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Nikhil L Chervu MD MS, Jeff Balian, Arjun Verma BS, Sara Sakowitz MS MPH, Nam Yong 
Cho BS, Saad Mallick MD, Tara A Russell MD MPH PhD, Peyman Benharash MD 

 

Structured Abstract 

Objective 

To create a novel comorbidity score tailored for surgical database research. 

Summary Background Data 

Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity 

Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts. 

Methods 

Adults undergoing 62 operations across 14 specialties were queried from the 2019 

National Inpatient Sample (NIS) using International Classification of Diseases, 10th Revision 

(ICD-10) codes. ICD-10 codes for chronic diseases were sorted into Clinical Classifications 

Software Refined (CCSR) groups. CCSR with non-zero feature importance across four machine 

learning algorithms predicting in-hospital mortality were used for logistic regression; resultant 

coefficients were used to calculate the Comorbid Operative Risk Evaluation (CORE) score based 

on previously validated methodology. Areas under the receiver operating characteristic 

(AUROC) with 95% Confidence Intervals (CI) were used to compare model performance in 

predicting in-hospital mortality for the CORE score, ECI, and CCI. Validation was performed 

using the 2016-2018 NIS, combined 2018-2019 Florida and New York State Inpatient Databases 

(SID), and 2016-2022 institutional data. 

Results 

699,155 records from the 2019 NIS were used for model development. The CORE score 

better predicted in-hospital mortality compared to the ECI within the NIS (0.90, 95%CI:0.90-
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0.90 vs 0.84, 95%CI:0.84-0.84), SID (0.91, 95%CI:0.90-0.91 vs 0.86, 95%CI:0.86-0.87), and 

institutional (0.88, 95%CI:0.87-0.89 vs 0.84, 95%CI:0.83-0.85) databases (all p<0.001). 

Likewise, it outperformed the CCI for the NIS (0.76, 95%CI:0.76-0.76), SID (0.78, 95%CI:0.77-

0.78), and institutional (0.62, 95%CI:0.60-0.64) cohorts (all p<0.001). 

Conclusions 

The CORE score may better predict in-hospital mortality after surgery due to comorbid diseases 

in outcome-based research. 

Abstract Word Count: 250/250 words 
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Introduction 

Since their introduction nearly four decades ago, the Charlson Comorbidity Index (CCI) and 

Elixhauser Comorbidity Index (ECI) have been widely used in healthcare research to quantify 

the burden of pre-existing conditions.1–3 Although the superiority of CCI and ECI in specific 

populations continues to be debated, neither was developed in the context of surgical 

hospitalizations.4–6 

In recent years, increasing computational capabilities have enabled healthcare researchers to 

exploit large databases for highly powered retrospective studies. This has resulted in a significant 

body of literature focusing on epidemiology, interhospital variation, and disparities in medical 

care.7 Unlike their prospective counterparts, retrospective administrative repositories often 

capture data from medical billing records and lack clinical granularity.7,8 Thus, it is necessary to 

develop meaningful ways to incorporate patient comorbidity into risk models has been needed. 

The first of these tools was the CCI, which was developed using less than 700 breast cancer 

patients to predict 1-year mortality.3 Elixhauser et al. subsequently modeled in-hospital mortality 

using the 1992 California Statewide Inpatient Database. Although they included patients 

admitted for appendicitis, hernia, and diverticulitis, most were admitted for medical diagnoses 

such as myocardial infarction, asthma, lower back pain, pneumonia, and diabetes.1 Application 

of these comorbidities to surgical cohorts have thus resulted in paradoxical outcomes, with 

findings suggesting no discernable association with increased mortality risk.9 Evolving trends in 

lifestyles, related disease, and the unique nature of the surgical patient necessitate contemporary 

modalities to appropriately evaluate patients in large healthcare databases.10,11 
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In the present work, we aimed to create a heuristic tool to assess the association between pre-

existing conditions and the risk of in-hospital mortality after major operation. We will validate 

this metric, the Comorbid Operative Risk Evaluation (CORE) score, using nationwide, state-

level, and institutional data to improve and validate its performance. This scoring system may 

represent an improved discriminatory instrument for future risk models and benchmarking across 

surgical specialties. 

Methods 

Data Source and Study Population 

The CORE score was developed using the 2019 National Inpatient Sample (NIS). 

Maintained as part of the Healthcare Costs and Utilization Project (HCUP), NIS is the largest, 

all-payer inpatient database entailing weighted subsets of individual State Inpatient Databases 

(SID).12 Data collected by SID contain approximately 97% of all inpatient discharges within a 

given state.13 Each record in the NIS and SID can be associated with 40 diagnoses, which are 

recorded using International Classification of Disease, 10th Revision (ICD-10) codes. Relevant 

codes are captured by medical billing and coding specialists following each hospitalization from 

physician notes, operative reports, and radiologic or other diagnostic studies. These codes are 

further grouped by HCUP into over 530 clinical categories from 22 body systems named 

“Clinical Classifications Software Refined” (CCSR).14 CCSR have been used in both clinical 

research and healthcare utilization analyses to objectively define and classify both acute and 

chronic conditions in administrative data.15–17 The elixhauser and charlson Stata commands were 

used to calculate the ECI and CCI, respectively. 

All hospitalization records for adults (≥18 years) undergoing major neurosurgical, 

otolaryngologic (ENT), endocrine, cardiac, thoracic, acute care surgery (ACS), foregut/bariatric, 
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hepatopancreatobiliary (HPB), colorectal, urologic, gynecologic, plastic, orthopedic, and 

vascular operations were identified using relevant ICD-10 codes (Supplemental Table 1, 

Supplemental Digital Content 1, http://links.lww.com/SLA/F313). The list of major operations 

was compiled via a thorough review of the available literature for each specialty.18–32 ACS was 

not inclusive of trauma due to the difficulties of assessing extent of injury consistently across 

multiple databases. Pediatric and pregnant patients or those undergoing solid organ transplant 

were not included. Records missing data for in-hospital mortality, age, sex, or elective case status 

as coded by each dataset were excluded, as these factors were deemed critical to defining the 

primary outcome (0.2%; Figure 1). The “SimpleImputer” command from the sklearn Python 

library was used to impute missing values for race, income, primary payer, hospital size, and 

hospital location/teaching status for machine learning (ML) algorithms. 

Model validation was performed using the 2016-2018 NIS, 2018-2019 Florida and New 

York State Inpatient Databases as well as 2016-2022 University of California, Los Angeles 

(UCLA) institutional data. By incorporating data from two separate SID captured within the NIS, 

we could evaluate admissions that were not included in the sampling algorithm used by the NIS. 

UCLA data included anonymized institutional data from a large quaternary care academic 

system comprising four hospitals and were obtained from electronic health records. Similar to 

the NIS and SID, patients were selected based on the presence of the aforementioned ICD-10 

procedure codes. Incorporation of these data allowed for further assessment of the validity of the 

score for both inpatient and outpatient operations, as well as a range of retrospective databases. 

Comorbid Conditions and Primary Endpoint 

To identify comorbid conditions, all diagnosis codes from admissions for the selected operations 

were tabulated within the 2019 NIS. Diagnosis codes were then grouped by CCSR group and 
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further evaluated, whereas those without an associated CCSR were excluded. CCSR groups that 

were most likely due to non-chronic conditions were then excluded (i.e., CCSR groups with the 

words “symptom of,” “postoperative,” “postprocedural,” “acute,” or “complication of” in their 

title). Finally, ICD-10 codes with “acute” in their descriptions were not considered chronic 

conditions (Supplemental Figure 1, Supplemental Digital Content 2, 

http://links.lww.com/SLA/F314). In total, 9,811 codes across 325 CCSR were subject to analysis 

(Supplemental Table 2, Supplemental Digital Content 1, http://links.lww.com/SLA/F313). The 

primary outcome of the study was in-hospital mortality during the same admission as the 

operative intervention. This was selected because of its ubiquity as an adverse event across all 

surgical specialties. Other complications, such as atrial fibrillation, prolonged ventilation, and 

postoperative transfusion, may be considered less severe or necessary for routine postoperative 

management after certain cardiac, transplant, and trauma operations. Metrics such as unplanned 

reoperation and prolonged length of stay are also variable depending on the specialty and 

operation of interest, thereby limiting the broad applicability of our score. 

Model Development and Training 

ML has previously been used in healthcare research owing to its superior discrimination 

and predictive power.33 Therefore, we used Python to evaluate Random Forest (RF), Gradient 

Boosting (GBM), eXreme Gradient Boosting (XGBoost), and Multinomial Naïve Bayes (NB) 

models with 5-fold cross-validation to assist in feature down-selection for logistic regression. 

Specifically, features with non-zero importance in each of the RF, GBM, XGBoost, and NB 

models were kept as covariates in the final logistic regression. The 2019 NIS cohort was split 

into training (80%) and testing (20%) datasets to train and test these models. 
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Covariates included age, sex, elective case status, race, income quartile, primary payer 

status, bed size, and hospital location/teaching status, in addition to CCSR codes. Model 

discrimination was assessed using the area under the receiver operating characteristics (AUROC) 

and precision recall curves (AUPRC) with 95% confidence intervals (CI) generated by 5-fold 

cross-validation. Probabilistic estimation accuracy was assessed using Brier scores with 95% CI 

(Supplemental Figure 2, Supplemental Digital Content 2, http://links.lww.com/SLA/F314).34 

True (TPR) and false positive rates (FPR) as well as sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), balanced accuracy, and reliability scores were 

also obtained for each model (Supplemental Table 3, Supplemental Digital Content 1, 

http://links.lww.com/SLA/F313). 

Score Development 

After ML-assisted feature down-selection, final score development was conducted using 

parameter estimates derived from logistic regression. This methodology was initially developed 

by Sullivan et al., who established a mathematical approach to risk score development for 

multivariable clinical data as part of the Framingham Heart Study.35 Notably, this algorithm was 

used by van Walraven to establish a numerical Elixhauser Comorbidity Index.2 In summary, 

points are assigned to each CCSR by obtaining parameter estimates from logistic regression. The 

final point values are calculated by dividing each logistic coefficient by the lowest CCSR 

coefficient corresponding to the “weakest” (i.e., lowest absolute value) association with in-

hospital mortality (Table 1). A final CORE score is then calculated for each patient using the 

following equation (where b is the absolute value of the weakest estimate): 

𝐶𝑂𝑅𝐸 𝑆𝑐𝑜𝑟𝑒 ൌ 100 ∗  
1

1 ൅  𝑒ሺ௜௡௧௘௥௖௘௣௧ା௕∗௣௢௜௡௧ ௧௢௧௔௟ሻ 
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The final score ranges from zero to 100, with zero representing the lowest risk of in-hospital 

mortality, and 100 being the highest. 

We assessed model fit using AUROC with 95% CI using the roctab function in Stata. 

This was compared to the AUROC generated by using the van Walraven modification of the ECI 

to model mortality.1,2 Similar methods were used to compare the CORE score to the CCI. In 

addition to analyzing the NIS, SID, and institutional cohorts overall, additional subgroup 

analyses by year and specialty were conducted. 

Statistical Analyses 

Continuous variables are reported as medians with interquartile ranges (IQR). Categorical 

variables are summarized as frequencies (%). Frequencies and medians were compared using the 

Pearson’s χ2 and Mann-Whitney U test, respectively. The roccomp function in Stata was 

employed to determine significant differences between AUROC generated by the CORE score 

and either the ECI or CCI. Due to the large sample size, Cohen’s d was used to determine effect 

size. Cohen’s d effect sizes with absolute values ranging from 0.00-0.19 were considered very 

small, 0.20-0.49 small, 0.50-0.79 medium, and ≥ 0.8 large effect size differences.36 A p<0.05 

was considered significant. Bonferonni corrections were used for both subgroup analyses due to 

the large number of comparisons. This led to adjusted p-value thresholds of 0.0013 and 0.0004 

for by year and by specialty subgroups analyses, respectively. All analyses were conducted using 

Stata 16.1 and the following Python libraries: matplotlib (version 3.7.2), numpy (version 1.24.3), 

pandas (version 2.0.3), sklearn (version 1.3.0), and xgboost (version 2.0.3). Due to the 

deidentified nature of our data, this study was deemed exempt from full review by the 

Institutional Review Board at the University of California, Los Angeles (IRB #24-000355). 

Results 
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Model Calibration Data 

A total of 699,155 patients were used to develop the model, of which 139,831 (20%) comprised 

the testing cohort. Baseline characteristics are shown in Table 2. Compared to the training set, 

the testing group was similar in age (64 [54 - 72] vs 64 [54 - 72], p<0.85, Cohen’s d < 0.01), 

equally female (53.6 vs 53.6%, p=0.88, Cohen’s d = <-0.01), and had a comparable proportion of 

non-elective cases (72.7 vs 72.5%, p=0.14, Cohen’s d = <-0.01). There was no difference in 

median CORE score (23.5 [11.8 - 47.8] vs 23.5 [11.8 - 47.8], p=0.86, Cohen’s d < 0.01), ECI (2 

[1 - 4] vs 2 [1 - 4], p=0.58, Cohen’s d < 0.01), or CCI (1 [0 - 2] vs 1 [0 - 2], p=0.64, Cohen’s d < 

-0.01). 

8,272 patients (1.2%) died during their initial hospitalization. Deceased patients had a higher 

median ECI (6 [4 - 7] vs 2 [1 - 4], p<0.001, Cohen’s d = -1.46), CCI (3 [2 - 5] vs 1 [0 - 2], 

p<0.001, Cohen’s d = -1.01), and CORE score (88.4 [70.0 - 96.6] vs 23.4 [12.1 - 46.7], p<0.001, 

Cohen’s d = -1.80), compared to those surviving their initial hospitalization. In addition to the 

increased effect size between deceased and non-deceased patients, the CORE score (0.90, 

95%CI: 0.90 - 0.90) outperformed both the ECI (0.84, 95%CI: 0.83 - 0.84) and CCI (0.76, 

95%CI: 0.75 - 0.76) in predicting in-hospital mortality based on AUROC (both p<0.001; Figure 

2). 

Overall Model Performance 

Validation of the model was conducted using the 2016-2018 NIS, 2018-2019 combined Florida 

and New York SID, and 2016-2022 institutional data. For reference, 944,056 patients were 

evaluated within the combined SID group, and 34,202 met the inclusion criteria for the 

institutional cohort. Within the 2016-2018 NIS, the CORE score (85.9 [65.8 - 95.8] vs 21.2 [11.8 

- 42.9], p<0.001, Cohen’s d = -1.85) demonstrated improved discrimination between deceased 
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and non-deceased patients as compared to the ECI (6 [4 - 7] vs 2 [1 - 4], p<0.001, Cohen’s d = -

1.52) and CCI (3 [2 - 5] vs 1 [0 - 2], p<0.001, Cohen’s d = -1.06). Improved discrimination 

between deceased and non-deceased patients was also observed when using the CORE score 

(90.4 [72.7 - 97.3] vs 23.9 [12.3 - 46.7], p<0.001, Cohen’s d = -1.86) as compared to the ECI (6 

[5 - 8] vs 2 [1 - 4], p<0.001, Cohen’s d = -1.63) and CCI (4 [2 - 6] vs 1 [0 - 2], p<0.001, Cohen’s 

d = -1.15) in the SID cohort. This was also the case for the institutional cohort (CORE score: 

89.1 [76.0 - 95.4] vs 35.6 [18.4 - 60.1], Cohen’s d = -1.57 vs ECI: 6 [4 - 7] vs 2 [1 - 4], Cohen’s 

d = -1.38 vs CCI 2 [1 - 3] vs 1 [0 - 2], Cohen’s d = -0.38; all p<0.001). 

The CORE score (0.90, 95%CI: 0.90 - 0.90) yielded a higher AUROC compared to the 

ECI (0.84, 95%CI: 0.84 - 0.84) or CCI (0.76, 95%CI: 0.76 - 0.76, both p<0.001) for the NIS 

cohort. This was also the case for the SID population (CORE score: 0.91, 95%CI: 0.90 - 0.91 vs 

ECI: 0.86, 95%CI: 0.86 - 0.87 and CCI: 0.78, 95%CI: 0.77 - 0.78; both p<0.001). Finally, the 

ECI (0.84, 95%CI: 0.83 - 0.85) and CCI (0.62, 95%CI: 0.60 - 0.64) did not predict in-hospital 

mortality as well as the CORE score (0.88, 95%CI: 0.87 - 0.89, both p<0.001) for the 

institutional cohort (Figure 2). 

Subgroup Analysis – Model Performance by Year 

A subgroup analysis was conducted to analyze model performance by year. Of note, Bonferroni 

correction yielded an adjusted p-value threshold of 0.0013. Specifically, the CORE score yielded 

a higher AUROC compared to the ECI or CCI for each year of the 2016-2018 NIS and 2018-

2019 SID (Figures 3a and 3b). For the institutional cohort, the CORE score outperformed the 

CCI for 2016-2022. However, it only outperformed the ECI from 2019 through 2022. There was 

no significant difference in the AUROC between the CORE Score and the ECI for institutional 

data from 2016-2018 and 2022 (Figure 3c). 
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Subgroup Analysis – Model Performance by Specialty 

Additional subgroup analysis was conducted to analyze model performance by specialty with a 

Bonferroni-corrected p-value of 0.0004. Within the NIS cohort, the CORE score outperformed 

the CCI for all specialties except for ACS (p=0.063). The CORE score likewise predicted in-

hospital mortality better than the ECI in 10 out of 14 specialties; the exceptions were endocrine 

(p=0.002), HPB (p=0.24), gynecology (p=0.59), and plastics (p=0.028; Figure 4a). Compared to 

ECI, the CORE score yielded a significantly improved AUROC for seven out of the fourteen 

classified specialties in the SID; endocrine (p=0.33), cardiac (p=0.30), HPB (p=0.71), colorectal 

(p=0.17), gynecology (p=0.037), plastic (p=0.76), and vascular (p=0.54) operations were the 

exceptions. It outperformed the CCI for all specialties with the exception of gynecology 

(p=0.013; Figure 4b). Finally, the CORE score had a significantly higher AUROC compared to 

the ECI within the institutional cohort for ENT and ACS operations; it performed equivalently 

for all other specialties. The CORE score outperformed the CCI in six specialties – ENT, cardiac, 

thoracic, ACS, plastics, and vascular (Figure 4c). 

Discussion 

Administrative and other retrospective databases allow researchers to increase population size 

and minimize the selection biases inherent to classical prospective randomized clinical trials.37 

While prospectively collected data can account for disease and project-specific comorbidities, 

collecting such large-scale data can be resource intensive and subject to biased risk 

identification.38 The ECI and CCI were developed in order to address this pitfall of retrospective 

outcomes research.1,3 They have likewise been used in benchmarking at the institutional and 

national levels due to their widespread use.39 However, these scores were not developed in the 
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context of operative admissions; studies examining their comparative effectiveness in surgical 

populations are thus mixed.4–6 

In the present study, we developed the CORE score to incorporate pre-existing conditions 

more accurately in surgical database research. It represents the first contemporary comorbidity 

score specifically designed for multispecialty surgical research using retrospective databases. 

Prior modifications to the CCI and ECI have yet to account for the baseline differences between 

surgical and non-surgical patients.40–42 Patients requiring surgical admission often present 

electively, with preoperative risk stratification and medical optimization prior to surgery.11,43 

Compared to their non-surgical counterparts, surgical patients are younger, less often frail, and 

have reduced lengths of stay, thereby minimizing in-hospital complications.43 These factors, 

paired with the complex interaction between the stresses of surgery and pre-existing conditions, 

necessitate surgery-specific methodologies.10,11,44 In response, individual surgical societies such 

as the American College of Surgeons and the Society of Thoracic Surgeons have developed 

preoperative risk stratification tools to aid in patient selection and stratification.45,46 However, 

these tools are limited by specialty and the need for granular clinical data not otherwise available 

in most retrospective databases. Across multiple years, databases, and surgical specialties, the 

CORE score significantly outperformed both the ECI and CCI in predicting in-hospital mortality 

after major operation. This is likely due to the use of ML algorithms to assist with feature 

selection. ML-assisted feature selection has yielded improved predictive models in a wide range 

of medical research, from chronic obstructive pulmonary disease and breast cancer diagnosis to 

healthcare costs.47–49 The POTTER score, developed by Bertsimas et al, is one such tool that has 

used ML methodology to improve prediction of complications after ACS and trauma surgery.50 

This score is similarly limited by its use of clinical granular data such as labs and recent 
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diagnosis that restrict its use to purpose-built or institutional databases. However, by 

incorporating similar techniques with administrative data, we believe that this instrument holds 

merit as a tool for retrospective health data. 

Furthermore, the CORE score provides greater discrimination between deceased and non-

deceased patients. In our experience, ECI and CCI medians and confidence intervals between 

groups can overlap despite the observed statistical significance when dealing with large sample 

sizes. This is likely due to the inclusion of comorbidities not frequently encountered in surgical 

populations – congestive heart failure, paralysis, chronic pulmonary disease, renal failure, and 

liver disease.2,3 These patients are often deemed too high of a surgical risk to undergo operation. 

Therefore, the range of possible ECI and CCI values are reduced for surgical patients. When 

increasing the sample size to tens and hundreds of thousands, however, clinically irrelevant 

differences can be deemed statistically different. The CORE score increases discrimination by 

only including comorbidities present in surgical populations and by providing a larger 100-point 

scale. 

Limitations 

The present study has several important limitations. As an administrative database, the NIS relies 

on accurate coding by billing specialists, and may be subject to some error. Furthermore, ICD-10 

codes are recorded primarily for financial, and not clinical, purposes. The score is built using the 

average risk over many people for each condition. We therefore cannot reliably calculate the 

actual risk of in-hospital mortality for a specific condition for each patient. Finally, rare 

diagnosis codes that are associated with extremes of risk in mortality may skew the overall score. 

However, by grouping diagnoses by CCSR and using a large dataset, we attempted to mitigate 

these risks. 
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Conclusions 

In this large contemporary study, we have established the first comorbidity score for use in 

administrative database research specifically designed using a surgical cohort. We hope that 

incorporation of this score in future analyses will allow for more robust adjustment of pre-

existing conditions to enhance statistical discrimination. In addition, the increased discriminatory 

power afforded by a 100-point scale may make subjective analysis of mortality risk easier to 

determine. Future work applying this score to other studies will allow for continued validation.  
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Figure 1. CONSORT diagram of patients included from the 2019 National Inpatient Sample to 
build the Comorbid Operative Risk Evaluation Score 
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Figure 2. Area Under the Receiver Operator Characteristics (AUROC) with 95% confidence 
intervals between the Comorbid Operative Risk Evaluation (CORE) Score, Elixhauser 
Comorbidity Index (ECI), and Charlson Comorbidity Index (CCI) in predicting in-hospital 
mortality for the National Inpatient Sample (NIS), combined Florida and New York State 
Inpatient Database (SID), and institutional data 
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Figure 3. Comparison of Area Under the Receiver Operator Characteristics (AUROC) with 95% 
confidence intervals between the Comorbid Operative Risk Evaluation (CORE) Score, 
Elixhauser Comorbidity Index (ECI), and Charlson Comorbidity Index (CCI) by year in 
predicting in-hospital mortality for the a) 2016-2018 National Inpatient Sample (NIS), b) 2018-
2019 combined Florida and New York State Inpatient Database (SID), and c) 2016-2022 
institutional data 
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Figure 4. Comparison of Area Under the Receiver Operator Characteristics (AUROC) with 95% 
confidence intervals between the Comorbid Operative Risk Evaluation (CORE) Score, 
Elixhauser Comorbidity Index (ECI), and Charlson Comorbidity Index (CCI) by specialty in 
predicting in-hospital mortality for the a) 2016-2018 National Inpatient Sample (NIS), b) 2018-
2019 combined Florida and New York State Inpatient Database (SID), and c) 2016-2022 
institutional data; ENT, otolaryngology; ACS, acute care surgery; HPB, hepatopancreatobiliary 
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Table 1. Logistic regression coefficients and point totals of Clinical Classifications Software 
Refined (CCSR) selected by machine learning-assisted feature down-selection 

 
CCSR 

Logistic 
Coefficient 

 
Point Total 

Rounded 
Total 

 
CCSR 

Logistic 
Coefficient 

 
Point Total 

Rounded 
Total 

BLD001 -0.4140742 -16.118894 -16 GEN003 0.02616477 1.0185302 1 
BLD007 -0.4339951 -16.894366 -17 GEN004 -1.0403581 -40.49859 -40 
CIR003 0.41216456 16.044556 16 GEN006 0.05112456 1.9901538 2 
CIR007 0.07422739 2.8894903 3 GEN007 0.14358861 5.5895526 6 
CIR008 -0.6356478 -24.744213 -25 GEN009 -0.0599012 -2.3318063 -2 
CIR011 -0.3359079 -13.076073 -13 GEN021 0.54944763 21.38865 21 
CIR019 -0.4282873 -16.672177 -17 INF003 -0.1941078 -7.5561394 -8 
CIR020 -0.6059602 -23.588544 -24 MAL001 0.34800999 13.547176 14 
CIR026 -0.0422188 -1.6434755 -2 MBD017 -0.6529413 -25.417405 -25 
CIR027 -0.3354948 -13.059991 -13 MBD019 -0.3875139 -15.084967 -15 
CIR028 -0.4386213 -17.074452 -17 MBD021 -0.4043921 -15.741995 -16 
CIR030 -0.5700281 -22.189797 -22 MUS002 -0.7716762 -30.039465 -30 
CIR032 -0.4479241 -17.436587 -17 MUS006 1.39251333 54.207132 54 
CIR036 -0.1300005 -5.0606017 -5 MUS011 0.78950704 30.733574 31 
DIG004 0.34137531 13.288905 13 MUS014 -0.3524071 -13.718347 -14 
DIG006 -0.5587775 -21.751838 -22 MUS023 0.29991283 11.674872 12 
DIG007 -0.4152166 -16.163367 -16 MUS029 0.02568875 1 1 
DIG009 -0.3799268 -14.78962 -15 NEO002 0.3197803 12.448264 12 
DIG010 -0.2848255 -11.087557 -11 NEO015 0.62129091 24.185333 24 
DIG012 -1.1192772 -43.570718 -44 NEO022 0.68063511 26.495457 26 
DIG013 -0.4766364 -18.554286 -19 NEO039 0.89349186 34.781449 35 
DIG014 -0.369295 -14.375749 -14 NEO043 0.36839223 14.340607 14 
DIG016 -0.718447 -27.96738 -28 NEO044 0.16837199 6.554309 7 
DIG017 -1.8160148 -70.693005 -71 NEO045 0.81104885 31.572145 32 
DIG021 -0.5101593 -19.85925 -20 NEO051 0.37479276 14.589764 15 
DIG022 -0.3844221 -14.964612 -15 NEO070 0.46763491 18.203881 18 
DIG025 -0.2300124 -8.9538187 -9 NEO073 1.01500978 39.511844 40 
END003 -0.3073005 -11.962454 -12 NEO074 -0.1447766 -5.635799 -6 
END008 -0.6377707 -24.826851 -25 NVS008 -0.9038077 -35.183019 -35 
END009 0.44771479 17.42844 17 NVS011 -0.7202688 -28.0383 -28 
END010 0.12113647 4.715546 5 NVS014 -0.2493991 -9.708497 -10 
END011 -0.8058898 -31.371317 -31 NVS016 0.40443441 15.743641 16 
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Table 2. Patient, clinical, hospital characteristics testing and training cohorts derived from the 
2019 National Inpatient Sample used to develop the Comorbid Operative Risk Evaluation 
(CORE) Score; IQR, interquartile range; ECI, Elixhauser Comorbidity Index; CCI, Charlson 
Comorbidity Index; ENT, ear nose and throat; ACS, acute care surgery; HPB, 
hepatopancreatobiliary 

 Testing Training p-value Cohen's d 
Age (years, median [IQR]) 64 [54 - 72] 64 [54 - 72] 0.85 < 0.01 
Female (%) 75,003 (53.6) 299,887 (53.6) 0.88 < - 0.01 

Elective Case Status (%) 101,637 (72.7) 405,431 (72.5) 0.14 < -0.01 
In-Hospital Mortality (%) 1,689 (1.2) 6,583 91.2) 0.34 < -0.01 
   

Scores (median [IQR])     
CORE score 23.5 [11.8 - 47.8] 23.5 [11.8 - 47.8] 0.86 < 0.01 
ECI 2 [1 - 4] 2 [1 - 4] 0.58 < 0.01 
CCI 1 [0 - 2] 1 [0 - 2] 0.64 < - 0.01 
   
Race (%)   0.20 < 0.01 
White 102,343 (73.2) 409,269 (73.2)   
Black 15,603 (11.2) 61,687 (11.0)   
Hispanic 11,635 (8.3) 46,542 (8.3)   
Asian/Pacific Islander/Other 6,900 (4.9) 28,265 (5.1)   
   
Income Quartile (%)   0.76 < - 0.01 
76th - 100th 31,324 (22.4) 125,586 (22.5)   
51st - 75th 36,271 (25.9) 144,180 (25.8)   
26th - 50th 35,013 (25.0) 140,106 (25.1)   
0 - 25th 35,205 (25.2) 141,265 (25.3)   
   
Primary Payer (%)   0.94 < 0.01 
Private 49,957 (35.7) 200,016 (35.8)   
Medicare 68,241 (48.8) 272,711 (48.8)   
Medicaid 13,005 (9.3) 51,844 (9.3)   
Uninsured/Other 8,470 (6.1) 34,076 (6.1)   
   
Specialty (%)     
Neurosurgery 18,970 (13.6) 75,550 (13.5) 0.56 < - 0.01 
ENT 4,823 (3.5) 19,674 (3.5) 0.21 < 0.01 
Endocrine 1,222 (0.9) 5,120 (0.9) 0.14 < 0.01 
Cardiac 10,833 (7.8) 43,646 (7.8) 0.48 < 0.01 
Thoracic 3,010 (2.2) 12,207 (2.2) 0.49 < 0.01 
ACS 11,449 (8.2) 45,737 (8.2) 0.90 < - 0.01 
Foregut/Bariatric 10,826 (7.7) 43,055 (7.7) 0.58 < - 0.01 
HPB 1,371 (1.0) 5,373 (1.0) 0.50 < - 0.01 
Colorectal 11,222 (8.0) 45,948 (8.2) 0.02 0.01 
Urology 5,341 (3.8) 20,977 (3.8) 0.22 < - 0.01 
Gynecology 6,582 (4.7) 26,209 (4.7) 0.74 < - 0.01 
Plastics 1,653 (1.2) 6,762 (1.2) 0.41 < 0.01 
Orthopedics 43,510 (31.1) 173,738 (31.1) 0.70 < - 0.01 
Vascular 13,886 (9.9) 55,056 (9.8) 0.33 < - 0.01 
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