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Abstract
Optical phenomena always display some degree of partial coherence between their respective degrees of freedom.
Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between
spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be
leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here,
we present a universal method to analyze, process, and generate spatially partially coherent light in multimode
systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose
average power outputs are sequentially optimized. Once optimized, the network separates the input light into its
mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We
illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method
can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent
light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the
experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic
devices that can automatically learn optimal modal representations of partially coherent light fields.

Introduction
In optics and photonics, partially coherent light is the

norm rather than the exception and accounts for emission
processes in stars, LEDs, thermal emitters, photovoltaics,
luminescent and scintillating materials, as well as natural
light for sensing the environment1. The partial coherence
of light naturally emerges in various physical phenomena,
such as light propagation in turbulent media and
astronomy2. Partially coherent light is also used in
advanced imaging, sensing, and communication mod-
alities, such as optical coherence tomography, ghost
imaging, stellar interferometry, and low-power optical
trapping, to only name a few2. Partial coherence describes
statistical correlations between degrees of freedom of a
light field (such as spatial, spectral, polarization, etc.)2–4.
This general description is particularly relevant in
understanding phenomena that involve coupled degrees
of freedom, such as polarization (meta)optics5,6 and

imaging7, cross-spectral purity8, cylindrical vector beams9,
and “classically entangled” photonic states10.
The coherency matrix ρ1,11 (or its quantum optical

analog, the density matrix12) is generally used to char-
acterize such partial coherence over arbitrary channels of
a photonic system. Of particular interest is the basis of so-
called “natural modes”13–15. We can express any spatially
partially coherent optical field near some wavelength as a
linear superposition of these modes, which have the
important physical property that they are mutually inco-
herent (i.e., completely uncorrelated). Equivalently, any
spatially partially coherent field can be decomposed into
orthogonal and mutually incoherent parts. This decom-
position is mathematically equivalent to finding the basis
that diagonalizes the matrix ρ13–15. Methods to recon-
struct ρ for few polarization-spatial channels have been
demonstrated via projective measurements (e.g., for 4 ´ 4
polarization ´ spatial degrees of freedom16). Despite the
ubiquity of partial coherence in optical phenomena, there
is no general, scalable method to measure ρ, nor appar-
ently so far any physical method that separates it into its
mutually incoherent parts.
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Meshes of Mach-Zehnder interferometers (MZIs)17 have
proven very effective at manipulating18 and measuring19

coherent multimode light. MZI meshes have been used to
implement inference20 and training21 in optical neural
networks, heuristic algorithms for combinatorial optimi-
zation22, simulation of quantum transport23, free space
optical control18, and universal linear optics24,25. Central
to these works is the fact that MZI meshes are universal
linear photonic processors24. Specifically, self-configuring
MZI networks can automatically learn unitary operators
for coherent light processing24,26 and establish optimal
communication channels27,28. However, the existing lit-
erature on MZI meshes predominantly concentrates on
coherent light processing, largely overlooking the expan-
sive potential in processing and analyzing incoherent or
partially coherent multimode light.
Here, we propose a general method using self-

configuring optics—“partially coherent light analyzers”
(PCLA)—to fully measure the coherency matrix of par-
tially coherent light near some wavelength; this method
additionally separates the light into its mutually incoherent
orthogonal components, whose powers appear separately
in the output waveguides. Our method performs sequen-
tial power optimization over the N output channels of a
self-configuring network, thereby learning the coherency
matrix eigenvectors and eigenvalues. In this process, the
unitary network is then also implementing the linear
transform that diagonalizes the coherency matrix. If we
separately calibrate the network19, we can deduce this
diagonalizing transformation (and hence the eigenvectors)
from the resulting network settings by simple arithmetic.
Together with measurements of the relative output pow-
ers, which give the matrix eigenvalues, this process
therefore measures this matrix. If we run our process in
reverse, injecting mutually incoherent light backwards into
the different output ports, we can generate arbitrary par-
tially coherent fields emerging backwards from the input
ports, without fundamental beamsplitting losses.
We illustrate our method in three distinct settings: (1)

analyzing partially coherent environmental light from a
scene; (2) generating partially coherent light with an
arbitrary coherency matrix; (3) analyzing incoherent
mixtures of single photons on an integrated photonic
network. Our method therefore paves the way to full
characterization, processing, and generation of partially
coherent light, addressing significant untapped opportu-
nities in fields such as environmental and astronomical
sensing, quantum optics, and advanced imaging, in each
of which partial coherence plays a fundamental role.

Results
Self-learning partially coherent light analyzers (PCLA)
We first describe the physics and learning procedure of

PCLA in processing partially coherent light. Our

approach can in principle process partial coherence over
many spatial degrees of freedom of a light field and in
various settings, with some examples shown in Fig. 1a. We
collect the input light into N spatial “channels” or
waveguides into the PCLA, using grating or other input
couplers. Polarization splitting couplers that route dif-
ferent input polarizations to waves in the same polariza-
tion in different waveguides would add the ability
simultaneously to process polarization degrees of freedom
also24. Throughout this paper, we assume that the
coherence length of the sources is much longer than any
path length differences in the system.
Our PCLAs consist of a cascade of up to N self-

configuring layers, such as diagonal lines24,26 (resulting in
a triangular mesh29), binary tree layers19,26, or hybrid
architectures19,30, all constructed from 2 ´ 2 program-
mable interferometer blocks. Self-configuring layers can
be defined topologically as ones in which there is one and
only one path through these blocks from the “top” output
(Fig. 1b) of the layer to each input to the layer19.
For concreteness, we consider integrated self-

configuring layers, with the 2 ´ 2 blocks implemented
using integrated MZIs. Such MZIs are made from two
phase shifters (θ;ϕ) and two 50:50 directional couplers
(Fig. 1b)19,26,31,32. Each layer has a single (“top”) output
whose power is measured with a photodetector. That
measurement is used to update the settings of that
layer via electronic feedback. The photodetector could
be an external or integrated photodiode and could also
be designed just to sample a sufficient amount of power
during measurement, leaving the majority of the
separated output power for other purposes. Specifi-
cally, each layer optimizes (e.g., maximizes) the power
at each detector by tuning the parameters (e.g., phase
shifters) of that single layer. In the self-configuring
geometry, the power output of a given layer is inde-
pendent of the parameters of all subsequent layers,
thereby reducing the number of degrees of freedom for
each subsequent power optimization. The power
optimization is sequential: the power output of the first
layer is first maximized, then that of the second, and so
forth.
Once the sequential power optimization has converged,

the PCLA has learned a modal representation of the
spatially partially coherent input light field corresponding
to mutually incoherent modes13–15 (see Fig. 1c). These
mutually incoherent modes do not produce interference
patterns when mixed with a tunable phase (a feature that
can be further checked experimentally with an analyzer
network after the PCLA, as discussed later in this paper).
In the process, the PCLA has learned the coherency
matrix eigenvectors, which can then be deduced directly
from the resulting settings of the (calibrated19) network
elements. The corresponding eigenvalues λi can be
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measured by reading out the average values of the output
powers. Additionally, the number of output ports with
non-zero average power corresponds to the number of
such mutually incoherent modes, or the rank of the
coherency matrix.
We now describe the PCLA learning procedure. Let us

denote ρin as the coherency matrix of the input field. The
coherency matrix is Hermitian semi-positive and can
therefore be diagonalized as:

ρin ¼ UDUy

where U is the orthogonal basis of mutually incoherent
eigenmodes and D a positive diagonal matrix correspond-
ing to the average power in each mode λi � 0.
Characterizing ρin entails measuring the unitary operator
U and the eigenvalues λi. We assume that power
averaging is performed over timescales much longer than
the coherence time of the measured sources.
A linear operation UPCLA on these channels transforms

the coherency matrix as: ρout ¼ UPCLA ρinU
y
PCLA

11 (where
ρout is the coherency matrix of the network output y).
Each step of the algorithm consists in the maximization of
the ensemble averaged power at the output port of one of
the self-configuring layers. At step k, the network

optimization is the following:

max
Sk

ρout
� �

kk ¼ λk

where λk is the k-th largest eigenvalue of ρin (ordered such
that λ1 � ¼ � λN ), and Sk is the set of tunable
parameters (phases) in the k-th self-configuring layer,
corresponding to a set of MZI denoted Mk . This equality
is a direct consequence of the min-max or variational
theorem of linear algebra, whose conditions are naturally
enforced in self-configuring networks due to the mutual
orthogonality of the self-configuring layers24. We can then
optimize the network settings sequentially for one layer at
a time, and the relative power at output node k gives λk .

The PCLA therefore “diagonalizes” the coherency
matrix ρin, such that UPCLA ¼ Uy. Consequently, reading
out the network parameters and output powers fully
characterizes the coherency matrix. More details of the
proof can be found in Section S1 of the Supplementary
Information (SI). In the following, we illustrate this
method in several settings where partial coherence of light
is essential.
Once configured, one can know the values of the phase

delays in the phase shifters by reading the applied voltages
(or other control variables). Approaches to the necessary
calibration of the phase shifters include progressive

N

1

2

Thermal light

luminescence

Partially polar-
ized light

Single-photon
mixtures

Multimode partially
coherent light

a b c
Self-configuring layer networks

Self-learned decomposition
of partially coherent light

Mutually incoherent outputs

Avg.
power

Average power “reads” 
coherency/density matrix
eigenvalue

Counts number of mutually
incoherent modes

Diagonal line layer Binary tree layer 50:50

S
el

f-
co

nf
ig

ur
in

g 
la

ye
r

Electronic 
Feedback

2

2

1

1

3

3

A
vg

. 
po

w
er

Channel i 50:50

Channel j

ϕ

ϕ

Pump

PCLA

“Partially coherent

light analyzer”

(PCLA)

Sequential power optimization

X

ϕ θ

Fig. 1 Measuring and processing partially coherent light with self-configuring optics. a Partial coherence of light is observed in many photonic
systems: between spatial modes in thermal light emission or luminescent materials (pumped by optical light or high-energy particles); partially
polarized light in environmental sensing; or as incoherent mixtures of pure states in quantum optics. b Partial coherent light analyzer (PCLA): self-
configuring networks can automatically analyze these different forms of multimode partially coherent light near some wavelength of interest. Input
multimode partially coherent light is coupled into N waveguides that then feed a cascade of self-configuring layers (e.g., each a diagonal line or
binary tree of Mach-Zehnder interferometers (MZIs)). These layers then learn a decomposition of the corresponding density matrix ρ via a sequential,
layer-by-layer power optimization method relying on measurement and feedback. Each node of the array is a 2 ´ 2 MZI. c The learned decomposition
separates the mutually incoherent modes (eigenvectors of ρ) to generate outputs (1) from the “top” waveguide of each self-configuring layer. The
resulting network settings give the eigenvectors. The output power of each such waveguide (2) gives the corresponding eigenvalue of ρ; and (3) the
number of output ports with non-zero power corresponds to the number of mutually incoherent modes (up to a maximum of N)
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methods presuming 50:50 beamsplitters19,33, methods of
setting up and calibrating “perfect” meshes even when the
fabricated beamsplitters are not 50:5031, and approximate
methods based on global optimization34. Therefore, once
the PCLA has performed the sequential power optimiza-
tion, we can read off these voltages or control values and
deduce exactly the unitary matrix UPCLA represented by
the mesh19.

Environmental light processing with self-configuring
Mach-Zehnder interferometer arrays
We now show how PCLAs can be used to analyze and

process partially coherent light fields impinging on the
PCLA from a scene, as shown in Fig. 2a. As a practical
matter, the behavior of circuit components such as input
couplers, waveguide beamsplitters and phase shifters will
depend on the wavelength to some degree, but we pre-
sume that the spectral bandwidth of the input light is
narrow enough or has been sufficiently filtered that we can
approximately neglect such dependence for our discus-
sion. The interferometer meshes themselves can be con-
structed with path lengths that are all essentially equal for
all interfering components19, so the behavior of the
meshes is otherwise essentially independent of wavelength.

We consider N “channels” of input light, whose fluc-
tuating amplitudes are denoted by an N-dimensional
vector x. The partial coherence of these channels is
described by the coherency matrix ρin

1, such that ρinð Þij ¼
hxix�j i, where 〈⋅〉 denotes ensemble averaging (e.g., time
averaging if we presume stationary ergodic fields1). Such
quasi-monochromatic fields with fluctuating complex
amplitudes may be generated by imaging incoherent light
sources (which acquire partial coherence via the van
Cittert-Zernike theorem1), fluctuating currents in (spec-
trally filtered) light emitted devices35,36, and lasers
described by the van der Pol oscillator model1. Potential
experimental implementations of our scheme are descri-
bed in the SI, Section S6. For illustrative purposes, each
node of the network in a 4-channel triangular array
example (Fig. 2b) is labeled with the corresponding output
port optimization color (with M1 shown in orange, M2 in
purple, and M3 in green, respectively).
We demonstrate the validity of our approach with

numerical experiments in Fig. 2c, d with a 10-channel
fluctuating input field, simulating light propagation with
fluctuating amplitudes through a triangular array. As the
power optimization is carried out, each channel’s output
power gives the corresponding eigenvalue of ρin. The
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corresponding unitary fidelity (defined as F ¼
UPCLAUj j; Idh iHS

22, where 〈⋅〉HS is the Hilbert-Schmidt
dot product and Id is the identity matrix) increases
throughout the power optimization and reaches values >
0.99 after convergence, thereby showing the PCLA learns
the eigenvalue decomposition of the coherency matrix
with great accuracy.
Once configured, the fields in different output channels

of this network should be mutually incoherent; if we then
attempt to interfere each pair of outputs, we should see no
interference between them as the relative phase of those
outputs is varied. To test such mutual incoherence, one
can use an additional output analyzer layer of MZIs, as in
Fig. 2e, after the coherency diagonalization circuit
UPCLA ¼ Uy. To interfere any two outputs, the MZI nodes
can be appropriately configured as (1) identity; (2) swap;
(3) or mix (i.e., 50:50 splitter, as in Hadamard gates),
shown in Fig. 2e, onto an output photodetector. Scanning
the relative input phase using the analyzer input phase
shifters should then produce no interference fringes (see
Fig. 1c), which is equivalent to performing balanced
homodyne measurements, yielding a zero-mean power.
Details of the parameters and methods used in this
numerical experiment can be found in Section S2 of the
SI. A detailed schematic of the experimental apparatus to
analyze partially coherent light with a PCLA is shown in
the SI, Section S6.
PCLAs can also be used to generate multimode partially

coherent light described by an arbitrary coherency matrix.
Running the self-configuring network of this section in
the backwards direction, as shown in Fig. 3, we illuminate
its output ports with mutually incoherent sources with
average powers corresponding to the desired eigenvalues
of the coherency matrix λi. The resulting coherency
matrix emerging “backwards” on the input side is that of

partially coherent light and described as in
Eq. (1), choosing UPCLA ¼ Uy. Knowing the natural mode
decomposition of the coherency matrix of a desired par-
tially coherent light field of interest, one can therefore use
PCLAs to generate such a light field using mutually
incoherent sources of variable power.

Processing incoherent mixtures of delocalized single
photons with PCLA
We now further generalize our method to analyzing

incoherence in quantum optical systems, generally
described by a density matrix ρin, and illustrated in an
integrated photonic network where single photons
propagate (Fig. 4a).
We consider incoherent mixtures of single photons

delocalized over N waveguide ports (Fig. 4a). The input
mixed state is described by ρin= ∑ipi|ψi〉〈ψi|, with
0 < pi < 1. Note, as is typical with mixed states, that the
different |ψi〉 and the corresponding optical waves arriv-
ing at the PCLA need not be orthogonal to one another.
The PCLA imparts a unitary transformation to the
wavefunction |ψout〉=UPCLA|ψin〉, which corresponds to

ρin 
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the following operation on the density matrix, similar to
that on the coherency matrix in the ρout ¼
UPCLA ρin U

y
PCLA. Detectors on the PCLA output measure

“clicks” corresponding to single photons, and the average
power at a given output channel k is given by (ρout)kk.
Therefore, a sequential power optimization analogous to
that of the previous sections can be carried out to analyze
incoherence of this quantum optical system.
The nature of this incoherent mixture of single photons

is responsible for stochastic fluctuations of the output
power. Specifically, stochasticity arises from two sources:
(1) the classical incoherent mixture, from which each pure
state |ψi〉 can be “picked” with probability pi; (2) projective
quantum measurements on the output, with probability of
clicking at output port k given by |〈k|UPCLA|ψi〉|

2. Both
effects can be modeled by a categorical distribution, and
more details on our numerical implementation can be
found in the SI, Section S3.
Both sources of randomness are simulated in the

thought experiment shown in Fig. 4b, where a random
unitary transformation is first imparted to single photons
emitted at random times (thereby providing incoherence
of the mixture on the output). In this example, we
propagate a mixture of 7 pure states through the PCLA
and perform a sequential power optimization as described
in the previous sections. While the input density matrix
was mixed, the output of the PCLA after optimization is
ordered with decreasing mean power. The number of
channels with non-zero mean power corresponds to the
number of pure states in the mixture, and the PCLA has
learned the modal (diagonal) representation of the density
matrix that outputs mutually incoherent modes.

Discussion
We further discuss potential applications of our meth-

ods and experimental considerations for their realization.
We have shown that PCLAs, which consist of self-
configuring networks with sequentially optimized power
outputs, can be utilized to automatically analyze the
classical and quantum partial coherence of multimode
optical light fields. Quite generally, our methods highlight
the interplay between coherence and multimodal
coupling in the analysis of partially coherent light fields.
The proper operation of PCLAs relies on a few key

assumptions we have made about the light fields
described by the input coherency matrix ρin and the
network architecture: (1) the coherence length of the
source must be greater than any path length differences
between interfering beams in the MZI mesh; (2) the input
light is quasi-monochromatic (such that we can neglect
the wavelength-dependent behavior of the MZI mesh)
and with fluctuating complex amplitude.
Our method also displays a few distinctive advantages

compared to tomographic reconstruction of the

coherence function16. Once the PCLA’s learning algo-
rithm has converged, it will naturally separate the input
light field into its mutually incoherent components. To
put it differently, the PCLA acts as an “unscrambler” of
partially coherent light into its mutually incoherent parts.
The decomposition process is “lossless” (other than for
practical coupling losses and background absorption and
scattering losses in waveguide components); there is no
fundamental beamsplitting loss in this system. In the SI,
we also show that for a uniform loss across modes, the
PCLA will still reconstruct the actual coherency matrix,
with eigenvalues rescaled by the loss factor (see Section S3
of the Supplementary Information), which can be cali-
brated out by measuring the loss across each channel
separately. However, due to the variational nature of our
method, even in the presence of uniform losses, the uni-
tary basis that diagonalizes ρin is learned by the PCLA.
Further connections of our method to other modal
representations of partially coherent light fields are dis-
cussed in Section S4 of the Supplementary Information.
We also numerically analyze the influence of additional
sources of noise, such as detection noise, on the perfor-
mance of the algorithm. We still find fidelities >0.9 with
relatively small number of algorithm steps (20) and signal-
to-noise ratios on the order of 1.
In our numerical experiments, gradients of the time-

averaged output powers were calculated using automatic
differentiation and optimized with stochastic gradient
descent37. In experimental implementations, various gra-
dient calculation or measurement techniques could be
used, such as in situ back-propagation36,38 or dither-
ing18,28. Alternatively, methods such as physical gradient
descent39 or gradient-free physical gradients40 could
be used.
We also envision that PCLAs may find applications in

partially coherent light holography and imaging. Once
configured, the PCLA has stored the information of the
incoming field distribution. A phase conjugated “holo-
gram” of the fields is generated upon illumination of the
PCLA from the backside with power-modulated inco-
herent sources, as shown in Fig. 3. If the incoming par-
tially coherent light field is generated by an object, this
process generates a phase-conjugated image of that object
at the same position. Note that this goes beyond con-
ventional holography in that it effectively encodes sepa-
rate holograms for each of the mutually incoherent
components of the original field and allows their simul-
taneous reconstruction.
In conclusion, we have shown that self-configuring

photonic networks, such as triangular arrays of MZIs, can
automatically learn and measure the coherency matrix of
a multimodal light field across N channels. Our method
generalizes to quantum optical systems, as long as enough
degrees of freedom are available to implement arbitrary
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unitary transformations on their Hilbert space. We envi-
sion that this method will be experimentally relevant in
processing, imaging, and analyzing the classical and
quantum coherence of light and matter in all systems and
applications where spatially partially coherent light
emission is of importance.

Materials and methods
Learning process
The PCLA learns the coherency matrix of the input field

in a step-by-step process: (1) Optimize the output power
of the first layer, which aligns the input field with the
largest eigenvalue of the coherency matrix; (2): Fix the
first layer and optimize the second layer to align with the
next largest eigenvalue, and so forth. The PCLA network
ultimately diagonalizes the coherency matrix, separating
the light field into its mutually incoherent components.

Numerical implementation of PCLA learning algorithm
The implementation of the learning algorithm is per-

formed in a triangular mesh29, where the mesh settings
are calculated to achieve the desired unitary transforma-
tions. The mesh is constructed by calculating the settings
of the MZIs progressively, starting from the first layer, and
ensuring that the matrix representing the mesh is a pro-
duct of 2 × 2 matrices corresponding to each MZI.
Section S1 of the Supplementary Information provides a

framework for understanding how partial coherent light
analyzers work and how they can be implemented using self-
configuring photonic networks, specifically with MZI arrays.
The learning algorithm ensures that the network can sepa-
rate and analyze partially coherent light fields effectively.

PCLA algorithm for quantum optical systems
The sequential power optimization algorithm used for

classical partially coherent light can also be applied to
quantum optical systems. The main difference lies in how
randomness is accounted for, particularly in the output
measurements. To calculate gradients effectively during
optimization, we use a reparametrization trick, allowing
us to perform automatic differentiation (see Section S3 of
the Supplementary Information).
The algorithm to simulate average power measurements

works as follows: (1) Randomly select states from the
incoherent mixture based on their probabilities; (2)
Simulate projective measurements on these states; (3)
Average the measurements to determine the power at the
output port.

Influence of losses
We consider the effect of losses on the accuracy of the

PCLA algorithm in reconstructing the density matrix. We
assume that losses are uniform across all channels and
elements of the mixture. This assumption allows us to

model losses as a uniform reduction in the amplitude of
the quantum state, leading to a mixture of the trans-
formed state and a vacuum state.
The resulting output density matrix reflects this loss,

but the algorithm still identifies the correct eigenvector
corresponding to the largest eigenvalue, albeit with a
rescaled magnitude. In practical applications, the loss
factor can be measured and used to adjust the estimated
eigenvalues. More details can be found in Section S3 and
S6 of the Supplementary Information.
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