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A B S T R A C T   

In the continuously evolving context of urbanization, more people flock to cities for job opportunities and an 
improved quality of life, resulting in undeniable pressure on transportation networks. This leads to severe daily 
commuting challenges for residents. To mitigate this urban traffic pressure, most cities have adopted urban 
dockless bicycle sharing systems (UDBSS) as an effective measure. However, making accurate decisions 
regarding UDBSS demand in different city locations is crucial, as incorrect choices can worsen transportation 
problems, causing difficulties in finding bicycles or excessive deployments leading to disorderly accumulation. 
To address this decision-making challenge, it is essential to consider uncertain factors like daily weather, tem
perature, and workdays. To tackle this effectively, we construct an adjustable multi-granularity (MG) complex 
intuitionistic fuzzy (CIF) information system using complex intuitionistic fuzzy sets (CIFSs). This system objec
tively determines classification thresholds using an evaluation-based three-way decision (TWD) method, creating 
adjustable MG CIF probabilistic rough sets (PRSs). Additionally, to recognize the irrationality of decision-makers 
(DMs), we propose a method that combines prospect theory (PT) with regret theory (RT), providing a more 
comprehensive understanding of the influence of DMs’ psychological factors on decision outcomes. Building 
upon these foundations, we present static rebalancing strategies for UDBSS based on MG PRSs and prospect- 
regret theory (P-RT) within the CIF information system. Finally, using UDBSS data collected from various sen
sors, we conduct experimental analysis to verify its feasibility and stability. In summary, this approach considers 
residents’ daily usage preferences, including bicycles utilization and return, with the aim of minimizing unmet 
resident demands and predicting usage patterns for the next day. It effectively addresses the issue of UDBSS 
distribution inefficiencies and holds a significant advantage in prediction, making it suitable for broader ap
plications in transportation systems and contributing to the establishment of more advanced modern intelligent 
transportation systems (MITSs) in the future.   

1. Introduction 

In recent decades, as the process of urbanization has accelerated, a 
significant population has been congregating in cities, bringing about 
escalating issues such as traffic congestion. Faced with this challenge, 

the sharing economy has become one of the topics that people eagerly 
discuss, and it cannot be ignored. Taking UDBSS as an example, this 
exemplifies the sharing economy and stands out amidst numerous dis
cussions. UDBSS, in a unique manner facilitated by large-scale deploy
ment (Gao et al., 2023). In China, UDBSS has already expanded to cover 
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over 360 cities, with an average daily travel distance of 47 million ki
lometers. Consequently, after their introduction, the congestion delay 
index has, on average, decreased by 2.2 %, with a more pronounced 
effect on weekdays compared to weekends (Huang and Xu, 2023). This 
approach not only reduces the personal demand for private bicycles, 
easing traffic congestion and enhancing urban traffic flow, but also 
greatly mitigates energy waste and the environmental pollution caused 
by discarded bicycles (Zhang and Mi, 2018). These UDBSS provides city 
residents with an efficient and eco-friendly transportation choice, 
setting them apart within the modern transportation framework. 
Therefore, they have emerged as an emerging and crucial mode of 
transportation in the contemporary transport landscape (Gu et al., 
2019). 

As mentioned above, for UDBSS in modern transportation to unlock 
their substantial potential and effectively alleviate issues such as traffic 
congestion, they need to possess the features of multi-location and multi- 
quantity deployment within cities. The most fundamental requirement 
is that, in most cases, residents should not encounter difficulties in using 
bicycles, and there should be minimal resource wastage, aiming for a 
state of equilibrium as much as possible (Ramachandran and Sangaiah, 
2021). 

When UDBSS was initially introduced, some city administrators 
addressed this requirement by deploying a significant number of bi
cycles across various areas within the city, yielding notable outcomes. 
However, it’s clear that this approach leads to another serious concern, 
namely the overabundance of idle bicycles in areas with lower foot 
traffic. This results in haphazard accumulation of UDBSS and the 
squandering of substantial available resources. It is apparent that this 
practice contradicts the initial purpose of the sharing economy in miti
gating traffic congestion (Ramachandran and Sangaiah, 2021; Wang 
et al., 2021). On the other hand, some policymakers exclusively focus on 
deploying bicycles in key urban zones, overlooking residential and in
dustrial areas, and consequently failing to meet the commuting needs of 
many residents, which almost prevents them from fully harnessing the 
potential of the sharing economy. Obviously, the traditional method 
cannot reasonably distribute the shared bicycles in each station to meet 
the needs of residents to the greatest extent, that is, it cannot restore the 
unbalanced UDBSS to a balanced state. 

In conclusion, to harness the full potential of urban shared bicycles 
within MITSs, the key lies in finding innovative approaches to strike a 
balance between deployment diversity and distribution equity, with the 
aim of minimizing unmet travel demands of residents. We believe that a 
viable strategy is the implementation of an intelligent scheduling sys
tem. This system would dynamically adjust the deployment of shared 
bicycles at various times and locations based on collected data and 
predictive models, ensuring a more rational and equitable distribution 
of vehicles. 

Currently, with the ongoing progress of the third revolution in the 
information technology industry, the role of the Internet of Things (IoT) 
in the field of transportation is becoming increasingly significant, 
providing a tangible foundation for building smart cities. Furthermore, 
it can be recognized that the MITSs serves as a perfect example of ser
vices supporting smart cities (Sathiyaprasad, 2023; Gokasar et al., 2023; 
Deveci et al., 2023). Leveraging the data collection and high-speed 
transmission capabilities of the IoT, a vast MITSs is rapidly emerging. 
In this evolving MITSs, various sensors are not only capable of real-time 
data collection and processing with corresponding feedback but also 
capable of storing this data, creating an extensive database encom
passing diverse types of information. These data provide crucial 
real-world foundations for subsequent research, experiments, and 
learning (Bilotta and Nesi, 2022). Zhao et al. (2023) used 6G technology, 
integrated sensing and communication, to improve the stability of the 
vehicle’s interaction with information from the surrounding scene. 
Thinh et al. (2023) built an IoT system that can collect the operation 
data of transformers in unmanned substations from multiple perspec
tives to determine whether the current transformer is normal. 

With the assistance of MITSs, we can collect, transmit, and store data 
using sensors and analyze past data to propose practical solutions to the 
issues mentioned earlier in the UDBSS field (Wang and Ma, 2022). For 
instance, Maleki et al. (2023) established a simulation system and uti
lized supervised learning methods to train models on a large set of 
generated bike-sharing rebalancing plans, aiming to achieve the optimal 
machine learning model as the final objective function. Qiao et al. 
(2023) first investigated how various factors influenced the quality of 
the final solution and then employed heuristic algorithms to address the 
shared bicycle rebalancing problem. In summary, with the help of IoT 
technology and data analysis, we can not only address the issue of un
reasonable allocation in the urban bike-sharing sector but also gain in
sights into the dynamics of urban populations and urban structures. All 
of these contribute to providing essential insights for the development of 
a more intelligent and efficient MITSs (Xu et al., 2023). 

In this context, we first achieve precise bike localization through 
positioning devices, recording the pickup and drop-off locations, as well 
as the corresponding timestamps for bikes used over multiple days. Due 
to the numerous uncertain factors affecting bike usage patterns (Eren 
and Uz, 2020), this problem can be viewed as an MG decision-making 
issue in a fuzzy environment. To overcome the limitations of individ
ual DM in terms of knowledge, experience, and cognitive abilities, as 
well as to incorporate the bounded rationality of DMs, this paper em
ploys an MG group decision-making (GDM) method that integrates PT 
and RT. In this scheme, the key focus is on applying a rational and 
effective MG GDM method to divide and analyze bike usage patterns at 
different granular levels based on the collected data, thus revealing 
potential patterns and trends. 

Based on the description above, in order to accomplish the equitable 
allocation of shared bicycles, we have devised an adjustable MG GDM 
method based on a CIF information system, taking into account DMs’ 
bounded rationality. Furthermore, we develop static rebalancing stra
tegies for UDBSS with the goal of minimizing unmet resident demands. 
Below, we summarize the primary research motivations of this paper.  

(1) Most of existing MG GDM methods in CIF environments choose to 
use MG rough sets or aggregation methods to fuse different 
granularities to handle MG problems. This may result in extreme 
granularity selection result in the decision process, or the results 
may deviate significantly from the initial evaluation values after 
integrating different granularities. Therefore, it is necessary to 
propose an MG GDM method that allows DMs to freely choose 
different granularity.  

(2) Among the two existing bounded rationality methods, PT tends to 
describe DMs’ cautious attitude towards losses and aggressive 
attitude towards gains, emphasizing the impact of emotions on 
DMs, however it does not directly address the regret emotions 
that people may feel after decision. RT focuses on people’s po
tential regret emotions in the future, focusing on avoiding regret, 
but not fully considering people’s weighing between potential 
benefits and losses, leading to relatively conservative decisions. 
Therefore, combining the two methods, that is P-RT, can 
compensate for their respective shortcomings and make the de
cision results more in line with people’s decision behavior in 
different contexts.  

(3) Currently, regarding the static rebalancing problem of UDBSS, 
more literature (Bulhões et al., 2018; Tian et al., 2020; Zhang 
et al., 2020) tends to focus on path optimization, emphasizing 
cost minimization. However, there are few articles that pay closer 
attention to resident demands. As an industry that prioritizes 
serving users, emphasizing the user experience is even more 
critical. Therefore, setting the minimization of unfulfilled resi
dent demands as the objective for the rebalancing problem for 
UDBSS is highly necessary. 

Through the research motivation of this paper, we further introduce 
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the main contributions of this paper.  

(1) When addressing MG problems in CIF environments, we propose 
an adjustable MG CIF PRSs based on the TWD framework. This 
method expands the range of choices for DMs across different 
granularities and enhances the accuracy of decision outcomes.  

(2) Combining prospect theory with regret theory, we put forward P- 
RT. In the decision process, let the DMs not only pay attention to 
the loss and gain, but also include the regret that may be gener
ated by the decision result into the decision factor. This makes the 
bounded rationality of DMs better reflected in the decision result.  

(3) This paper, based on residents’ daily usage preferences, validated 
the proposed model using a real urban shared bicycle data set. 
Sensitivity analysis and comparative analysis were conducted to 
confirm the effectiveness and feasibility of the UDSBB rebalanc
ing model with the goal of minimizing unfulfilled resident de
mands. This model can be extended to address related issues in 
current and future intelligent transportation systems, providing 
an effective means for solving prediction problems. 

Based on the above description, we give the rough flow diagram of 
the rebalancing model for UDBSS, shown as Fig. 1. 

The structure of this text is described below. The literature related to 
the methods used in this model and the rebalancing problem for UDBSS 
is reviewed in Section 2. In Section 3, some relevant knowledge used in 
the model of this paper are introduced. In Section 4, the adjustable MG 
CIF PRSs based on P-RT is proposed. Then, the application method of a 
rebalancing model for UDBSS based on MG PRSs and P-RT in CIF in
formation system is introduced in detail in Section 5. On the basis of this 
model, a real UDBSS case (https://citibikenyc.com/system-data) is used 
for experiments, and the detailed experimental process is shown in 
Section 6. Finally, the application value and development prospect of 
this method in the field of MITSs and the future research direction are 
summarized. 

2. Literature review 

In the Section 2, we investigate the current research status of the 
methods used in this paper and the rebalancing problem for UDBSS, and 
briefly summarize their development and key work. 

2.1. Introduction to CIFS 

Decision-making plays a crucial role in various aspects of life, and 
most decision-making problems come with a significant amount of un
certain information. To effectively represent the fuzzy and uncertain 
information, Zadeh (1965) initiated the concept of fuzzy sets to repre
sent this imprecise information in a fuzzy manner. However, as 
decision-making environments have become increasingly complex, 
classical fuzzy sets are no longer sufficient to fully and effectively 
describe various types of information. Consequently, a series of gener
alized fuzzy sets have emerged. 

In 2010, Torra (2010) proposed the concept of hesitant fuzzy sets, 
which overcame difficulties in establishing membership degrees (MD). 
Atanassov (1986) introduced intuitionistic fuzzy sets (IFSs), which 
characterize information from both the MD and non-membership de
grees (ND) perspectives. It requires that the sum of MD and ND is less 
than 1, which allows for the calculation of information uncertainty. 
Subsequently, Pythagorean fuzzy sets extended IFS, requiring that the 
sum of the squares of MD and ND be less than 1 (Hussain et al., 2020). 
Lin et al. (2021) proposed a new correlation coefficient to calculate the 
relationship between two Pythagorean fuzzy sets in view of the defi
ciency of the correlation coefficient between the existing PFSs. Lin et al. 
(2018), (2019) explored new clustering algorithms and edge computing 
of probabilistic linguistic term sets. In 2002, Ramot et al. (2002) intro
duced the concept of complex fuzzy sets (CFSs) to describe 
two-dimensional information more comprehensively. Complex fuzzy 
numbers (CFNs) consist of two variables r and ω that meet 0 < r < 1 and 
0 < ω < 2π. This allowed for the independent characterization of two 
features. To further enhance the capability of fuzzy sets in information 
representation, Alkouri and Salleh (2012) merged the two types of fuzzy 
sets mentioned above, providing various fundamental operations, giving 
rise to CIFSs. 

This concept successfully inherits the advantages of IFS and CFS in 
information representation, enabling DMs to describe uncertain infor
mation more comprehensively, effectively improving the credibility and 
accuracy of decision results. Given the superiority of CIFSs in repre
senting uncertain information, in recent years, they have found wide
spread application in various decision problems involving uncertainty. 
Researchers such as Garg and Rani (2019), (2020), (2020), 2019, 
(2017), (2020) have studied aggregation operator methods, distance 
measures, similarity measures, etc. about CIFSs and conducted relevant 
experiments. Wang (2022) in an incomplete CIF environment, proposed 
a missing value estimating algorithm to address the choice of various 
educational platforms during a pandemic and developed a GDM algo
rithm accordingly. Akram et al., 2021) presented a CIF multi-attribute 
decision-making model to determine the optimal power source. 

In summary, CIFSs provide DMs with more flexible and compre
hensive tools, particularly effective in addressing decision problems 
involving two-dimensional information and high uncertainty. There
fore, using CIFSs as the fuzzy environment in this paper is highly 
appropriate. 

2.2. Introduction to the MG TWD method 

When individuals face decision-making problems, the complexity of 
the decision-making environment mainly arises from the inclusion of 
numerous influencing factors. In such cases, using decision methods 
from a single-granularity perspective can render a significant amount of 
data ineffective, ultimately resulting in a loss of credibility in the deci
sion outcome. Therefore, designing MG decision-making methods is an 
indispensable step in addressing the rebalancing problem for UDBSS. 
Qian (2010) extended traditional rough set theory to MG rough sets, 
achieving information fusion through selection methods, including 
optimistic MG rough sets and pessimistic MG rough sets. Furthermore, 
when dealing with large-scale problems, Qian introduced the concept of 
local MG decision-theoretic rough sets to address the significant Fig. 1. The flow diagram of rebalancing model for UDBSS.  
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computational time required for approximate calculations in MG rough 
sets and the limitations of supervised learning (Qian et al., 2014, 2017). 
Li et al. (2022) put forward a local multi-granulation rough set model 
applicable in ordered information systems and conducted comparative 
analyses with global MG probability rough sets. Zhang et al. (2020) 
introduced MG decision-theoretic rough sets in the context of hesitant 
fuzzy linguistic term sets, developing an MG GDM method based on this 
framework. Li and Xu (2015) introduced the double-quantitative deci
sion-theoretic rough sets by improving the MG rough set. Subsequently, 
Xu and Guo (2016) further extended this concept to the generalized MG 
double-quantitative decision-theoretic rough sets. Zhang et al. (2021) 
proposed the adjustable MG PRSs model, extending it to the dual hesi
tant fuzzy environment, providing DM with a broader range of granu
larity choices. 

TWD, as one of the decision-making paradigms, was introduced by 
Yao (2010), (2021) based on the rough set theory. It divides the universe 
of discourse into three parts, corresponding to the positive region (POS), 
negative region (NEG), and boundary region (BND) in rough sets, and 
assigns them strong interpretative semantics and classification methods. 
This idea helps people to give another cognitive attitude, that is, 
"no-commitment", when they are faced with complex problems and 
cannot make an attitude of "accept" or "reject". It changes the two clas
sification methods into three classification methods, which is closer to 
the cognitive model of human beings (Yao, 2016). In recent years, the 
TWD method has been extended to various fields, including clustering 
(Yu et al., 2020), deep learning (Cheng et al., 2021), and sentiment 
analysis (Zhang and Min, 2016), among others. Therefore, applying the 
TWD method to MG decision-making problems is essential. In 2018, Yao 
(2018) combined the TWD approach with granular computing and 
proposed three-way granular thinking. Scholars have also developed 
various methods for region partition. Yao (2010), using PRSs as the 
basis, provided rules for partitioning different regions. Subsequently, 
Liu et al. (2011) improved the loss function in the above method and 
introduced the concept of relative loss functions. Furthermore, Jia and 
Liu (2019) made the computation of loss functions objective and pro
posed a TWD method based on evaluation values. This method makes 
the classification thresholds obtained based on loss functions more 
objective, significantly enhancing the credibility of classification results 
in the TWD method. 

As an MG decision-making method, the adjustable MG PRSs model 
exhibits effective fusion of MG fuzzy information and is straightforward 
to operate, performing well when dealing with complex MG problems. 
Furthermore, in the context of the evaluation value-based TWD method, 
the classification rules align with the upper and lower approximation 
partitioning methods of PRSs. Additionally, when addressing complex 
problems, the three-classification pattern offers DMs a buffer zone, 
reducing the error rate in decision-making. Therefore, incorporating the 
evaluation value-based TWD method into the adjustable MG PRSs model 
is more advantageous for solving the rebalancing problem for UDBSS. 

2.3. Introduction to the behavioral decision theory 

In the decision-making process, DMs often struggle to achieve a state 
of complete rationality because psychological factors can influence the 
decision outcome, leading to decisions that are not necessarily optimal. 
Traditional utility theories based on perfect rationality fail to model this 
scenario effectively. To bridge this gap, Kahnema and Tversk (1979) 
introduced PT in 1979, introducing bounded rationality into 
decision-making. This theory posits that individuals compare options 
against a reference point when faced with different choices, exhibiting 
risk-averse behavior towards gains and risk-taking behavior towards 
losses. Subsequently, in 1982, Bell (1982), Loomes and Sugden (1982) 
refined PT with the introduction of RT. They argued that DMs, after 
making a choice, focus more on the gap between the current outcome 
and alternative choices rather than solely on the current outcome itself, 
emphasizing relative value over absolute value. These two theories 

respectively address the influence of psychological factors during and 
after the decision-making process, effectively incorporating DMs’ 
bounded rationality into the outcomes. 

In recent years, bounded rationality theories, including PT and RT, 
have found widespread application in the field of intelligent decision- 
making. Researchers like Wan et al. (2020) considered DMs’ bounded 
rationality in heterogeneous multi-attribute GDM problems, integrating 
PT and using the ideal solution as a reference point to calculate gains 
and losses. Wang et al. (2020), (2022), on the foundation of TWD, 
incorporated both PT and RT. Zhang et al. (2023), in the context of 
incomplete T-spherical fuzzy information systems, constructed an MG 
TWD model based on RT. 

In summary, the bounded rationality of DMs is an essential factor in 
the decision-making process. However, PT and RT analyze DMs’ psy
chological states from two different perspectives. Therefore, we propose 
a combined approach that integrates both to characterize bounded ra
tionality phenomena and incorporate them into the decision-making 
process. The inclusion of this approach in the rebalancing model for 
UDBSS can better reflect user behavioral logic and reduce decision- 
making errors. 

2.4. Introduction to the rebalancing problem for UDBSS 

Currently, research on the rebalancing problem for UDBSS can be 
primarily divided into two aspects: dynamic rebalancing and static 
rebalancing. 

First, dynamic rebalancing addresses the allocation of bikes based on 
real-time data during the daytime when bike usage is high, with the goal 
of achieving rapid decision-making and action. Current research focuses 
on minimizing relocation costs or unmet demand. Brinkmann et al. 
(2019) proposed a dynamic lookahead policies that predicts potential 
demand in the current environment using dynamic programming, 
achieving minimization of unmet demand. You (2019) developed a 
constrained mathematical model using a periodic review relocation 
strategy, aiming to minimize the sum of unmet demand and trans
portation costs. Cai et al. (2022), taking into account damaged bikes, 
used an adaptive routing strategy to maximize the expected overall 
demand, including relocation and damaged bike recovery demand. They 
adjusted the transport team’s routes according to actual demand, 
ensuring a vehicle balance at different stations with the smallest team 
size. On the other hand, static rebalancing involves predicting and 
allocating bikes for the next day based on historical data during the 
nighttime when bike usage is lower. Zhang (2022) introduced a "pickup 
or delivery" rule to optimize repositioning rules and plan action routes 
based on this approach to minimize total costs. Dell’Amico et al. (2016) 
designed a destroy and repair metaheuristic algorithm that reduces the 
computational effort needed for neighborhood exploration. They 
applied this algorithm to solve the bicycles allocation routing problem, 
achieving good results. 

Much of the literature (Bulhões et al., 2018; Tian et al., 2020; Zhang 
et al., 2020) has focused on path optimization for the distribution of 
dockless bikes in terms of cost minimization. However, few articles have 
paid significant attention to resident demand. Therefore, this paper 
designs a static rebalancing model for UDBSS based on residents’ daily 
usage preferences, including bike usage and return, with the goal of 
minimizing unmet resident demand. 

3. Basic knowledge 

In this section, CIFSs, PRSs and TWD methods are briefly reviewed to 
facilitate the subsequent experiments. 

3.1. CIFs 

In IFSs, data features are described by MD and ND. However, it has 
certain limitations, that is, its ability to express information is relatively 
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weak. In order to improve its ability to express information, Alkouri and 
Salleh (Garg and Rani, 2019) extended the concept of IFS to the complex 
number field, and proposed CIFSs by combining them. At present, CIFSs 
have a good performance in expressing two-dimensional information in 
fuzzy environments. 

Definition 3.1. Alkouri and Salleh (2012) Suppose a CIFS C, defined in 
a non-empty finite universe of discourse U, is given as: 

C = {(x, μC(x), ρC(x))|x ∈ U}

where μ(x) = rC(x)e2πjωC(x) and ρ(x) = kC(x) e2πjϖC(x) denote MD and ND 
of arbitrary x ∈ U to the set C, respectively. For simplicity, this article 
will abbreviate the expression as μ = rCe2πjωC and ρ = kCe2πjϖC . Further, 
real part rC, kC : U→[0,1] represent amplitude value of μ and ρ, imagi
nary part j =

̅̅̅̅̅̅̅
− 1

√
and ωC,ϖC : U→[0, 1] represent phase value of ones, 

meeting 0 ≤ rC + kC ≤ 1 and 0 ≤ ωC + ϖC ≤ 1. Based on the principle of 
convenience of expression, we structure this pair γ = (rγ ,ωγ ,kγ ,ϖγ)and 
call it as a complex intuitionistic fuzzy number (CIFN). 

For the sake of further describing more complicated information 
from the real world, the CIF relation is structured by extending CIFSs to 
the dual-universe environment. 

Definition 3.2. Suppose U and V are two finite universes of discourse. 
A CIF relation R in terms of U × V is given by 

R = {〈(x, y), μR(x, y), ρR(x, y)〉|(x, y) ∈ U ×V}.

In this paper, some basic algorithms of CIFSs are needed to solve 
decision-making problems in CIFSs environment. 

Definition 3.3. Garg and Rani (2019) Let γj = (rj,ωj,kj,ϖj), j = 1, 2 be 
two arbitrary CIFNs, then, we can get  

(1) γ1 ⊕ γ2= ((r1 +r2 − r1r2), (ω1 +ω2 − ω1ω2), k1k2,ϖ1ϖ2),

(2) γ1 ⊗ γ2= (r1r2,ω1ω2, (k1 +k2 − k1k2), (ϖ1 + ϖ2 − ϖ1ϖ2)),

(3) λγ1 = (1 − (1 − r1)
λ
, (1 − (1 − ω1)

λ
),kλ

1,ϖλ
1),

(4) γλ
1 = (rλ

1,ωλ
1,1 − (1 − k1)

λ
, (1 − (1 − ϖ1)

λ
)),

(5) the complement of γ1: γc
1 = (k1,ϖj, r1,ωj).

In order to facilitate the comparison of different CIFN, then obtain 
the final ordering results of multiple elements and find the maximum or 
minimum value, it is necessary to introduce the score function and the 
precision function of CIFNs. 

Definition 3.4. Define a CIFN γ = (rγ , ωγ, kγ , ϖγ), then the score 
function Sc(γ) and the accuracy function H(γ) of γ is given by 

Sc(γ) = rγ − kγ + ωy − ϖγ , (1)  

H(γ) = rγ + kγ + ωγ + ϖγ , (2)  

where Sc(γ) ∈ [− 2,2] and H(γ) ∈ [0,2]. Moreover, suppose γ1 and γ2 are 
two CIFNs, the ordered relation between γ1 and γ2 can be obtained based 
on Formula (1) and (2):  

(1) If Sc(γ1) > Sc(γ2), then γ1 ≻ γ2,

(2) If Sc(γ1) < Sc(γ2), then γ1 ≺ γ2,

(3) If Sc(γ1) = Sc(γ2), then  
1) If H(γ1) > H(γ2), then γ1 ≻ γ2,

2) If H(γ1) < H(γ2), then γ1 ≺ γ2,

3) If H(γ1) = H(γ2), then γ1 ∼ γ2.

In this paper, in order to accurately describe the relationship be
tween two CIFNs in the process of problem decision, it is necessary to use 
the method of measuring distance. 

Definition 3.5. Rani and Garg (2017) Given two CIFNs γj= (rj,ωj, kj,

ϖj), j = 1,2, then the distance between γ1 and γ2 is got by the following 
formula: 

d(γ1, γ2) =
1
4
(|r1 − r2| + |k1 − k2| + |ω1 − ω2| + |ϖ1 − ϖ2|) (3)  

similarly, it is clear that d(γ1, γ2) ∈ [0,1]. 

3.2. PRSs 

When applying classical rough set theory to establish approximate 
spaces, strict rules often leave little room for adjustment when dealing 
with classification errors. In addressing this challenge, Yao (2010) 
introduced the notion of PRSs. These employ conditional probability 
and two thresholds to formulate rough approximations, providing a 
more flexible approach compared to the rigid construction rules of 
classical rough approximations. 

Definition 3.6. Yao (2010) Suppose R is an equivalence relation in 
finite universe of discourse U, and P is a probability measure, then 
(U,R, P) is named as probabilistic approximation space. For arbitrarily 
X ⊆ U, the upper and lower approximations of X with respect to (U,R, P)
are provided by: 

Rα(X) = {x ∈ U|P(X|[x]) ≥ α}, (4)  

Rβ
(X) = {x ∈ U|P(X|[x])> β}, (5)  

where the parameters meet 0 ≤ β < α ≤ 1. Then, 
(

Rα(X),Rβ
(X)
)

is 

titled a PRS. Then, it is naturally divided into three independent parts, 
which are defined as: 

POS(X) = Rα(X), (6)  

BND(X) = Rβ
(X) − Rα(X), (7)  

NEG(X) = U − Rβ
(X). (8)  

3.3. Evaluation value-based TWD methods 

Given the superiority of TWD in the field of MG decision-making, this 
paper applies the evaluation value-based TWD methods to the reba
lancing problem for UDBSS. Below, the development process of the three 
decisions is introduced in detail. 

In the classic MG decision-making process, the DM defines the 
alternative set with m elements and the attribute set with n elements 
respectively as U = {x1,⋯, xj,⋯, xm} and V = {y1,⋯,yh,⋯,yn}. Then, all 
attributes of each alternative are evaluated by experts to generate an 
evaluation matrix R = (ejh)m×n, in which the value ejh is the evaluation 
value of yh with respect to xj. And also, the weight set of n attributes is 
expressed as u = {u1,⋯, uh,⋯, un}

T, which satisfies uh ∈ [0,1]
(1 ≤ h ≤ n) and 

∑n
h=1uh = 1. 

On the basis of probabilistic rough sets, Yao (2010) proposed a TWD 
model and give a reasonable semantic interpretation of these three re
gions and proposed the loss functions of different decision results in two 
states. Supposing there are three decision results in the action set A ={aP,

aB, aN}, which separately represent x ∈ POS,x ∈ BND, x ∈ NEG, corre
spond to acceptance, non-commitment and rejection. Then, the state set 
Ω = {V,¬V} show that an alternative is in V or not in V. In view of these 
two dimensions, we can achieve the loss function matrix with respect to 
the cost of three actions in two states, which is presented as Table 1 below. 

In this table, λPP, λBP, λNP denote the cost that an alternative xj is 
classified into region POS, BND, NEG when xj ∈ V, similarly, λPN, λBN,

λNN denote the cost that one is classified into region POS, BND, NEG 
when xj ∕∈ V. Further, if we assume λPP = 0 and λNN = 0, it means there 
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is no loss when classification is correct. Accordingly, other costs are also 
needed to be reduced, namely, λ′

BP = λBP − λPP, λ′
NP = λNP − λPP, λ′

PN =

λPN − λNN and λ′
BN = λBN− λNN. Then the loss function in Table 1 can be 

converted into a relative loss function, as shown in Table 2 (Liu et al., 
2011). 

Considering relative loss function still owns subjectivity, Jia and Liu 
(2019) put forward evaluation value-based TWD method by introducing 
evaluation value ejh and the parameter σ, where σ ∈ [0, 0.5] and denotes 
the preference of DM on risk. Then we can obtain the relative loss 
function based on evaluation values, which is described as Table 3. 

By virtue of Table 3, the formulas of two threshold αjh and βjh are 
given below. 

αjh =
(1 − σ)

(
1 − ejh

)

(1 − σ)
(
1 − ejh

)
+ σejh

, (9)  

βjh =
σ
(
1 − ejh

)

σ
(
1 − ejh

)
+ (1 − σ)ejh

. (10) 

Remark 3.1. This model adeptly mitigates subjectivity-induced 
losses when the DMs takes varying actions in different states. This en
hances the objectivity of decision outcomes. Additionally, the model 
offers an innovative approach to establish personalized threshold 
values. It achieves this by autonomously computing thresholds for each 
alternative based on their respective attribute evaluation values, thereby 
minimizing the likelihood of classification errors. The TWD methods 
used in the subsequent model introduction all refer to evaluation value- 
based TWD methods. 

4. Adjustable MG CIF PRS based on P-RT 

Within this section, we present a novel data processing approach 
known as adjustable MG CIF PRSs. This method is introduced to tackle 
the challenges posed by MG decision-making problems, specifically 
targeting the complexities of choosing the most appropriate granularity 
and establishing thresholds objectively. Subsequently, we delve into the 
P-RT, a concept aimed at emulating the psychological states of DMs. The 
primary objective of this technique is to enhance the alignment of de
cision outcomes with real-world scenarios, thereby improving the 
overall accuracy and practicality of the decision-making process. To 
further capture the often irrational nature of DMs during the decision- 
making process, we seamlessly integrate the P-RT into the construc
tion of PRSs. This pioneering approach, referred to as Adjustable MG CIF 
PRSs based on P-RT, serves as a robust methodological underpinning for 
subsequent rebalancing models for UDBSS, offering valuable insights 
into enhancing decision-making practices. 

In MG GDM problems, suppose U = {x1,⋯, xj,⋯, xm} and V = {y1,⋯ 
, yh,⋯, yn} are the alternative set. The DM set is recorded as Z = {z1,⋯,zi,

⋯, zl}, and its corresponding weight set is w = {w1,⋯,wi,⋯,wl}
T. The 

assess matrices is defined as Ri = (ei
jh)m×n(i= 1, 2,⋯, l) and S = {s1, ⋯,

sh,⋯, sn} is a standard assessment set. Symbol ei
jh represent an evaluation 

value of j-th alternative by i-th DM under h-th attribute. Lastly, ui =

{ui1,⋯, uih,⋯, uin}
T is the weight set of relation set Ri corresponding to 

set V. 

4.1. The adjustable MG CIF PRSs based on TWD methods 

In this section, we have produced a new and iconic MG CIF PRSs 
model by integrating prs into the MG CIF environment. This model, 
coherently combined with the principles outlined in Section 4.2, cul
minates in a model capable of categorizing all available alternatives into 
three distinct regions. Furthermore, through this integration and 
refinement process, we effectively derive sorted results that illuminate 
the decision landscape with greater clarity and precision. 

Definition 4.1. Let (U,V,Ri, S) be an MG CIF information system. 
Then, the single CIF evaluation value of xj of Ri can be achieved by the 
formula below, 

θRi
S

(
xj
)
=

∑n
h=1uhei

jhsh
∑n

h=1uhei
jh
. (11)  

In this formula, the division operator for CIFN is used. Therefore, we 
provide a suitable division operator, which is shown as formula 

γ1 ⊙ γ2 =

(

min
(

1,
r1

r2

)

e
2πjmin

(

1,ω1
ω2

)

,

max
(

0,
k1 − k2

1 − k2

)

e
2πjmax

(

0,ϖ1 − ϖ2
1− ϖ2

)
)

,

(12)  

where γj = (rj,ωj, kj,ϖj),j = 1,2 are two arbitrary CIFNs. 
In order to select a final evaluation value of xj from all 

θRi
S (xj)reasonably, the single CIF evaluation value of xj on all DMs need 

to be ordered. 

Definition 4.2. Suppose θRτ(i)
S (xj) is an adjustable single CIF evaluation 

value of xj, generated by arranged θRi
S (xj) of xj in an ascending order. 

η = i/l(i= 1, 2,⋯, l) Express the DM’s preference for risk, meaning 
selecting the i-th smallest value among all evaluation values of xj as final 
assess value and the larger the value of i, the more likely the DM is to 
pursue risk. 

The single CIF MD of xj on Ri are obtained through Definition 4.1 
Then, after determining the adjustable single CIF MD parameter τ, we 
can obtain final assessing value of xj. The more we prefer risk, the larger 

parameter τ, the greater the selected final MD θRτ(i)
S (xj) of xj. Next, the 

threshold value αi
j and βi

j can be got by replacing ejh in the Formula (9) 

and (10) with θRi
S (xj), which are used to determine the final thresholds in 

next section. 

Remark 4.1. In contrast to the earlier proposals of optimistic and 
pessimistic rough sets, which were limited to selecting either the mini
mum or maximum granularity, the adjustable variant of rough sets 
introduced in this section presents a substantial advancement. It effi
ciently addresses the issue of excessively extreme granularity selection. 
Within this adjustable rough set framework, the sorting of membership 

Table 1 
Loss function.   

V(POS) ¬V(NEG)

aP λPP λPN 

aB λBP λBN 

aN λNP λNN  

Table 2 
Relative loss functions.   

V(POS) ¬V(NEG)

aP 0 λ′
PN 

aB λ′
BP λ′

BN 

aN λ′
NP 0  

Table 3 
Relative loss functions based on evaluation values.   

V(POS) ¬V(NEG)

aP 0 1 − ejh 
aB σejh σ(1 − ejh)

aN ejh 0  
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degrees not only facilitates the determination of both minimum and 
maximum granularity levels but also affords the ability to select a more 
balanced and moderate granularity. This enhanced flexibility empowers 
decision-makers to navigate a broader spectrum of granularity options, 
optimizing their choices for more nuanced and well-informed decision- 
making processes. For example, when η = 3/4, meaning the third of all 
sorted membership degrees of xj(j= 1, 2,⋯m) is selected. 

4.2. P-RT 

Prior to the introduction of the concept of bounded rationality, there 
was a prevailing belief that DMs operated under complete rationality 
during the decision-making process. This perspective largely dis
regarded the influence of psychological factors on decision outcomes. 
However, in the following sections, we integrate the P-RT into our 
model. This integration is executed through a systematic four-step pro
cess, leveraging P-RT as a method for selecting classification thresholds. 
By doing so, we achieve a more effective simulation of bounded ratio
nality, accounting for the inherent complexities of human decision- 
making influenced by psychological factors. 

(1) Calculate positive and negative ideal threshold of each alterna
tive xj, where j = 1,2,⋯,m, denoted as: 

Pα =
{

pα
j

}
=

{

max
i=1,2,⋯,l

(α1i), max
i=1,2,⋯,l

(α2i),⋯, max
i=1,2,⋯,l

(αmi)

}

, (13)  

Nα =
{

nα
j

}
=

{

min
i=1,2,⋯,l

(α1i), min
i=1,2,⋯,l

(α2i),⋯, min
i=1,2,⋯,l

(αmi)

}

, (14)  

Pβ =
{

pβ
j
}
=

{

max
i=1,2,⋯,l

(β1i), max
i=1,2,⋯,l

(β2i),⋯, max
i=1,2,⋯,l

(βmi)

}

, (15)  

Nβ =
{

nβ
j
}
=

{

min
i=1,2,⋯,l

(β1i), min
i=1,2,⋯,l

(β2i),⋯, min
i=1,2,⋯,l

(βmi)

}

. (16)   

(2) Calculate positive and negative values of thresholds of xj ac
cording to the formulas 

vα+
ji =

(
ΔScα+

ji

)ξ
=
(

Sc
(
αji
)
− Sc

(
nα

j

))ξ
, (17)  

vα−
ji = − κ

(
− ΔScα−

ji

)ζ
= − κ

(
Sc
(

pα
j

)
− Sc

(
αji
))ζ

, (18)  

vβ+
ji =

(
ΔScβ+

ji
)ξ

=
(
Sc
(
βji
)
− Sc

(
nβ

j
))ξ

, (19)  

vβ−
ji = − κ

(
− ΔScβ−

ji
)ζ

= − κ
(
Sc
(
pβ

j
)
− Sc

(
βji
))ζ

, (20)   

where these four values express the values of losses and benefits. It 
should be noted that the parameters ξ and ζ convey the degree of 
sensitivity of the DMs to loss and benefit, both of which are between zero 
and one. 

(3) Calculate positive and negative prospect values and total pros
pect values for each DM, which are determined by 

Vα+
i =

∑m

j=1
vα+

ji w+
j ,Vα−

i =
∑m

j=1
vα−

ji w−
j , (21)  

Vα
i = Vα+

i + Vα−
i , (22)  

Vβ−
i =

∑m

j=1
vβ−

ji w−
j ,Vβ−

i =
∑m

j=1
vβ−

ji w−
j , (23)  

Vβ
i = Vβ+

i + Vβ−
i , (24)   

where positive and negative weight of xj are recorded as w+
j =

wϕ
j

(wϕ
j +(1− wj)

ϕ
)
1/ϕ and w−

j =
wφ

j

(wφ
j +(1− wj)

φ
)
1/φ. These parameters ϕ ∈ (0, 1) and φ ∈

(0, 1) reflect different attitudes when DM face on gain and loss.  

(4) Calculate prospect-regret (P-R) value of each DM on two 
thresholds by means of 

PRVα(Ri) = Vα
i +

∑m

o=1

(
1 − e− δi(Vα

i − Vα
o )
)
, (25)  

PRVβ(Ri) = Vβ
i +

∑m

o=1

(
1 − e− δi(Vβ

i − Vβ
o )
)
, (26)   

where parameter δi(δi ≥ 0) mean the different regret avoidance abilities 
of each DM. This function reflects regret-rejoice values of DMs, and it is 
an increasing concave function monotonically, which describes that 
DMs are more sensitive to regret than to rejoice. Further, the greater the 
δ, the stronger the ability to avoid regret.  

(5) Determine final thresholds 

After determining distinct P-R values for all DMs with respect to the 
two thresholds, our next step involves the selection of the final 
threshold. This critical decision is guided by the threshold recommended 
by the decision-maker with the highest P-R value, which are expressed 
as αj,final and βj,final. 

On the basis of Section 4.1, we use P-RT to obtain the final thresholds 
in the state of bounded rationality. They will be applied in our model. 

5. The rebalancing model for UDBSS based on MG PRS and P-RT 
in CIF information system 

In this section, we introduce a rebalancing model for UDBSS that 
leverages the MG GDM approach. We offer a detailed exposition of the 
model’s practical application and its intricate algorithmic framework. 
Through the utilization of this model, we are equipped to make precise 
forecasts regarding UDBSS demand at multiple locations, thereby 
facilitating a more judicious allocation of UDBSS resources. This model 
represents a valuable tool for optimizing the distribution of resources to 
meet demand effectively and efficiently across diverse locations. 

5.1. The application of rebalancing models for UDBSS 

Prior to applying the data, it is essential to preprocess the required 
data using suitable methods. To employ the rebalancing model for 
UDBSS presented in this article, it is imperative to convert all data into 
the CIFN format. Subsequently, we outline the rebalancing model for 
UDBSS as follows. 

First, we need to construct MG CIF information system (U,V,Ri,S), as 
described in Section 4.1. Specifically, the evaluation value ei

jh and 
standard assessment number sh are both CIFNs. It is showed as Table 4. 
Then, calculate the weights of alternatives and DMs using the maximum 
deviation method. The specific formula is as follows. 

uih =

∑m

j=1

∑m

o=1

(
d
(

ei
jh, ei

oh

))

∑n

h=1

∑m

j=1

∑m

o=1

(
d
(

ei
jh, ei

oh

)), (27) 
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wi =

∑n

h=1

∑n

o=1
(|uih − uio|)

∑l

i=1

∑n

h=1

∑n

o=1
(|uih − uio|)

. (28) 

Remark 5.1. This approach involves quantifying disparities among 
all objects and posits that objects with more substantial distinctions from 
their counterparts exert a more significant influence on the decision- 
making process. Consequently, such objects merit a higher weight or 
priority in the decision-making process. 

Next, in order to classify these alternatives and get optimal one by 
ranking them, we need to perform data fusion operations. Via Formula 
(11), the single evaluation value θRi

S (xj) of xj of Ri is gotten and standard 
assessment set is reflected as 

S(yh) = {〈y1, (r1,ω1, k1,ϖ1)〉,⋯, 〈yh, (rh,ωh, kh,ϖh)〉,

⋯〈yn, (rn,ωn, kn,ϖn)〉}.

In this formula, 

rh =

∑l

i=1

∑m

j=1
rijh

l ∗ m
,ωh =

∑l

i=1

∑m

j=1
ωijh

l ∗ m
, (29)  

kh =

∑l

i=1

∑m

j=1
kijh

l ∗ m
,ϖh =

∑l

i=1

∑m

j=1
ϖijh

l ∗ m
. (30) 

At this point, the evaluation matrix transforms into R = (θRi
S (xj))m×l, i 

= 1,2,⋯, l, which is given as Table 5. 
Further, the classification and sorting tasks are completed by utiliz

ing it. For classification tasks, ranking in ascending order is primary, and 
our preference for risk determines the selection result of final assessing 
value of xj. On this basis, the final assessing value θRτ(i)

S (xj) of xjis gotten 
according to Definition 4.2. On the other hand, the thresholds αi

j and βi
j 

of xj can be obtained by replacing ejh in Formula (9) and (10) with θRi
S (xj)

and are shown as: 

αi
j =

(1 − ϑ)
(
1 − θRi

S

(
xj
))

(1 − ϑ)
(
1 − θRi

S

(
xj
))

+ ϑθRi
S

(
xj
), (31)  

βi
j =

ϑ
(
1 − θRi

S

(
xj
))

ϑ
(
1 − θRi

S

(
xj
))

+ (1 − ϑ)θRi
S

(
xj
), (32)  

which are used to divide upper and lower approximations. And the in
tegrated parameter ϑ =

∑l
i=1wiσi, which can integrate the risk prefer

ences of all DMs and pay more attention to the role of individual 
opinions in the decision-making process. 

Given the existence of multiple threshold pairs, it becomes impera
tive to employ the P-RT method introduced in Section 4.2 for selecting 
the ultimate threshold. Subsequently, we obtain αj,final and βj,final of each 
xj. Following this, in accordance with Definition 3.6, we compare the 
final assessment value obtained in Section 4.1 to the concluding 
threshold acquired in Section 4.2, resulting in the adjustable MG CIF 

PRSs 

⎛

⎜
⎝
∑l

i=1
Ri

τ,αj,final

(S),
∑l

i=1
Ri

τ,βj,final

(S)

⎞

⎟
⎠ of universe U, computed using 

Formulas (4) and (5), where 

∑l

i=1
Ri

τ,αj,final

(S) =
{

x ∈ U|θRτ(i)
S
(
xj
)
≥ αj,final

}
, (33)  

∑l

i=1
Ri

τ,βj,final

(S) =
{

x ∈ U|θRτ(i)
S
(
xj
)
> βj,final

}
. (34) 

Thus, these following three classification rules are further deter
mined in terms of Formulas (6) - (8). 

POSτ,αj,final (X) =
∑l

i=1
Ri

τ,αj,final

(S), (35)  

BNDτ,αj,final ,βj,final (X) =
∑l

i=1
Ri

τ,βj,final

(S) −
∑l

i=1
Ri

τ,αj,final

(S), (36)  

NEGτ,βj,final (X) = U −
∑l

i=1
Ri

τ,βj,final

(S). (37) 

Based on this, we can classify all alternatives into three discrete re
gions POSτ,αj,final , BNDτ,αj,final ,βj,final and NEGτ,βj,final , which represent accep
tance, non- commitment and rejection, respectively. 

Lastly, sort the final evaluation values θRτ(i)
S (xj) of all alternatives 

using Definition 3.4, and adjust the sorting results under the constraint 
of criterion POSτ,αj,final ≻ BNDτ,αj,final ,βj,final ≻ NEGτ,βj,final to obtain the optimal 
alternatives. 

5.2. The algorithm of rebalancing models for UDBSS 

To offer a more concise and clear exposition of the model delineated 
in Section 5.1, we shall consolidate and outline the model’s procedural 
steps within this section. This summarization serves the purpose of 
enhancing clarity and accessibility, facilitating a more comprehensive 
understanding of the model’s operational framework. 

Input: An MG CIF information system (U,V,Ri, S) after data 
preprocessing. 

Output: Classification and sorting results for all alternatives. 

Step 1: Calculate attribute weights uih and DM weights wi according 
to Formula (27) and (28). 

Table 4 
The MG CIF information system.   

R1 R2 ⋯ Rl  

y1 y2 ⋯ yn y1 y2 ⋯ yn ⋯ y1 y2 ⋯ yn 

x1 e1
11 e1

12 ⋯ e1
1n e2

11 e2
12 ⋯ e2

1n ⋮ el
11 el

12 ⋯ el
1n 

x2 e1
21 e1

22 ⋯ e1
2n e2

21 e2
22 ⋯ e2

2n ⋮ el
21 el

22 ⋯ el
2n 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
xm e1

m1 e1
m2 ⋯ e1

mn e2
m1 e2

m2 ⋯ e2
mn ⋮ el

m1 el
m2 ⋯ el

mn  

Table 5 
The single MG CIF information system.   

R1 R2 ⋯ Rl 

x1 θR1
S (x1) θR2

S (x1) ⋯ θRl
S (x1)

x2 θR1
S (x2) θR2

S (x2) ⋯ θRl
S (x2)

⋮ ⋮ ⋮ ⋱ ⋮ 
xm θR1

S (xm) θR2
S (xm) ⋯ θRl

S (xm)
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Step 2: Calculate adjustable single MG CIF information system based 
on Section 4.1 and determine the final evaluation. 
Step 3: Calculate thresholds αi

j and βi
j based on Formulas (31) and 

(32). 
Step 4: Select the final thresholds in terms of P-RT proposed in 
Section 4.2. 
Step 5: Divide into three classification areas POSτ,αj,final (X), 
BNDτ,αj,final ,βj,final (X) and NEGτ,βj,final (X) with the help of Formulas (33) - 
(37). 
Step 6: Determine the sorting result under the constraints of classi
fication result. 

Remark 5.2. Building upon the explanation provided earlier, we sys
tematically compute the time complexities of the model introduced in 
this article. This process yields complexities for O(ln2), O(lmn), O(lm), 
O(lm), O(m) and O(m), respectively. In summary, we can deduce that 
when n surpasses m, the overall time complexity of the model in this 
article is O(ln2). Similarly, when m exceeds n, it becomes O(lmn). 

By meticulously following the six outlined steps, we undertake a 
comprehensive refinement of the model, culminating in the formulation 
of its algorithm, which is detailed as Algorithm 1. This systematic pro
cess enhances the model’s precision and effectiveness, laying the 
groundwork for its practical implementation and subsequent analysis. 

6. Illustrative case studies 

In this section, we aim to showcase the real-world applicability of the 
rebalancing model for UDBSS. We will begin with a specific UDBSS case 
and provide an in-depth investigation of the decision-making process 
using our model. The data set utilized for this demonstration is sourced 
from the Citi Bike System Data (https://citibikenyc.com/system-data). 
Moreover, we conducted sensitivity and comparative analyses based on 
the final experimental outcomes. These analyses serve to validate both 
the effectiveness and stability of our model. 

6.1. The example description 

In this case, under different weather conditions, according to the 
previous using and parking number of UDBSS in different locations, we 
conducted experimental analysis to judge the different demand for 
shared bicycles in these locations. Concretely, domains U = {x1, x2, x3,

x4} and V = {y1, y2,⋯, y10} are the alternative set (the location codes 
are H101, H102, H103, H105) and attribute set (the date is from January 
1st to January 10th) respectively, indicating the locations where the 
delivery number of bikes needs to be predicted. And all attributes 
include the number of bikes used a and the number of bikes parked b and 
weather in 15 days. 

For the convenience of data processing, we have chosen specific data 
sets for statistical analysis, effectively converting them into a decision 
matrix. Our initial step involves the selection of four distinct locations as 
potential solutions. We then aggregate bicycle usage and returns at these 
locations from January 1st to January 10th, resulting in ten attributes. 
Additionally, we factor in weather conditions as uncertain variables for 
these 15 days. Recognizing that bicycle usage patterns vary during 
different time intervals, to introduce diversity into our data, we aim to 
avoid aggregating data across the entire day. Hence, we have divided the 
24-hour statistical data into four segments: from 5 AM to 11 AM, from 11 
AM to 3 PM, from 3 PM to 11 PM, and from 11 PM to 5 AM. These 
segments are treated as four distinct DMs and their details are recorded 
as follows: Z = {z1,z2,z3,z4}. For four DMs, four sets of binary relations 
Ri = (ei

jh)m×n→U× V(i = 1,2,3,4)are given. The specific form is shown 
in Table 4. 

After obtaining the decision matrix, the next step is to standardize 
the data and transform it into the CIFN format. This conversion process 
can be delineated into three distinct steps:  

(1) Real part r of MD: This represents the using number of bicycles, 
and the larger the usage, the greater the demand. Consequently, 
for the parameter r, it is recommended to apply a benefit 
normalization formula, specifically Formula (38). 

rjh =

ajh − min
j

ajh

max
j

ajh − min
j

ajh
, (38)   

where j = 1,2, 3,4 and h = 1,2,⋯,10.  

(1) Imaginary part ω of MD: This represents the parking number of 
bicycles. The larger the parking volume, the smaller the demand. 
Therefore, a cost normalization Formula (39) is used for param
eter ω. 

ωjh =

max
j

bjh − bjh

max
j

bjh − min
j

bjh
, (39)    

(2) Real part k and imaginary part ϖ of ND: In general, ND is a 
complement of MD, that is k = 1 − r and ϖ = 1 − ω. Nonetheless, 
uncertainty arises between MD and ND when we introduce un
certain factors. In this experiment, the uncertain factor under 
consideration is weather-related. Specifically, when weather 
conditions are either sunny or rainy, this uncertainty is man
ifested in real part k, denoted as k = 0.75× (1 − r), resulting in an 
overall uncertainty of 1 − r − k. 

Once all the data has been successfully converted into CIFN format, 
we proceed to build the MG CIF information system, as illustrated in 
Table 4. Utilizing this system, we can then apply the model outlined in 
Section 5 for subsequent experimental analysis. The detailed decision- 

Algorithm 1 
The rebalancing model algorithm for UDBSS.  

Input: MG CIF information system 
Output: Classification and sorting results for all alternatives 
1: Give the value of the parameter l,m, n, η, σ, δ.
2: for i = 1 to l do 
3: for h = 1 to n do 
4: Calculate uih. 
5: end 
6: Calculate wi. 
7: end 
8: for j = 1 to m do 
9: for i = 1 to l do 
10: Calculate θRi

S (xj). 
11: end 
12: Structure θRτ(i)

S (xj) . 
13: Determine final assessing value. 
14: Calculate αi

j and βi
j. 

15: end 
16: for j = 1 to m do 
17: for i = 1 to l do 
18: Calculate PRVα(Ri) and PRVβ(Ri). 
19: Determine αj,final and βj,final. 
20: end 
21: end 
22: for j = 1 to m do 
23: Categorize all the alternatives. 
24: end 
25: Sort based on classification results. 
26: return Classification and sorting results.  
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making process will be expounded upon in the following section. 

Remark 6.1. Sunny or rainy weather conditions lead to a decrease in 
bicycle usage due to environmental factors, introducing uncertainty into 
the prediction of demand for a given location using current data. By 
employing Formula k = 0.75× (1 − r), we express this uncertainty, 
signifying that as the number of bicycles used increases, the accuracy of 
predicting the highest demand for bicycles at the current location also 
increases, resulting in lower uncertainty. Conversely, higher uncertainty 
is associated with lower bicycle usage. 

6.2. Detailed decision-making procedures 

In this section, we embark on the practical implementation of the 
rebalancing model for UDBSS, as previously introduced in Section 5. 
Leveraging the foundation laid in Section 6.1 with the development of 
the MG CIF information system, we proceed to delve into an intricate 
exploration of the decision-making process associated with this model. 
This in-depth examination aims to provide a comprehensive and lucid 
understanding of how the model operates within the context of real- 
world rebalancing scenarios for UDBSS.  

(1) Calculate weights of ten dates uih(i= 1, 2, 3,4; h= 1,2,⋯,10)
and weights of four time period wi(i= 1, 2,3, 4) according to 
Formula (27) and (28). Therefore, we can get a concrete calcu
lation, shown as Figs. 2 and 3.  

(2) Calculate the standard assessment number s1 = (r1,ω1, k1,ϖ1)

and r1 =

∑l
i=1

∑m
j=1

rij1

4∗4 = 0.54905, ω1 =

∑l
i=1

∑m
j=1

ωij1

4∗4 = 0.56039. In 
a similar manner, we can easily obtain the following results. 

s1 = ( 0.54905 0.56039 0.45095 0.43961 )

s2 = ( 0.52146 0.53415 0.47854 0.46585 )

s3 = ( 0.45867 0.48403 0.46725 0.51597 )

:

s10 = ( 0.50403 0.54761 0.49597 0.45239 )

Based on this, calculate single evaluation value of xjin Ri by Formula 
(11). Then, sorting the single evaluation value in ascending order on the 
basis of the score function, the adjustable single MG CIF information 
system can be constructed, which is given in Table 6. 

Subsequently, within the context of this experiment, we adopt a risk- 
neutral stance by assigning a risk preference parameter of η = 3/4. As a 
result, the ultimate evaluation values for all locations are determined by 
selecting the evaluation values provided within the relation set R3. 
These chosen evaluation values are presented in the following manner: 

θRr(3)
S (x1) = (0.57042, 0.69233, 0.37923, 0.30767)

θRr(3)
S (x2) = (0.68826, 0.61841, 0.2609, 0.38159)

θRr(3)
S (x3) = (0.69724, 0.62507, 0.25264, 0.37493)

θRr(3)
S (x3) = (0.60953, 0.6774, 0.33721, 0.3226)

(3) In the computational process, we proceed to calculate the 
thresholds αi

j and βi
j (i, j= 1, 2,3, 4) utilizing Formulas (31) and 

(32), with the parameter σ = [0.25, 0.25, 0.25, 0.25]. This 
particular choice signifies the unanimous adoption of a risk- 
neutral disposition by all DMs involved in the experiment. 
Furthermore, we introduce another parameter, denoted as ϑ, with 
a value of 0.25, as a parameter that integrates the attitudes of all 
DMs. 

(4) In accordance with the P-RT introduced in Section 4.2, we pro
ceed to compute the P-R values for each DM based on two 
thresholds, utilizing Formula (13) - (26). Notably, for this 
calculation, we assume uniform distribution of positive and 
negative weights for xj, denoted as w+ = [0.25,0.25,0.25,0.25]
and w− = [0.25,0.25,0.25,0.25]. Ultimately, we arrive at the P-R 
values for all DMs concerning the two thresholds, as illustrated in 
Fig. 4. Fig. 2. Weights of ten dates in UDBSS instance.  

Fig. 3. Weights of four time period in UDBSS instance.  

Table 6 
The adjustable single MG CIF information system in the UDBSS instance.   

R1 R2 R3 R4 

x1 (0.54589, 
0.68539, 
0.39218, 
0.31461) 

(0.61724, 
0.64636, 
0.3359, 
0.35364) 

(0.57042, 
0.69233, 
0.37923, 
0.30767) 

(0.58090, 
0.70900, 
0.36437, 
0.29098) 

x2 (0.63994, 
0.53927, 
0.29202, 
0.46073) 

(0.54903, 
0.70115, 
0.39446, 
0.29885) 

(0.68826, 
0.61841, 
0.2609, 
0.38159) 

(0.68909, 
0.61701, 
0.25839, 
0.38299) 

x3 (0.57969, 
0.61255, 
0.36624, 
0.38745) 

(0.60461, 
0.6439, 
0.35957, 
0.3561) 

(0.69724, 
0.62507, 
0.25264, 
0.37493) 

(0.66503, 
0.70675, 
0.2853, 
0.29325) 

x4 (0.55666, 
0.64014, 
0.38798, 
0.35986) 

(0.51732, 
0.68784, 
0.41789, 
0.31216) 

(0.60953, 
0.6774, 
0.33721, 
0.3226) 

(0.54614, 
0.75779, 
0.41697, 
0.24221)  
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Upon examination of the graph, it becomes evident that DM z1 
consistently attains the highest P-R value, irrespective of whether it is 
for α or β. Consequently, the thresholds associated with DM z1 are 
chosen as the ultimate thresholds. In the final step, the definitive 
thresholds αj,final and βj,final (j= 1, 2,3, 4) are derived, as outlined in 
Table 7.  

(5) By employing Formulas (33) and (34), we proceed to compare the 
conclusive evaluation value with the ultimate threshold, yielding 
the Adjustable MG CIF PRSs. Additionally, with the assistance of 
Formulas (35) - (37), we can further segregate the outcome into 
three distinct regions, denoted as POSτ,αj,final (X), BNDτ,αj,final ,βj,final (X), 
and NEGτ,βj,final (X), which are non-adjacent to one another. The 
specific classification outcome for this case is visually depicted in 
Fig. 5. 

From the above figure, we can see that all locations are divided into 
the domain POSτ,αj,final (X), which reflect that all of the alternatives are 
likely to be locations that require the most bicycles.  

(6) Within the confines of criterion POSτ,αj,final 

≻ BNDτ,αj,final ,βj,final ≻ NEGτ,βj,final , we initiate a ranking process for the 
ultimate evaluation values, applying the sorting criteria delin
eated in Definition 3.4. In Fig. 6, the score values for each loca
tion are graphically represented, enabling us to make a definitive 
determination, that is, x3 ≻ x2 ≻ x4 ≻ x1. Then, it becomes 
evident that the optimal solution corresponds to location x3 
(H103). 

Remark 6.2. Drawing from the comprehensive analysis conducted in 
the preceding six steps, it’s evident that we have assumed a neutral 
stance with respect to all associated risks. As we arrive at the conclusive 
experimental outcomes, it becomes evident that the most optimal 

solution entails selecting location x3. In other words, the prime location 
for the placement of a substantial number of urban shared bicycles is 
identified as H103. This is followed in order of preference by locations 
x2(H102), x4 (H105), and x1 (H101). These results reveal the priorities 
of UDBSS for different locations when deploying shared bicycles. 

6.3. Sensitivity analysis 

To comprehensively investigate the influence of both parameter σ 
and parameter η on the outcomes generated by the model presented 
in this article, we have undertaken a parameter sensitivity analysis 
within this section. This analysis serves as an extension of the ex
periments conducted in Section 6.2 and allows us to gain a deeper 
understanding of how variations in these parameters impact the 
decision results.  

(1) The integrated risk parameter of loss function is studied. We 
explore six distinct levels of attitudes towards risk, ranging from 
risk aversion to risk preference, with values of ϑ = 0.1, ϑ = 0.2, 
ϑ = 0.25, ϑ = 0.3, ϑ = 0.4 and ϑ = 0.5, respectively. When ϑ is 
equal to 0.1, due to the highest level of risk aversion, all four 
locations are divided into BND. As DMs exhibit a gradual shift 
towards a more risk-seeking attitude, the four locations are 
sequentially assigned to POS. Specifically, as ϑ exceeds a certain 
threshold, denoted by a (0.2< a< 0.25), all locations are divided 

Fig. 4. the P-R values of DMs on two thresholds.  

Table 7 
Final thresholds in the UDBSS instance.   

x1 x2 x3 x4 

α (0.6744, 
0.52562, 
0.3073, 
0.47438) 

(0.71673, 
0.5393, 0.26763, 
0.4607) 

(0.48593, 
0.66017, 
0.48375, 
0.33983) 

(0.63299, 
0.57932, 
0.34608, 
0.42068) 

β (0.20021, 
0.12943, 0.785, 
0.87057) 

(0.22905, 
0.13478, 
0.75643, 
0.86522) 

(0.11316, 
0.19311, 
0.87216, 
0.80689) 

(0.17628, 
0.15169, 
0.80885, 
0.84831)  

Fig. 5. The classification result in UDBSS instance.  

Fig. 6. The sorting result in UDBSS instance.  
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into POS. The experimental phenomenon described above is 
shown in Fig. 7. 

The four locations are represented by different boxes. It is worth 
noting that beyond a certain point, the classification outcomes remain 
consistent. Therefore, in the figure, we have chosen to display only the 
initial four cases for clarity and brevity. The scoring values for each 
location are visually depicted using star symbols, and the classification 
results can be easily discerned by observing the specific range within 
which the star patterns are situated.  

(2) We test the experimental phenomena under different values of η 
and the results are visualized, as shown in Fig. 8. 

As we know, along with η increases, the risk also gradually increases. 
From this picture, we can observe that when there is a preference for risk 
avoidance, that is, η = 1/4 and η = 2/4 = 1/2, the optimal alternative is 
location x1 (H101). At this point, the risk of choosing location x1 is 
relatively small. But when there is a preference for accepting risk, that is 
η = 3/4 and η = 4/4 = 1, the optimal alternative is location x3 (H103). 
At this time, choosing location x3 will pose certain risks. 

6.4. Comparative analysis 

Building upon the outcomes obtained in the initial two sections, 
where we applied our model to derive sorting results for four distinct 
locations, this section aims to take our investigation a step further. To 
reinforce the credibility and efficacy of our model, we undertake a 
comparative analysis. In this analysis, we juxtapose our algorithm with 
several classical MG GMD methods that have been extended for use 
within the CIF environment. This comparative study enables us to 
meticulously analyze and discuss the disparities and distinctions among 
these approaches. Through this comprehensive examination, we aim to 
highlight the unique strengths and advantages offered by our model in 
contrast to established methodologies.  

(1) The comparison with the CIF aggregation operator method 

Our approach in this comparative analysis encompasses two distinct 
strategies. On one hand, we employ the CIF aggregation operator 
method (denoted as M1) to directly execute data fusion across both 
attribute and DM dimensions, culminating in the outcomes presented in 
Fig. 9. Next, we take a two-step approach. Initially, we utilize Definition 
4.1 to acquire a single MG CIF information system. Subsequently, we 
apply the CIF aggregation operator method to execute data fusion 

exclusively within the DM dimension. This combined methodology is 
denoted as the TWD + CIF aggregation operator method (denoted as 
M2), and the outcomes are showcased in Fig. 10. 

Based on the insights garnered from the two aforementioned graphs, 
a noteworthy observation emerges: our algorithm consistently aligns 
with the optimal location identified through the use of the aggregation 

Fig. 7. The sensitivity analysis of parameter ϑ.  

Fig. 8. The sensitivity analysis of parameter η.  

Fig. 9. The comparison with the CIF aggregation operator method.  

Fig. 10. The comparison with the TWD + CIF aggregation operator method.  
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operator method. This alignment underscores the reliability and effec
tiveness of our approach. Moreover, a deeper examination of Fig. 10 
reveals an interesting phenomenon. By incorporating the TWD approach 
alongside the aggregation operator method, we observe a reduction in 
the impact of noisy data on the evaluation results. This reduction in 
noise-induced fluctuations signifies an improvement in the stability and 
robustness of our method. In summation, our approach not only show
cases feasibility but also demonstrates superior stability when compared 
to established methodologies, ultimately enhancing its suitability for 
real-world applications.  

(2) The comparison with the CIF TOPSIS method 

In this section, we embark on a comparative analysis between our 
method and the CIF TOPSIS method (denoted as M3) and the approach 
known as TWD + CIF TOPSIS (denoted as M4). The CIF TOPSIS method 
is primarily centered on the computation of distances between each 
alternative and both the positive and negative ideal solutions. This 
computation allows us to discern the alternative that exhibits the highest 
degree of proximity to the positive ideal solution while simultaneously 
maintaining the lowest degree of closeness to the negative ideal solu
tion, thereby identifying the optimal alternative. By applying this 
calculation, we yield the results displayed in Figs. 11 and 12. 

The TOPSIS method relies on the calculation of distances from each 
solution to the positive and negative ideal solutions to establish their 
prioritization. Consequently, when a particular day at a specific location 
exhibits an exceptional volume of bicycle usage or returns, it can 
significantly skew the evaluation results for all solutions on that day. 
This skew can then propagate to influence the final ranking outcomes, as 
evidenced in the results depicted in Fig. 11. To address this issue 
comprehensively, we employ a two-step approach. Initially, we utilize 
Definition 4.1 to process the data, encompassing all dates, thereby 
mitigating the impact of exceptional dates. Subsequently, we apply the 
TOPSIS method to derive the final evaluation values, as showcased in 
Fig. 12. Remarkably, the results align with those obtained using our 
approach detailed in this article, demonstrating the efficacy of our 
method in managing the influence of exceptional data points.  

(3) The comparison with the CIF VIKOR method 

Similar to the preceding experiment, we undertake a comparative 
analysis, this time juxtaposing our algorithm with the CIF VIKOR 
method (denoted as M5) and the augmented TWD + CIF VIKOR method 
(denoted as M6). In these methodologies, the desirability of an alter
native is indicated by lower evaluation values. For ease of interpreta
tion, we transform the acquired evaluation values into benefit data. Let’s 

assume the original evaluation value is represented as a. By applying a 
simple transformation, we derive the final evaluation value b, where b =

1 − a. This transformation enables us to present the results more intu
itively, with lower values indicating more favorable alternatives. The 
outcomes of this analysis are elucidated in Fig. 13 and Fig. 14, shedding 
light on the relative performance of these approaches in evaluating and 
ranking alternatives. 

The CIF VIKOR method builds upon the foundation of the CIF TOPSIS 
method, incorporating an additional layer of decision risk parameters. 
This augmentation allows DMs to exert influence on the decision results 
in accordance with their individual experiences, thereby introducing a 
degree of variability and adaptability into the decision outcomes. This 
enriched approach expands the range of potential decision results, ac
commodating the diverse perspectives and preferences of the DMs. In 
line with our experiment’s adoption of a risk-neutral stance, the risk 
preference parameter is set at 0.5. Applying this parameter to the CIF 
VIKOR method, we arrive at the conclusion that the optimal alternative 
is location x3 (H103).  

(4) The comparison with the TWD + CIF regret theory method 

In this section, we employ TWD + CIF regret theory (denoted as M7) 
to compute the regret value associated with each alternative. The 
evaluation value of a given alternative is derived through a comparison 
with the utility values of other available schemes. A higher evaluation 
value signifies a lower degree of regret associated with selecting the 

Fig. 11. The comparison with the CIF TOPSIS method.  

Fig. 12. The comparison with the TWD + CIF TOPSIS method.  

Fig. 13. The comparison with the CIF VIKOR method.  
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current alternative, as it indicates a more advantageous choice in com
parison to the alternatives. The outcomes of this calculation are visually 
presented in Fig. 15. A noteworthy observation is that the optimal 
location obtained through the CIF regret theory align consistently with 
those derived from our method.  

(5) The comparison with Literature (Zhang et al., 2019) 

In our analysis, we conducted a comparative assessment between the 
method outlined in Literature (Zhang et al., 2019) (denoted as M8) and 
the approach detailed in this paper. The methodology described in 
Literature (Zhang et al., 2019) employs optimistic and pessimistic rough 
sets as metrics to formulate three distinct sets. Subsequently, it identifies 
the intersection among these sets as the optimal alternative. Upon ex
amination of Fig. 16, it becomes evident that, based on this methodol
ogy, location x3 (H103) emerges as the optimal selection. This finding 
serves as a valuable point of comparison, highlighting how our approach 
aligns or deviates from existing methods and shedding light on the 
unique contributions and advantages of our proposed methodology 
(denoted as M9). 

6.5. Correlation analysis 

In this section, we utilize the Spearman correlation coefficient to 
investigate the relationships between methods M1 to M9. This method 
allows us to obtain results as depicted in Fig. 17. By examining this 

figure, we gain insights into the degree of correlation between our 
proposed approach and methods M3, M4, M5, and M6. Notably, our 
method exhibits a relatively strong correlation with these specific 
methods. Conversely, its correlation with the remaining methods is 
somewhat weaker, albeit still concentrated around the 0.5 mark. 

Remark 6.3. Through the comprehensive analysis presented above, 
we have conducted a series of comparative experiments involving these 
five methods. Furthermore, we have amalgamated some of these 
methods with Definition 4.1 to yield even more refined experimental 
results. Our objective is to provide a clearer illustration of the advan
tages inherent in our method when contrasted with classical method
ologies. To facilitate this comparison, we have tabulated the distinctions 
among the various CIF MG GMD methods discussed herein, as outlined 
in Table 8. In summary, our approach exhibits superior performance in 
four key areas, underscoring its efficacy and utility compared to classical 
methods. These areas of superiority will be detailed and elaborated upon 
in the subsequent discussion. 

7. Conclusions 

As the third wave of the information technology industry continues 
to advance, coupled with the integration of data driven IoT, it becomes 
feasible to build a more intelligent, integrated, and efficient MITSs. 
Therefore, this paper addresses a pivotal component of the MITSs, 
namely the UDBSS, and proposes the rebalancing model for UDBSS. This 
model is of paramount importance for addressing the issue of unrea
sonable allocation in shared bicycles. This initiative not only offers 
significant advantages in terms of enhancing urban traffic flow, opti
mizing spatial resource utilization, and improving accessibility but also 
contributes to propelling cities toward a more sustainable development 
path. Nevertheless, UDBSS is an extremely complex decision-making 
environment. In this context, the present study has adopted an innova
tive approach, constructing a CIF decision matrix. Furthermore, to 
address the rebalancing problem for UDBSS effectively, the study has 
introduced the adjustable MG PRSs and P-RT, presenting a novel reba
lancing model for UDBSS. The central objective of this model is to 
minimize unfulfilled resident demands by forecasting future vehicle 
usage patterns, thus achieving highly precise allocation of shared bi
cycles. Ultimately, we have applied this model to a real UDBSS data set 
and validated its exceptional performance through a series of 
experiments. 

In terms of future research directions, we believe there should be a 
focus on the following aspects: 

Fig. 14. The comparison with the TWD + CIF VIKOR method.  

Fig. 15. The comparison with the TWD + CIF regret theory method  

Fig. 16. Compare with literature (Zhang et al., 2019).  
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(1) In the real world, data incompleteness often occurs due to various 
factors. Therefore, it is necessary to study methods for comple
ment incomplete data.  

(2) Given the ever-expanding volume of data, data clustering to 
reduce data size is of paramount primary. Hence, it is crucial to 
explore differences among various clustering methods and foster 
innovation in this area.  

(3) The issue of consistency in decision-making environments ids 
worth researching. There are two stages that can be explored 

separately: consistency discrimination and consistency 
achievement. 

These research areas are critical to further improve the applicability 
of our method in the field of MITSs. 
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APPENDIX   

Table 9 
The list of abbreviations.  

Abbreviation Meaning 

UDBSS Urban dockless bicycle sharing system 
MG Multi-granularity 
CIF Complex intuitionistic fuzzy 
CIFSs Complex intuitionistic fuzzy sets 
TWD Three-way decision 
PRSs Probability rough sets 
DM Decision-maker 
PT Prospect theory 
RT Regret theory 
P-RT Prospect-regret theory 
MITSs Modernized intelligent transportation systems 
IoT Internet of Things 
GDM Group decision-making 
IFSs Intuitionistic fuzzy sets 
ND Non-membership degrees 
MD Membership degrees 
CFSs Complex fuzzy sets 
CIFN Complex intuitionistic fuzzy number 
CFN Complex fuzzy number 

Fig. 17. The result of Spearman correlation coefficients from M1 to M9.  

Table 8 
The comparative analysis of advantages of different CIF MG GDM methods.   

Subjective opinions 
of experts 

Bounded 
rationality 

Stable 
results 

Classification 
ability 

M1 × × × ×

M2 × × √ √ 
M3 × × × ×

M4 × × √ √ 
M5 √ × × ×

M6 √ × √ √ 
M7 √ × √ ×

M8 × × √ ×

M9 √ √ √ √  
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Table 10 
The list of main symbols.  

Symbols Meaning 

C CIFS 
μ MD 
ρ ND 
r Real part of MD 
ω Imaginary part of MD 
k Real part of ND 
ϖ Imaginary part of ND 
γ CIFN 
U Alternative set 
x Alternative 
V Attribute set 
y Attribute 
u Attribute weight 
Z DM set 
z DM 
w DM weight 
R Relation set 
S Standard assessment set 
Sc Score function 
H Accuracy function 
d Distance function 
P PRSs 
τ The risk parameter of the adjustable PRS 

∑l

i=1
Ri

τ,βj,final Upper approximation 

∑l

i=1
Ri

τ,αj,final Lower approximation 

τ The risk parameter of the adjustable PRS 
POSτ,αj,final Positive region 
NEGτ,βj,final Negative region 
BNDτ,αj,final ,βj,final Boundary region 
αj,final,βj,final Final thresholds 
σ The risk parameter of the loss function 
S Standard assessment set 
PRV P-R value  
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