 1(s-m<0)

@

ew.ﬂ,s =

where n is the exterior normal unit vector of the boundary. This
kind of boundary usually exists at the interface between metals and
semiconductors and the boundary away from the ballistic regime.
The specularly reflecting boundary condition is an adiabatic bound-
ary condition, in which the reflected angle of phonon equals the
incident angle of phonon, i.e.

(i)

=€y ps,(5-n <0)

(&)

where s, is the incident direction before specularly reflecting to di-
rection s, which is calculated by s, = s — n(n - s). The specularly re-
flecting boundary is the symmetric boundary, which can cut the sym-
metry domain into one half [29,34].

The diffusely reflecting boundary condition is another type of adi-
abatic boundary condition, in which the energy of the phonon re-
flected from the boundary is the same along each direction, i.e.

Co.ps

1

—/ €yps’S -ndQ
s -n>0

V4

Cops = 6
The diffusely reflecting boundary condition exists at the surface of
the semiconductor or the dioxide layer [35,36].

The periodic boundary condition represents that two boundaries are
connected with each other, i.e.

@iv)

em,p,s (rBl ) = (7)

where B1 and B2 are indexes of the two periodic boundaries. Some-
times, a temperature difference is applied between two periodic
boundaries to mimic a uniform temperature gradient, then Eq. 7 is
expressed as

em,p,s (rBZ )

C,

w0 pAT

1
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2.3. Integrating phonon properties from first-principles calculations

We integrate the phonon properties from first-principles calculations
into numerically solving the phonon Boltzmann transport equation.
First-principles calculations provide properties for millions of phonon
modes [28,33]. For example, in our first-principles calculations of sil-
icon in this study, we have phonon properties for 70 x 70 x 70 x 6
phonon modes. To integrate with phonon BTE, we use band discretiza-
tion and directional discretization. Note that the previous schemes for
phonon properties from the first-principles calculations are all designed
for the phonon BTE without the heat generation term, which does not
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apply to simulation of many devices and materials [18,37]. For the band
discretization, we first collect all phonon properties (including heat ca-
pacity C, group velocity v, and relaxation time r from lattice dynam-
ics calculations) and find the maximum mean free path A,,,, and mini-
mum mean free path A;,. Then we divide the mean free path domain
[Amins Amax] into several bins [A,, ..., A,]. For each bin, we obtain the
representative phonon properties as

A“
Cn = CA
A=Ay
Al’l
2 Cav
A=Ay
v, =
n An
2 G
A=Ap_y
An
z CAUATA
A=A, _
o=l ®

The mode-level heat generation term depends on the type of heat
generation. For example, the equilibrium mode-level heat generation
term is proportional to the heat capacity of the phonon [29]. The mode-
level heat generation originating from moving electrons through the
electron-phonon interaction can be obtained from electron-phonon cou-
pling calculations [38,39]. For each bin, we obtain the heat generation
term for representative phonon the mode-level heat generation as

AVI
= 2 i
A=Ay-y

These formulas obey the additivity of energy, heat flux, and thermal
conductivity. There are several integrations related to the phonon fre-
quency and branch. The band discretization transforms the integration
into summation:
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There are also several integrations over the velocity directions. Di-
rectional discretization transforms those integrations into summations:
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where w; and w; are the weights of corresponding moving direction s ;
= {sinf,cosg; ,sinf;sing;, cosd; } and are obtained by the Gauss-Legendre
quadrature over the intervals [0,;,, Opax] and [@nin, @Pmax]- Sometimes
we have multiple intervals of [0, . Omax ] a0d [@min s @Prmax.m] for dif-
ferent boundaries, which are decided by s’ -n >0 (Eq. 6). We need
to collect all 6., Onax> Pminm> and @pay, and then sort them as
[0y,...,0,,0,.1,....,05] and [@y,...,0,, @1, ..., @] For each inter-
val [0,.0,,,] and [¢,,, ¢, ], We can obtain the direction and direction
weight according to the Gauss-Legendre quadrature. The total number
of sampled phonon modes is the number of bands multiply the num-
ber of directions, which would be much smaller than the number from
first-principles calculations.

2.4. Numerical method

The numerical method contains several important components, in-
cluding a spatial discretization method, an iterative method, and par-
allelization strategies. The spatial discretization transforms the spatial
partial derivative into algebraic expressions. The discretized form of the
BTE is

Ae n+1
1,0, _ Lops S n+1
+_ Z Ae:/(ups iop’ ']Sij
Tiw P /GN(!)
1 e _ neq
__1 " ) _ Ciops i,o,p .
=== D€ psVian WS, — + 4y e (12)
i JEN() i,w.p
where Ae™! =™l _e"  and nis the iteration index. V; is the vol-
i,0,p,s i,0,p.s i,0,p,s

ume of the spatial cell i, N (i) is the sets of face neighbor cells of cell i,
ij is the face between cell i and cell j, S;; is the area of the face ij, and
n;; is the exterior normal unit vector of the face ij directing from cell
i to cell j. When the system is in the steady state, the left-hand side is
zero and only the right-hand side remains. In previous studies involving
unstructured meshes, only the first-order scheme of spatial discretiza-
tion was applied [19,27]. However, the first-order scheme will have a
limitation on the mesh size, which should be smaller than the mean free
path of phonons to ensure the accuracy [19,27]. Considering the small
mean free path of some phonons (the phonon mean free path of silicon
is provided in Supplementary Material S3), this limitation can induce
extremely large computational costs for large sizes. In this study, we
adopt the first-order up-wind scheme for the Ae;; to ensure the sparsity
and the second-order scheme for the ¢;; to ensure the piece-wise lin-
ear results, which is crucial for eliminating the limitation of mesh size
[40,41]. For the first-order up-wind scheme, the energy on the face is
the energy density of the cell in up-wind direction, i.e., s - n > 0 for this
cell. To achieve the second-order scheme, the energy density e;; ; on the
face is calculated by e; + Ve; - 1, ;;, where cell i is also the cell in up-wind
direction and 1, ;; is the vector between cell’s center of the cell and the
center of the face. The gradient Ve, is calculated by the least squares
method, which performs well for unstructured meshes.

Previous studies mainly adopted the sequential method to iteratively
solve the phonon BTE with unstructured meshes [19]. However, the
sequential method encountered slow convergence rates for non-gray
solvers. A hybrid BTE-diffusion method was proposed to accelerate con-
vergence [42]. This method solves the phonon BTE for some bands and
solves the heat diffusion equation for other bands. However, the perfor-
mance of this method relies on the choice of a cutoff Knudsen number
(the ratio of the mean free path over the characteristic length), which
is difficult to be decided for real 3-dimensional problems with multiple
characteristic lengths. To iteratively solve the algebraic equations, we
adopt the synthetic iterative method [41]. This method was developed
for a structured solver of the phonon BTE without the heat generation
term and largely improved the convergence rate of the phonon BTE.
In our method, we extend this method to unstructured meshes and in-
corporate the heat generation term. Following the derivation of Zhang
et al., a diffusion-type equation can be obtained from non-gray phonon
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BTE with the heat generation term [41]

Ca),pTL

2 — .
ki VT, =V - (Qnon—Fourier) — 4z Zw,p 9e.p
Unon-Fourier = ~ Ziw,p Wa.,p Zs Wy

2
(T(u,pvw,pss - kbulk T(u,p Zm,p ww.prA,p/Tw,p)I) : Vew,p,s

eq _
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where ky, is the bulk thermal conductivity expressed as ky,; =
%Zw,p wm,pr,pufoy pTop This diffusion-type equation strengthens the
coupling of phonon bands and therefore facilitates fast convergence
from the diffusive regime to the ballistic regime [41]. This equation is

solved by the finite volume method:

n+leq _ n+1
iwp vallTL,i
+1
Kou Y, Sijm; - VT
JEN()
n+% .
= Z Sijn[j : (qnon—Fourier),‘j —4r Z qw,p (14)
JEN(i) ®,p
n+%
(qnon—Fourier)ij == Zw,p ww,p Zs Wy (15)
2 +1
(Tw,p Um’pSS - kbulk (Tw,p Zw,p ww.PCwsp/Twsﬂ )I) : Ve:},w,p,s

To solve this equation, we require the gradient on the faces of the
cells. We adopt the non-orthogonal correction to obtain the gradient for
unstructured meshes.

The complete procedure of the present method is as follows, which
is also depicted in Supplementary Materials S1:

Step 1 Set initial guess for equilibrium energy density e;,. Step 2
Solve the discretized form of the BTE (Eq. 12) subject the boundary con-
ditions to obtain the energy density e,, ,. For the matrix in each band and
direction, we solve it by using Generalized Minimal Residual method
(GMRES) with Incomplete LU factorization (ILU) preconditioner. Step
3 Calculate q,,,_pourier Pased on Eq. 15. Step 4 Solve the Eq. 14 to up-
date the eiﬁl,. The matrix is solved by using the biconjugate gradient
stabilized method (BICGSTAB) with ILU preconditioner. Step 5 Repeat
Step 2 to Step 5 until convergence. The iteration is converged when

ZiNccll (Tin_7—~’n+l)2/Nce” \/ZlNcsll (|Q|7—\Q\7+1)2/Nce11

-3
<10
3 e Tnax 1G] max

is satisfied, where N,

i 1S the number of spatial cells. The temperature
T and heat flux q can be obtained according to Eq. 3.

Two frameworks of parallelization are widely used: the CPU paral-
lelization based on the message passing interface (MPI) and the GPU par-
allelization. For the MPI parallelization, we adopt the direction-based
strategy for the CPU parallelization of our numerical method. Since the
number of directions may be limited, we also apply the band-based par-
allelization when the number of CPU cores exceeds the number of di-
rections. In this strategy, the loops over the directions and bands are
expanded and different CPU cores solve the equations in different di-
rections simultaneously. The matrix in Step 2 is solved by Petsc serial
package [43]. For Step 4, the matrix is solved by different CPU cores
in parallel using the Hypre package [44]. The overall procedure of CPU
paralleled version and the discussion on the parallelization strategy are
shown in Supplementary Materials S1. We also adopt the GPU paral-
lelization. For the GPU version, in Steps 2 and 4, the matrix is solved
by the Viennacl package with GPU parallelization [45]. In all other
steps, different spatial cells are solved simultaneously by different CUDA
threads in a GPU. The overall procedure of GPU paralleled version is also
shown in Supplementary Materials S1. The performance of paralleliza-
tion is provided in Supplementary Materials S6.

We also verify the numerical implementation with analytical solu-
tions and reference results, which is provided in Supplementary Material
S7.

As will be shown later, this method has significant efficiency im-
provements compared with the previous implementation of the unstruc-
tured DOM [19]. The significant efficiency improvement comes from

€= <107 ande =
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two major improvements of the present method compared with the im-
plicit DOM: (i) the piece-wise linear spatial distribution of solutions of
the present method largely reduces the convergent number of meshes
compared with the piece-wise constant spatial distribution in implicit
DOM (see Supplementary material S4 and S5); (ii) the synthetic iter-
ative method [41] adopted in the present method largely reduces the
number of iterations although slightly increases the computational time
of the single iteration compared with the sequential iterative method
(see Supplementary material S5). Apart from these two major improve-
ments compared with the implicit DOM, the optimized parallelization
(see Supplementary material S6) and band discretization (see Supple-
mentary material S4 and S5) combined with the directional discretiza-
tion in this method further ensure excellent efficiency.

3. Results

In this section, we evaluate the performance of the present method.
We use the silicon system as an example. The phonon properties of sil-
icon are obtained from our own first-principles calculations based on
the anharmonic lattice dynamics method [28,33]. In our first-principles
calculations, 70 x 70 x 70 g-points are used to sample the Brillouin
zone. As such, we have phonon properties for 70 x 70 x 70 x 6 phonon
modes. The bulk thermal conductivity of silicon is 156.5 W/m-K, which
is close to the value of the literature [28,33]. By adopting our discretiza-
tion scheme combined with directional discretization, we only need to
sample 960 phonon modes in our subsequent calculations. In this sec-
tion, we first validate the present method on the silicon thin film (in-
plane), which has widely recognized experimental results. To demon-
strate the success of the present method on nanoscale simulations, we
then investigate the thermal transport of a typical 3-dimensional device:
silicon fin field-effect transistor (FinFET). The present method can also
be applied to other materials and devices. The excellent computational
performance is emphasized by comparing it with the state-of-the-art im-
plementation of unstructured DOM [19].

3.1. Validation against experimental results on silicon thin film

Due to the difficulty of the nanoscale thermal measurement, quanti-
tative validation by experiments is rare [48]. The measurements on size-
dependent in-plane thermal conductivity of silicon thin films are widely
recognized experimental measurements [19,46,47]. We first validate
our method using these experimental results [46,47]. The schematic of
in-plane thermal transport in the silicon thin film is shown in Fig. 1a. A
uniform temperature gradient is imposed in a thin film with a thickness
L along the x direction. Since the length in the z direction is much larger
than that in the y direction and the z direction is perpendicular to the
transport direction, this problem can be simplified as a 2-dimensional
problem (Fig. 1b). To simulate this problem, we extract a section of
the thin film. Since the length in the x direction is large, the periodic
boundary condition (see Methods section) is applied at the left and right
boundaries (Fig. 1b). Since the surfaces of experimental samples often
have large roughness or are coated by an amorphous layer [49], the dif-
fusely reflecting boundary condition, which is equivalent to the rough
surface and the amorphous layer [35,36], is applied at the top and bot-
tom boundaries. After a convergence test, we adopt 15 phonon bands, 64
directions (i.e., sample 960 phonon modes), and 2900 triangular meshes
to solve the phonon BTE for this problem.

It shows the in-plane thermal conductivity of the silicon thin film
(Fig. 1c). The thermal conductivity is calculated as ¢/|VT|, where ¢
is the heat flux and |VT| is the temperature gradient (see the Meth-
ods section). It can be seen that the in-plane thermal conductivity of
the silicon thin film decreases with the thickness, as a result of the
effects of boundary scattering [7]. When the thickness decreases, the
boundary scattering, which impedes thermal transport, becomes more
prominent. The predicted results using the present method are compared
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Fig. 1. Validation against experimental results on in-plane thermal transport in the silicon thin film. (a) The schematic of in-plane thermal transport in the
silicon thin film with a thickness of L. (b) The simulation cell of in-plane thermal transport in the silicon thin film. A uniform temperature gradient dT'/dx is imposed
in a thin film along the x direction. (c) Comparison of in-plane thermal conductivity predicted by the present method and experimental results [46,47].

Table 1

The dimensionless geometrical parameters of the FinFET.
L L, Ly Ly Ls Le L, Ly
60 30 12 50 12,5 50 15 10

with the previous experimental results in Fig. 1c [46,47]. Our predic-
tion matches the experimental results very well. These results demon-
strate that our simulation based on the present method not only cap-
tures the nanoscale effect, but also matches the experimental data with-
out any fitting parameters, which shows good accuracy of the present
method.

3.2. Temperature prediction of silicon FinFET

We then take the 3-dimensional transistor: silicon FinFET as an ex-
ample to further demonstrate the performance of the present method.
The structure and the boundary condition setup of the FinFET are shown
in Fig. 2a, which is extracted from Ref. [50]. The thermalizing boundary
is the boundary that is in contact with the metal electrode (source and
drain) or away from the hot spot (substrate) [17,51]. The thermalizing
boundary is set as 300 K to mimic a test environment at room temper-
ature [52]. The diffusely reflecting boundary describes the boundary
contact with an amorphous layer [35,36]. As such, we set the bound-
ary that is in contact with the dielectric layer (amorphous silicon ox-
ide) [50] as the diffusely reflecting boundary (as shown in Fig. 2a). The
other boundaries are all set as specularly reflecting boundaries, which
mimic the symmetric boundary between two devices [29,34]. The hot
spot is set as a semi-ellipse with two axles of L, and Lg near the drain,
which is typically discovered in an enhancement transistor [17]. The
dimensionless geometrical parameters are presented in Table 1. We test
the absolute values for these parameters at different scales, by multi-
plying the ratio scales of 1 nm, 10 nm, 100 nm, and 1 pm (i.e., these
cases have fin-width of 12 nm, 120 nm, 1.2 pm and 12 pm) for checking
the performance of our method from the ballistic regime to the diffu-
sive regime. The total volumetric heat generation rates 4z }’ ¢,, , inside

.

P
the hot spot (See Methods section) are 10'?,10'7,10'%,10'* W/m? for
fin-width of 12 nm, 120 nm, 1.2 pm and 12 pm respectively. These
volumetric heat generation rates are chosen so that temperature pro-
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files for different cases are the same if they are solved by the heat dif-
fusion equation, in which we adopt the bulk thermal conductivity of
silicon: 156.5 W/m-K (the result is shown in Fig. 2¢). The mode-level
heat generation rates are assumed to be uniformly distributed in differ-
ent directions and proportional to the heat capacity for different bands,
mimicking an equilibrium heat source [29]. The properties of the heat
generation in this study are set for demonstration purposes. To capture
the rigorous heat generation due to phonons emitted by hot electrons,
the electron BTE considering electron-phonon coupling is required to
solve simultaneously [2,4,39,53]. After a convergence test, we adopt
15 phonon bands, 64 directions (i.e., sample 960 phonon modes) and
14,442 hexahedron meshes (The convergence test is provided in Supple-
mentary material S4). The unstructured hexahedron meshes to discrete
FinFET are shown in Fig. 2b as an example.

The temperature profiles for different scales predicted by the present
method are shown in Fig. 2d-h. When the size decreases, the difference
between the results of the BTE simulation and the results of the heat dif-
fusion simulation is greater. In the case of the 12 nm fin-width, the max-
imum temperature rise predicted by the BTE is 74 K and about 26 times
greater than that predicted by the heat diffusion equation (Fig. 2h),
which indicates significant non-Fourier effects. These non-Fourier ef-
fects arise when ballistic transport and boundary scattering, which im-
pede thermal transport, become prominent at small sizes [7]. Higher
temperature rise would limit electrical performance of nanoscale de-
vices more seriously [3], which is crucial for understanding the self-
heating effect. Although this result cannot be quantitatively validated
with experimental data, such a trend has also been discovered in exper-
iments qualitatively: when the size of the transistor is small, the temper-
ature of the transistor is larger than that predicted by the heat diffusion
equation [25]. The difference between the BTE simulation and the heat
diffusion equation reduces with increasing size. When the fin-width is
12 pm, the difference between the BTE simulation and the heat diffu-
sion simulation is negligible, which indicates that the thermal transport
is nearly diffusive. The small difference between the BTE simulation
and the heat diffusion simulation in this large case indicates that the
contribution of the extremely large mean free path phonons in silicon
(See Supplementary Material S3) is also resolved by the present method.
From the results above, one can see that full 3-dimensional nanoscale
simulations from the ballistic regime to the diffusive regime are now
possible with our method.
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Fig. 2. Temperature prediction of the silicon FinFET. (a) The structure, boundary conditions and the hot spot of the silicon FinFET. (b) An example of unstructured
meshes. (c) Temperature distribution predicted by the macroscopic simulation. (d-h) Temperature distribution predicted by the present method for the phonon BTE
with the fin-width of (d) 12 pm, (e) 1.2 pm, (f) 120 nm, and (h) 12 nm. Note that the color scale differs for each figure.
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Fig. 3. Computational time of the FinFET simulation. (a) The computational time of simulating the silicon FinFET by the present method and the implicit DOM
[19,271]. (b) The ratio of the computational time of the implicit DOM [19,27] over the computational time of the present method.

3.3. Computational performance of FInFET simulation

To make it possible for predictive thermal design of realistic mate-
rials and devices, simulation efficiency is vital. To demonstrate the ex-
cellent efficiency of the present method, the computational times of the
above cases are summarized in Fig. 3. We test the performance on a clus-
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ter of Intel Xeon Scalable Cascade Lake 6248 CPU and a single NVIDIA
GeForce RTX 3060. The computational times using 16 CPU cores, a sin-
gle GPU, and 128 CPU cores are presented. In all cases, the simulation
can be completed within several hours. It should be noted that larger
computational cost is needed for more diffusive cases, due to the larger
number of iterations needed to reach convergence [41]. In our GPU im-
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Fig. 4. Comparison of temperature distribution predicted by BTE simulations with first-principles properties and empirical models. (a) Temperature
distribution predicted by BTE simulation with first-principles properties. (b) Temperature distribution predicted by BTE simulation with empirical properties model
in Ref. [54]. (c) Temperature distribution predicted by BTE simulation with empirical properties model in Ref. [55]. Note that the color scale differs for each figure.

plementation, a full-scale thermal simulation of a 12 pm FinFET, which
is nearly diffusive, can be completed within 1.9 h. Since the NVIDIA
GeForce RTX 3060 is a commonly used GPU in personal computers,
we actually demonstrate that with the present method, it is feasible to
perform an accurate nanoscale thermal simulation of the 3-dimensional
problem using a single personal computer.

To further demonstrate the excellent performance of the present
method, we compare the computational time of the present method
with a state-of-the-art implementation of the unstructured phonon BTE
solver (implicit DOM) [19,27]. The details of the previous implicit DOM
solver are provided in Supplementary Material S2. In the previous study
[19], the CPU parallelization of implicit DOM is discussed. We adopt the
fastest strategy to do the parallelization for implicit DOM. The acceler-
ation rate is comparable to that in the previous study (See Supplemen-
tary material S6). After convergence tests, we adopt 128 directions and
880,000 hexahedron meshes to do the simulation using implicit DOM.
These numbers are on the same order as those used in the previous study
for a 3-dimensional structure [19]. We still use 15 phonon bands (the
same as in the present method) since previous studies adopt empirical
models and the band discretization scheme for first-principles properties
is lacking in implicit DOM. We provide the computational time of the
implicit DOM when using 128 CPU cores. It can be seen that the compu-
tational time of the implicit DOM is much larger than that of the present
method. The computational time for the largest size (12 pm fin-width)
is unaffordable due to the extremely slow convergence rate in the dif-
fusive limit [19,27]. For this case, we estimate this time by multiplying
the time of one iteration for 880,000 spatial meshes by the number of
iterations for the 14,000 meshes because the convergence rate is similar
for different numbers of meshes for the same case. We also show the
ratio of the computational time of the implicit DOM over the computa-
tional time of the present method. The implicit DOM takes 32 times to
1,733 times more computational time than our method. The 1,733 times
faster computation for the nearly diffusive case is especially important
since it makes the simulation of large sizes affordable and only requires
less than one hour with 128 CPU cores. As such, the full 3-dimensional
solution of phonon BTE from the ballistic to diffusive regime are very
efficient with our method. Even larger cases fall in to diffusive regime
and can be calculated with a heat diffusion equation solver.

Next we compare results of first-principles based phonon properties
and empirical models to show the unique accuracy of first-principles
based phonon properties. We choose two empirical models [54,55],
which are widely adopted in other literature [20,27,41]. The details
of these two models are provided in Supplementary Material S3. The
temperature field predicted by these models is shown in Fig. 4 bench-
marked by the first-principles properties used in the present method.
Comparing the temperature distribution profiles, it can be seen that Em-
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pirical Model 1 from Ref. [54] largely overestimates the temperature rise
of the silicon FinFET. The maximum temperature rise predicted by Em-
pirical Model 2 from Ref. [55] is more accurate, but still has a nearly
10% error compared with the first-principles phonon properties. The
reason for the difference can be understood by the difference in the
mean free path accumulated thermal conductivity and the mean free
path accumulated heat capacity (Fig. S2). The model in Ref. [55] has
very similar properties compared with the first-principles properties and
could be a good approximation for silicon properties. The model in Ref.
[54] shows a large difference in properties that may be due to the un-
certainties in fitting or ignoring the contribution of optical phonons.
Apart from the possible large error, the empirical model is limited to
specific materials. The present method can both have good accuracy
and be easily extended to other materials because of the generality of
first-principles properties [33].

4. Discussion

The present method adopts the framework of DOM, which is the
representative framework of the deterministic method. Apart from the
deterministic method, there are two other frameworks: the statisti-
cal Monte Carlo method (MC) [22] and a machine learning method
(physics-informed neural networks) [23]. When discussing the deter-
ministic method with the MC method and machine learning method, the
efficiency of the deterministic method is sometimes thought to be short-
coming [22,23]. The recently developed machine learning method also
shows better efficiency compared with the implicit DOM [23]. How-
ever, the present method has demonstrated the excellent efficiency of
the deterministic method. Simulating the complicated transistor struc-
ture using the present method is even much faster than training time
in predicting toy problems using machine learning methods [23]. Also
compared with the machine learning methods which have the risk of
misconvergence [56], the present method can always converge to cor-
rect results. The deterministic method also has no statistical error in the
MC method [22] and our method is also much faster than the previous
MC method [22]. Additionally, for the device simulations, since many
commercial electrical simulation packages adopt deterministic methods
[52], the present method can be more easily integrated with these pack-
ages. Although some electron BTE solvers are based on MC methods,
adopting deterministic methods for the phonon BTE also has the advan-
tage of overcoming the convergence problem because of the absence of
statistical error [57]. As such, the present method has many advantages
over other frameworks and can potentially replace the current heat dif-
fusion solver to act as a predictive thermal design tool for nanostruc-
tured materials and nanoscale devices.
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Finally, we note that solving the matrix parallelly is the bottleneck
to the overall efficiency of our method (See Supplementary Material
S6). Since the present method is designed for unstructured meshes, the
most stable method to solve the matrix in this method is the General-
ized Minimal Residual method (GMRES) or biconjugate gradient stabi-
lized method (BICGSTAB) with the incomplete LU factorization (ILU)
preconditioner. A major limitation is the parallelization of the ILU pre-
conditioner [58]. If an efficient parallel ILU preconditioner can be de-
veloped, the efficiency of the present method can be further improved.

5. Conclusion

In this study, we demonstrate an efficient and parameter-free compu-
tational method for nanoscale thermal simulation with the phonon BTE.
In this method, we integrate the phonon properties from first-principles
calculations into the phonon BTE solver and develop a suitable ensemble
of advanced numerical methods for solving the phonon BTE. The accu-
racy of the method is demonstrated with the widely recognized experi-
mental results: the in-plane thermal conductivity of silicon thin film. The
results match the experimental data without any fitting parameters. The
efficiency of the method is demonstrated in the full-scale thermal simu-
lation of the 3-dimensional silicon FinFET with difference characteristic
sizes, which can be completed within two hours on a personal computer.
The computational time can be reduced by thousands of times compared
with a state-of-the-art unstructured method. Our method makes it pos-
sible to achieve the predictive design of realistic nanostructures for the
desired thermal conductivity. It also enables accurate resolution of the
temperature profiles at the transistor level, which helps in better under-
standing the self-heating effect of electronics.

During the peer review process, we noticed a thorough review of the
computation of submicron thermal transport with the phonon BTE by
Mazumder [59]. As pointed out in this review, providing better phonon
properties for the phonon BTE, solving the phonon BTE for realistic 3D
device structures, and making better use of advanced parallel processing
paradigms are major challenges that require further research [59]. We
believe this work provides a solution to address these challenges.
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