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Abstract   Efforts to develop innovative water harvesting strategies offer powerful solutions to alleviate the water crisis, especially in remote and

arid areas. Inspired by the hydrophobic/hydrophilic pattern of desert beetles and water self-propulsion property of spider silks, a double-strand

hydrophobic PVDF-HFP/hydrophilic PAN nanofibers yarn is proposed by electrospinning and twisting techniques. The double-strand coopera-

tion approach allows for water deposition on hydrophobic PVDF-HFP segment and transport under the asymmetric capillary driving force of hy-

drophilic PAN segment, thus speeded up the aggregation and growth of droplets. The effects of the composition and the diameter ratio of the

two primary yarns were studied and optimized for boosting fog collection performance. The double-strand anisotropic yarn not only provide an

effective method for water harvesting, but also hold the potential to inspire innovative design concepts for fog collection materials in challeng-

ing environments.
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INTRODUCTION

Nowadays,  shortage  of  water  resource  is  becoming  an  increa-
singly  serious  global  problem.[1−3] Despite  surface  fresh  water
has been fully or even over-exploited, it is often overlooked that
the  air  holds  a  significant  amount  of  water.  Accordingly,  there
is  increasing  interest  in  producing  fresh  water  from
atmosphere.[4,5] Fog harvesting offers a potential strategy for ac-
cessing of drinking water resources. In order to collect these “in-
visible” water, various methods have been explored, such as va-
por  compression,  Peltier  cooling,  as  well  as  absorption-based
hygroscopic  salts,  porous  gels,  and  MOFs.[6−11] However,  the
critical problems are the time-consuming and high energy con-
sumption in the process of water release and systems regenera-
tion.  Nature  provides  researchers  with  more flexible  and effec-
tive inspirations.[12−17] Numerous organisms in the natural world

possess remarkable abilities for water collection, such as desert
beetles,  spider silk, Nepenthes,[18] Sarraceia,  cactus[19] and water
transportation like shorebird,[20] butterfly,[21] owing to their pre-
cisely designed surface texture arrangements at the micro/nano-
scale.  Of  particular  interest  are  the  hydrophobic/hydrophilic
patterned  backs  of  desert  beetles[22] along  with  the  periodic
spindle-knots  and  joint  structures  in  spider  silk,[23] which  have
garnered  a  great  deal  of  attention.  The  back  of  Namib  beetle
consists  of  alternating  wax-coated  hydrophobic  and  non-waxy
hydrophilic microdomains, morning fog can be captured on the
discrete  hydrophilic  sites  and  grow  up  to  water  droplets,  then
droplets are directed towards the mouth of beetle along the hy-
drophobic  areas  that  is  conductive  to  transport  the  water
droplets. In addition, spider silks can collect and transport water
by virtue of their periodic spindle-knots and joints based on ge-
ometry induced Laplace pressure difference.[23] In  recent years,
based on diverse well-designed micro-multilevel structures and
surface  compositions,  researchers  have  made  remarkable  ad-
vances in fog harvesting through the application of bionic sys-
tems.[24−30] High-efficient fog collection is closely related to two
main factors  that  include rapid droplet  capture and directional
water  transport.[31,32] The  crucial  to  high  performances  are  the
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precise  control  and  coordination  of  the  microstructure  design
for  geometry,  shape,  scale,  and  surface  wetting  modulation  of
solid  surface  in  droplets  behavior  manipulation.  For  example,
surface  with  star-shaped  wettability  patterns,[33] and  of  hierar-
chical wedge-shaped tracks,[34] and superhydrophilic arrays with
wedge structure and slippery feature,[35] as well as various inte-
grated  anisotropic  Janus  systems[36−39] are  dedicated  to  im-
prove  fog  collection  efficiency  by  regulating  water  condensa-
tion, coalescence and transportation. Artificial spider silks of di-
verse  chemical  compositions  and  surface  structures  also  have
made  substantial  advances,  enabling  droplets  to  coalesce  and
be  transported  directionally  toward  humps  for  fog
harvesting.[40−44] Moreover, these have further been woven into
webs  that  can  be  used  for  large-area  water  collection  opera-
tions.[45−47]

Both  desert  beetles  and  spider  silks  have  evolved  remark-
able  water-harvesting  capabilities,  the  evolutionary  purpose
of  these  are  to  meet  their  specific  water  requirements  to
thrive  in  arid  environments.  Nonetheless,  the  total  water-
collecting capacity of these insects is still limited because the
body figure of these insects is quite small. As a result, directly
applying  and  scaling  these  biological  water-harvesting  con-
cepts present challenges in meeting the genuine needs of hu-
manity.  For  instance,  the artificial  model  of  the beetle’s  back
features  a  two-dimensional  (2D)  solid  plane  surface  that  im-
pedes  the  passage  of  wind.  While  this  design  is  suitable  for
smaller area water collection, scaling it up becomes problem-
atic due to wind obstruction. This scaling issue also results in
increased material  costs  and decreased water  collection  effi-
ciency. On the other hand, one-dimensional (1D) artificial spi-
der silk material does not obstruct wind flow and can be pro-
duced more affordably for  larger areas.  However,  the key for
efficient  water  collection  lies  in  its  periodic  protruding  knot
structure,  which  has  a  very  thin  optimal  diameter  (often  mi-
cron  to  tens  of  micron)  comparable  to  that  of  fog  droplets.
This  implies  that  the  mechanical  strength  of  artificial  spider
silk  fibers  is  relatively  low,  often  resulting  in  failure  to  with-
stand  natural  wind  conditions.  While  increasing  the  fiber  di-
ameter can enhance strength, it comes at the cost of sacrific-
ing water collection efficiency. Thus, developing a spider silk-
inspired  water  harvesting  system  that  does  not  hinder  wind
movement  and  balances  both  robust  mechanical  strength
and  water  collection  efficiency  remains  a  significant  chal-
lenge.

Herein,  seeking wisdom from nature,  we presented a dou-
ble-strand  nanofibers  yarn  with  stripe-patterned  opposite
wettability  that  drawn  complementary  advantages  inspira-
tion from desert beetles and spider silk, which exhibits highly
efficient fog harvesting properties as well as high mechanical
strength.  The  double-strand  yarn,  featuring  anisotropic  wet-
tability,  are  meticulously  constructed  by  double-twisting  of
the  primary  hydrophilic  nanofibers  yarn  and  hydrophobic
nanofibers yarn. The water collection rate of anisotropic yarn
reached  3.20±0.13  g·h−1·cm−2 that  outperformed  homoge-
neous  hydrophilic  or  hydrophobic  counterpart  yarns.  The
high fog collection performance is benefit from the synergis-
tic  effect  of  water  trapping  at  the  hydrophobic  sites,  along
with  self-transporting  of  water  droplets  towards  the  hy-
drophilic region, which facilitate the convergence and collec-

tion  of  water.  This  concept  of  double-strand  cooperative
anisotropic  yarn is  expected to  inspire  new ideas  for  the de-
sign  and  applications  of  high-performance  water  collection
materials.

EXPERIMENTAL

Materials
N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc)
and  acetone  were  purchased  from  Beijing  Chemical  Works.
Poly(vinylidene  fluoride-co-hexafluoropropylene)  (PVDF-HFP)
and polyacrylonitrile (PAN) were purchased from Sigma-Aldrich,
Shanghai, China and used as received.

Preparation of Fibrous Membranes with Opposite
Wettability
The PVDF-HFP (15 wt%) was dissolved in  a  mixture of  acetone
and DMAc (7/3, W/W) The PAN (10 wt%) was dissolved in DMF.
The PVDF-HFP and PAN precursors were electrospun to nanofi-
brous films under working voltage and receiving distance of 14
kV, 15 cm and 16 kV, 15 cm, respectively.

Preparation of Double-strand Anisotropic Twisted
Yarn
The  as-prepared  electrospinning  membranes  were  cut  in  rect-
angle strip with dimensions of 2 cm × 15 cm and then mounted
on electric motor to twist primary PAN and PVDF-HFP yarns, re-
spectively.  Then  a  PAN  yarn  and  a  PVDF-HFP  yarn  were  sec-
ondary co-twisted to a double-strand yarn.

Fog Collection Measurements
A stimulated fog flow was produced by a commercial humidifi-
er. The as-prepared yarns were immobilized under the fog flow
with an effective length of 4 cm at approximately 25 °C. The dis-
tance between as-prepared yarns and fog outlet was about 10
cm.  The  collected  water  dripped  down  from  the  as-prepared
yarns by gravity and was gathered by a water container under
the  yarns.  To  calculate  the  water  collection  efficiency  per  unit
area,  the yarn area is  calculated by considering the fiber  cross-
section  as  a  regular  circle.  The  calculation  involves  multiplying
the perimeter of the cross-section by the length of the yarn.

Characterizations
The scanning electron microscopy (SEM) images were obtained
using a field emission scanning electron microscope (JEOL, JSM-
7500F). The element energy dispersive spectroscopy (EDS) map-
ping  images  were  collected  by  a  JEOL  JEM-ARM200F  equip-
ment.  The contact  angles  were measured by an OCA20 instru-
ment (Data-Physics, Germany) at ambient temperature. The per-
formances  of  fog  collection  were  recorded  by  a  high-speed
camera  (Basler,  acA1600-60gm).  Mechanical  properties  of  the
yarns were assessed using the stress-strain test  by an electrical
universal material machine (SHIMADZU, AGS-X 1KN, Japan).

RESULTS AND DISCUSSION

Two  representative  water  harvesting  biological  samples  in  na-
ture, i.e. Namib desert beetles and spider silk, are exemplified in
Figs. 1(a) and 1(b). Fig. 1(a) shows a Namib desert beetle and its
peak-valley  structured  back  with  bumped  non-waxy  hy-
drophilic  regions  and  wax-coated  hydrophobic  valley  regions
that  could  be  abstracted  as  a  2D  surface  with  alternating  hy-
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drophobic/hydrophilic domains. Fig. 1(b) is the structure of spi-
der  silk  with  periodic  spindle-knots  and  joints  that  can  be  re-
garded  as  a  1D  object  with  periodic  geometry  gradient.  Al-
though  these  two  kinds  of  natural  fog  collection  architectures
are  very  successful  for  the  survive  of  the  tiny  body figure  bee-
tles and spiders in arid environment. However, large scale fabri-
cation  and  applications  of  these  nature-inspired  artificial  fog
collection materials has encountered great obstacles. For exam-
ples,  large  area  2D  structure  is  wind-block  and  huge  material
consumption,  say  nothing  of  the  potential  safety  hazard  in
strong wind, while the 1D spider-silk-like periodic spindle struc-
ture  has  numerous  slim  joints  that  are  bottlenecks  for  enough
mechanical  strength  in  real  applications.  These  natural  exem-
plary  creatures  have  prompted us  to  integrate  the  advantages
of the Namib desert beetles, characterized by its patterned wet-
tability  surface,  and  spider  silk,  known  for  its  water  self-pro-
pelled capabilities for 1D fibrous material.

As  a  result,  we  designed  a  bionic  secondary-twisted
anisotropic double-strand nanofibers yarn with opposite wet-

tability for fog collection as illustrated in Fig. 1(c), which con-
quers  the  drawbacks  of  wind-block  2D  materials  and  weak
strength  1D  materials.  Initially,  two  membranes  comprising
aligned  nanofibers  of  hydrophobic  poly(vinylidene  fluoride-
co-hexafluoropropylene)  (PVDF-HFP)  and  hydrophilic  poly-
acrylonitrile (PAN) were obtained on a roller receiver through
electrospinning.  Subsequently,  the  aligned  PVDF-HFP  and
PAN nanofibers were individually twisted to produce primary
PVDF-HFP  and  primary  PAN  yarns.  Then  the  primary  PVDF-
HFP  yarn  and  PAN  yarn  were  secondary-twisted  to  double-
strand anisotropic  yarn (Fig.  S1 in  the electronic  supplemen-
tary information, ESI). The photograph in Fig. 1(d) depicts the
double-strand  anisotropic  twisted  yarn,  with  red  PVDF-HFP
(colored  by  Sudan  II)  alternating  with  blue  PAN  (colored  by
methylene blue).

The  scanning  electron  microscopy  (SEM)  images  in Figs.
2(a) and 2(b) display the uniform and aligned structure of the
electrospun  PVDF-HFP  and  PAN  fibers,  with  average  diame-
ters  of  approximately  422±45  and  449±43  nm,  respectively.
The  primary  twisted  PVDF-HFP  (left)  and  PAN  (right)  yarns
have  a  diameter  of  ~300  μm.  These  yarns  exhibit  numerous
interconnected  channels  and  a  multilevel  structure  due  to
their  helically  aligned  nanofibers  organizations. Fig.  2(c)  de-
picts  the  mechanical  properties  of  three  kind  of  double-
strand  yarns.  Additionally,  these  structures  and  features  will
contribute  to  water  collection  and  self-propulsion  capabili-
ties  in  application  scenarios.[30,49,50] Two  strand  of  PVDF-HFP
and PAN yarns were combined and secondary twisted to dou-
ble-strand  homogeneous  PVDF-HFP/PVDF-HFP,  PAN/PAN
yarns  and  heterogeneous  PVDF-HFP/PAN  yarn,  respectively
(Figs. 2d−2f). The different chemical composition of the three
kinds  of  yarns  was  characterized  by  EDS  elemental  maps  of
representative  elements  fluorine  (F,  colored  with  green)  in
PVDF-HFP and nitrogen (N, colored with red) in PAN as shown
in Figs.  2(g)−2(i).  Unlike  the  homogeneous  composition  in
Figs. 2(g) and 2(h), it is seen both N and F elements could be
observed  in  PVDF-HFP/PAN  yarn  (Fig.  2i),  which  confirm  the
successfully  integrating  of  the  heterogeneous  components.
The  wettability  of  the  different  yarns  was  then  tested  (see
Figs.  S2  and  S3  in  ESI  for  the  wettability  of  the  fiber  mem-
brane  and  primary  yarn).  It  is  seen  the  PVDF-HFP/PVDF-HFP
yarn showed a  water  contact  angle  of  133.6°±2.1°  indicating
its  highly  hydrophobic  property  (Fig.  2j),  while  the  PAN/PAN
yarn  displayed  highly  hydrophilic  property  that  water  could
be  completely  absorbed  into  the  yarn  (Fig.  2k).  Differently,
PVDF-HFP/PAN  double-strand  yarn  demonstrated  anisotrop-
ic  wettability  with  alternating  hydrophobic  and  hydrophilic
patterns in Fig. 2(l), that provide their desert-beetle-like prop-
erty for fog collection.[22]

Fig.  3 illustrates the fog collection capabilities of  the three
types of double-strand yarns. We used a homemade fog-har-
vesting  apparatus  to  quantitatively  characterize  the  fog  col-
lection efficiency (Fig. 3a). In this work, we selected a double-
strand  PVDF-HFP/PAN  yarn  with  a  diameter  of  ~450  μm,  an
optimized  diameter  that  shows  excellent  performance  (Figs.
S4 and S5 in ESI). In Fig. 3(b), the fog collection efficiencies of
PAN/PAN and PVDF-HFP/PVDF-HFP double-strand yarns were
0.90±0.11  and  2.55±0.16  g·h−1·cm−2,  respectively.  While  the
PVDF-HFP/PAN  group  with  hybrid  hydrophobicity-hy-
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Fig.  1    Schematic  illustration  of  the  biological  fog  collection
models  and  preparation  process  of  the  double-strand  anisotropic
twisted  yarn.  (a)  Namib  desert  beetle[48] and  (b)  spider  silk[15] in
nature  with  fog  collection  ability.  The  back  of  desert  beetle  is  2D
with  surface  alternating  hydrophobic/hydrophilic  mosaic
domains.[22] Spider  silk  is  1D  structure  with  periodic  spindle  knot-
slim  joint  structures.[23] The  drawbacks  of  artificial  large-scale
fabrication  of  these  two  materials  are  that  2D  structure  is  wind
block and material consuming, while slim joints on 1D structure are
weak  spots  of  mechanical  strength.  (c)  The  preparation  procedure
of  the  hydrophobic  PVDF-HFP/hydrophilic  PAN  double-strand
anisotropic  twisted  yarn,  which  consists  of  three-steps  including
electrospinning,  twisting,  and  secondary  twisting.  The  double-
strand  yarn  has  1D  structure  with  alternating  wettability  that
combines  the  advantages  of  desert  beetle  and  spider  silk  while
conquers their drawbacks. (d) Optical photograph of the PVDF-HFP
(red)/PAN (blue) double-strand yarn.
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drophilicity  exhibited  the  highest  water  collection  efficiency
of  3.20±0.13  g·h−1·cm−2.  It  indicates  the  existence  of  the  hy-
drophilic  and  hydrophobic  patterned  structures  in  the  dou-
ble-strand  anisotropic  twisted  yarns  promoted  the  aggrega-
tion of  the droplets  and thus  greatly  enhanced the speed of
fog collection

Then  the in  situ real  time  fog  collection  process  was  ob-
served  as  shown  in Fig.  3(c).  It  is  seen  that  the  hydrophilic
PAN/PAN yarn in fog tends to wet the whole yarns, forming a
thin  water  film.  However,  this  thin  water  film  completely
spread along the yarn due to the homogeneous hydrophilici-
ty  that  does  not  accumulate  into  water  droplets  and  cannot
be  collected  for  practical  use.[51] In  contrast,  fog  on  the  hy-
drophobic  PVDF-HFP/PVDF-HFP  yarn  assembles  into  a  lot  of
tiny  droplets  that in  situ grew  up  along  with  time  (Fig.  3d).
However,  this in  situ growing  mode  is  of  low  efficiency  be-
cause  the  fog  collection  process  accompanies  with  water
evaporation at the same time. Therefore, the keypoint of a fog
collecting  material  lies  in  how  to  accumulate  larger  water
drops  as  soon  as  possible.  In  this  regard,  the  double-strand
PVDF-HFP/PAN  yarn  with  anisotropic  wettability  exhibited
much  higher  fog  collection  performance  than  above  two
samples (Fig. 3e). When the PVDF-HFP/PAN yarn is in a foggy
environment,  the  hydrophobic  PVDF-HFP  domains  mainly

serve  as  the  collection  sites,  while  the  hydrophilic  PAN  sites
attract the water droplets beside the PVDF-HFP domains and
facilitates  the  aggregation  of  these  droplets  onto  larger  wa-
ter  drops.  The  as-formed  large  water  drops  will  fall  into  the
underlying  water  container,  transforming  into  usable  fresh
water.  Consequently,  the  synergistic  effect  of  the  hydropho-
bic  and  hydrophilic  patterns  in  the  anisotropic  PVDF-
HFP/PAN yarn enhances the fog collection performances.

Fig.  4 illustrates  the  water  collection  mechanism  of  three
types  of  double-strand  anisotropic  yarns.  On  PAN/PAN  yarn
as  shown  in Fig.  4(a),  fog  droplets  are  absorbed  by  the  yarn
due to the hydrophilicity,  but they tend to form a thin water
film  rather  than  accumulating  to  larger  water  drops  and  be-
ing  collected.  On  PVDF-HFP/PVDF-HFP  (Fig.  4b),  the  hy-
drophobic  yarn  facilitates  the  deposition  of  numerous  tiny
droplets,  but  these  droplets  only in  situ growth  that  is  time-
consuming and inefficient due to the accumulation/evapora-
tion  balance. Fig.  4(c)  presents  a  cooperative  mode  on  dou-
ble-strand  wettability  anisotropic  PVDF-HFP/PAN  yarn.  The
water  droplets  are  captured  on  hydrophobic  regions,  then
they are transported to the nearby hydrophilic regions under
the  hydrophilic  capillary  forces.  These  droplets  undergo  de-
position,  transport,  coalescence,  and collection cycles on the
yarn as further shown in Fig. 4(d). Initially, water droplets are
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Fig. 2    Morphology and wetting property. (a, b) SEM images of aligned PVDF-HFP and PAN fibers. The scale bar is 2 μm. As well as the
primary twisted PVDF-HFP yarn and PAN yarn. The scale bar is 200 μm. (c) Mechanical property of three kind of double-strand yarns. (d−l)
The three kinds of double-strand yarns of PVDF-HFP/PVDF-HFP, PAN/PAN and PVDF-HFP/PAN components: (d−f) Schematic illustrations
and SEM images,  (g−i)  EDS maps of F and N elements indicate the heterogeneous composition of PVDF-HFP/PAN double-strand yarn,
(j−l)  the  hydrophobic  PVDF-HFP/PVDF-HFP  yarn,  the  hydrophilic  PAN/PAN  yarn,  and  the  PVDF-HFP/PAN  double-stranded  yarn  shows
alternating hydrophobicity/hydrophilicity.
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deposited and aggregated at the hydrophobic sites (stage I).
Subsequently,  the  droplets  self-propelled  towards  the  hy-
drophilic regions under the wetting force (stage II).  This driv-
ing  force  is  generated  from  the  gradient  Laplace  force[52−56]

F = ∫ γ (cosθA − cosθR)dl,  where θA and θR are the advancing
and  receding  contact  angles  of  water  drops  on  the  hy-
drophilic region and hydrophobic region, respectively, γ rep-
resents  the  surface  tension  of  water,  and  dl is  the  integral
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Fig. 3    Fog collection performances on double-strand yarns with different components. (a) Schematic illustration of the fog collecting
system;  (b)  Fog  collection  efficiency  of  PAN/PAN,  PVDF-HFP/PVDF-HFP  and  PVDF-HFP/PAN  yarns  double-strand  yarns  that  the  PVDF-
HFP/PAN yarn shows the highest  efficiency;  Process of  fog collection on (c)  PAN/PAN, (d)  PVDF-HFP/PVDF-HFP and (e)  PVDF-HFP/PAN
yarns. It is seen the PVDF-HFP/PAN yarn accumulates the largest water droplet in same time.
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film rather than collectable droplets; (b) Tiny droplets in situ steady growth on PVDF-HFP/PVDF-HFP yarn requires a considerable amount
of  time  to  form  larger  droplets;  (c)  Water  droplets  undergo  a  process  of  deposition,  transport,  coalescence,  and  be  collected  on
anisotropic PVDF-HFP/PAN yarn; (d) The fog collection mechanism of PVDF-HFP/PAN yarn. Stage I: Fog droplets deposit and aggregate
at  the hydrophobic  PVDF-HFP yarn sites.  Stage II:  Water  droplets  will  be  absorbed toward the hydrophilic  PAN yarn region under  the
hydrophilic  force.  Stage  III:  The  smaller  water  droplets  spontaneously  coalesce  to  larger  drop  due  to  gradient  Laplace  force  that  the
advancing  angle  (θA)  in  hydrophilic  region  is  smaller  than  the  receding  angle  (θR)  in  hydrophobic  region.  Stage  IV:  Adjacent  droplets
rapidly merge to large water drop and then fall into water container achieving water collection target.
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variable along the length of the yarn. There is imbalance be-
tween the droplet advancing angle (θA, smaller) and receding
angle  (θR,  larger)  (stage  III),  causing  the  water  droplets  to
move towards the hydrophilic regions. The adjacent droplets
rapidly grow to large water drops and then fall  in to the wa-
ter container due to the gravity ultimately (stage IV).  As a re-
sult,  the  double-strand  PVDF-HFP/PAN  yarn,  featuring  a
stripe-patterned  topographically  opposite  wettability,  ex-
hibits  a  significantly  improved  water  collection  efficiency  in
comparison to homogeneous PAN/PAN and PVDF-HFP/PVDF-
HFP double-strand yarns.

In addition to the yarns’ component, the fog collection effi-
ciency of  anisotropic  yarn is  also  influenced by the diameter
ratio  of  the  primary  single  strand  yarns.  Consequently,  dou-
ble-strand  yarns  with  varying  diameter  ratios  (r = DPVDF-HFP/
DPAN = 0.78, 0.86, 0.93, 1.24, 1.39 and 1.52, respectively) were
fabricated by adjusting the diameter of the primary yarns. Fig.
5(a) demonstrates that when the proportion of the hydropho-
bic  PVDF-HFP  region  is  insufficient  for  water  deposition,  the
hydrophilic  region  takes  precedence,  water  mainly  spread
along  the  yarn  rather  than  accumulation  to  water  drops  on
the yarn’s surface. With PVDF-HFP/PAN increasing (as depict-
ed in Figs. 5b and 5c), the hydrophobic deposition length ex-
pands that relatively larger water drops could be accumulat-
ed  on  the  yarn.  However,  if  the  diameter  ratio  of  PVDF-
HFP/PAN yarn exceeds 1:1,  as observed in Figs.  5(d)−5(f),  the
hydrophobic  regions  play  a  dominant  role.  Water  droplets
predominantly  grow  slowly in  situ without  aggregating,  the
coalescence of droplets becomes harder which also results in
the decrease of water collection efficiency. Fig. 5(g) shows the
statistical  analysis  of  the  water  collection  efficiency  on  dou-
ble-strand  yarn  as  a  function  of  varying  diameter  ratio  of
PVDF-HFP yarn to PAN yarn (Fig. S6 in ESI).  It  is seen the effi-

ciency  exhibited  a  tendency  of  first  rising  and  then  falling,
which  reached  apex  of  3.20±0.13  g·h−1·cm−2 in  1:1.  After  pa-
rameter  optimization,  we  conducted  a  long-term  perfor-
mance of  water  collection with a  1:1  PVDF-HFP/PAN yarn,  as
illustrated in Fig. 5(h) and Fig. S7 (in ESI). The results revealed
its  stable  and  high  efficiency  fog  collection  of  cumulative
48.68 g·h−1·cm−2 over a 15-h duration.

CONCLUSIONS

Drawing  insights  from  the  synergistic  characteristics  of  Namib
desert beetles and spider silk, we developed a hydrophobic/hy-
drophilic  stripe-patterned  double-strand  yarn,  which  hold  im-
mense potential  for  highly  efficient  fog collection.  The propor-
tion of  PVDF-HFP/PAN was strategically  studied and optimized
to achieve the best exposure of the hydrophobic segment, cou-
pled  with  the  asymmetric  wetting  driving  force  at  the  pat-
terned junction,  collectively  facilitates  rapid collection of  water
droplets.  The  PVDF-HFP/PAN  double-strand  yarn  reaches  its
highest  water  collection rate  of  3.20±0.13 g·h−1·cm−2.  This  very
simple  but  effective  synergistic  strategy  will  inspire  novel  con-
cepts  for  the  next  generation of  fog-collecting materials,  offer-
ing  a  promising  solution  for  sustainable  water  resource  man-
agement.
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Fig.  5    Influence of  diameter  ratio  of  PVDF-HFP to PAN on fog collection efficiency.  (a−f)  Fog collection process  on double-strand yarns with
different diameter ratio of PVDF-HFP to PAN primary yarn (r = DPVDF-HFP/DPAN = 0.78, 0.86, 0.93, 1.24, 1.39 and 1.52, respectively); (g) Fog collection
efficiency statistic of double-strand anisotropic twisted yarns with different diameter ratio showing the ratio 1:1 has the highest efficiency; (h) The
stable water collection efficiency over 15 h.
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