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Abstract

The metabolite and flavor characteristics of roasted germinated sunflower seeds (RGSF) were evaluated and compared with those of roasted
ungerminated sunflower seeds (RUSF) by gas chromatograph-flame ionization detector (GC-FID) and headspace solid phase microextraction
combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). During roasting, a-tocopherol, g-sitosterol, fructose, and glucose
content were higher at 125 °C compared to those at 135 and 145 °C in RGSF, and lower reductions of alanine, glycine, phenylalanine, serine,
asparagine, and y-aminobutyric acid (GABA) content at 125 °C in RGSF. Considering their nutritional value, it is suggested that sunflower seeds are
roasted at 125 °C. The dominant volatile compounds in RGSF were a-pinene, furfural, pyrazines, 1-octen-3-ol, and 2-methylbutanal. High-
temperature heating for long term led to a large accumulation of unpleasant odors like pyridine, hexanal and nonanal, especially in RUSF. To
examine the distribution of the individual metabolites and flavor compounds among different roasting conditions. A heatmap diagram
combined with agglomerative hierarchical clustering (AHC) analysis and principal component analysis (PCA) showed that most Maillard reaction
substitutes (amino acids and reducing sugars), products (2-methylpyrazine 2-ethyl-3,5-dimethyl-pyrazine, and 3-ethyl-2,5-dimethylpyrazine), and
Strecker degradation products (3-methylbutanal, 2-methylbutanal, and isobutanal) contributed to separate RGSF from RUSF.
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Introduction

Sunflower seed is an important economic oil seed world-
wide after soybean, palm and rapeseed!l. Global sunflower
seed production was estimated to be over 50 million tons in
2022/2023[. It is primarily consumed as vegetable oil and
meal, either alone or in the blends of different nuts and other
componentsBl. Sunflower seeds not only have potential as a
protein source but also have high nutritional value in the
human diet due to their excellent nutritional quality and rela-
tively low content of anti-nutrient factors, which provide a
large number of antioxidants, minerals, and unsaturated fatty
acids.

Roasting is a great way to prepare the seeds for snacking.
During the roasting process, not only is the typical nutty aroma
formed, but with the high-temperature heating, nutrients
change. Sunflower seeds are susceptible to oxidation during
roasting and storage!®. The rate of oxidation and rancidity of fat
are highly dependent on the roasting time and temperature.
Thus optimum roasting temperature and time are necessary for
addition to desirable flavor and nutritional quality. To improve
the nutritional quality of sunflower seeds, seed germination
technology has been extensively used as the nutritional
components of entire seeds are increased during germination,
such as free amino acids, dietary fiber, minerals, phenolic
compounds and antioxidant capacity>l. Therefore, the germi-
nated and ungerminated sunflower seeds were used as
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materials for investigating the effects of roasting conditions on
metabolite and flavoromic profiles of sunflower seeds.

Metabolomics and Flavouromics are novel omics studies
used for considering overall targeted and non-targeted com-
pounds in foodl’l. Metabonomics has been used in many
research fields, including medicinel®, microbiology!'%, horti-
culturel' and nutrition', to understand metabolic reactions
and to identify metabolites/biomarkers associated with given
conditions or treatments. In the last few years, flavor profiling
has been used in many fields. One of the most promising appli-
cations in profiling of volatile organic compounds is the HS-
SPME-GC-MS. This is a useful technique that allows the collec-
tion of sensory analysis to detect the overall aromatic spec-
trum of samples. It is a new technology that enables the acqui-
sition of the sensory analysis for the detection of the overall
aromatic profile of samples. PCA and AHC which give an over-
view of useful data to detect outliers and evaluate the relation-
ships between samples and variables and between variables
themselves.

As far as we know, it is the first application of metabolite and
flavor profiling being applied for metabolite and flavor analysis
of sunflower seed roasted at different temperatures and times.
Detailed untargeted metabolite and flavor of sunflower seeds
can provide the opportunity to better understand the relevant
roasting process. The aim is to find the effects of roasting
conditions on the metabolite and flavor profiles of sunflower
seeds.
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Materials and methods

Materials

Sunflower seeds were bought in a local Thai market. The
seeds were placed in aluminum foil bags and then stored in the
refrigerator at 4 °C. The seeds were then germinated for further
analysis.

Reference standards and reagents

Internal standard for semi-quantitative of fraction | was tetra-
cosane, 5a-cholestan-38-ol was used as an internal standard for
fraction Il, phenyl-8-D-glucopyranoside was for fraction Ill, and
p-chloro-L-phenylalanine was for fraction IV. Retention time
standards were undecane, hexadecane, tetracosane, triacon-
tane, octatriacontane. The reagents were bought from Sigma
(Sigma-Aldrich, St. Louis, MO, USA).

Ethyl decanoate was used as an internal standard for volatile
compounds. The reference standards used for volatile com-
pounds identification experiments were prepared with 0.5%
(weight/volume) concentration of acetone. N-alkanes (C6—C26)
were used as the criterion for the calculation of the retention
index. All the reference standards for volatiles identification
were purchased from Sigma-Aldrich, USA.

Preparation of RGSF and RUSF

Soak 400 g seeds in 2 | of distilled water at room tempera-
ture for 8 h. The soaked sunflower seeds were placed in an
incubator with humidity type KBF 240 (Binder, Tuttlingen,
Germany) in darkness at 25 °C for 24 h. Germinated and unger-
minated seeds were baked in an oven (Model UF55, Memmert,
Thailand) at 125, 135, and 145 °C for 30—60 min. The seeds were
cooled to room temperature, husked and ground by the
grinder (Panasonic, Japan), and packaged in the aluminum bag.
Raw sunflower seed was used as a control sample.

Metabolite profiling

The procedures for extraction and fractionation of sunflower
flour followed a previous method with some modifications('3,
Fraction | contained fatty acid methyl esters (FAMEs) and
hydrocarbons, fraction Il contained free fatty acids (FFAs) and
sterols, fraction lll contained silylated sugars and sugar alco-
hols, and fraction IV contained organic acids and amino acids.
GC-FID analysis was run by an Agilent Technologies HP 6890+
equipped with FID (320). Obtain and integrate GC-FID data
using HP-ChemStation A.06.03 (Hewlett Packard, Polo Alto, CA,
USA). The capillary column was DB-1 (60 m x 0.32 mm, 0.25 pm)
(J&W Scientific, Agilent, USA). The flow rate of helium was 1.8
ml/min. The splitless injection was performed at 280 °C. The
initial column temperature was set at 100 °C, then it rose to 320
°C at 4 °C/min (maintained for 15 min). The components of
sunflower seed were identified by comparison of retention
time between the analyte chromatographic peak and the refer-
ence standard chromatographic peak.

Flavor profiling

One mg/ml ethyl decanoate was dissolved in 10% methanol.
Ethyl decanoate was added to sunflower seed powder in the
proportion of 100 ug/2 g. The sample was incubated for 20 min
at 60 °C for the equilibration of the volatiles. A 50/30 pm
DVB/CAR/PDMS SPME fiber (57348-U, Supelco) was inserted
into the headspace bottle, and the headspace extraction was
carried out at 60 °C for 30 min.

Page 2 of 14

Metabolic and flavoromic profiling

The volatile components were analyzed by an Agilent 7890A
gas chromatograph equipped with a 5975C mass spectrometer.
A DB-1 (60 m x 0.25 mm, 0.25 um) MS column was used for GC-
MS. The volatiles were thermally desorbed for 20 min at 250 °C
in a splitless mode. Helium entered the column at a constant
flow rate of 1.5 ml/min. The initial oven temperature was 50 °C
for 1 min. Next, the temperature rose to 100 °C at 5 °C/min (for
5 min), then to 140 °C at 4 °C/min (for 5 min), then to 180 °C at 5
°C/min (for 2 min), and finally to 250 °C at 10 °C/min (for 7 min).
The source temperature of mass spectrometer was 230 °C, the
transmission line temperature was 225 °C, and the quadrupole
temperature was 150 °C. The ionization voltage was 70 eV and
the scanning range was m/z 50-550.

Pure component mass spectra were automatically extracted
from highly complex GC-MS data files using AMDIS (Auto-
mated Mass Spectral Deconvolution and Identification System,
version 2.66, USA). These purified spectra were used for a
search in a mass spectral library. The volatile compounds were
identified according to the NIST library (NIST 11, Version 2.0,
Gaithersburg, USA) and comparison mass spectra with refer-
ence standards. Based on the internal standard area, the rela-
tive concentration of each compound was calculated.

Statistical analysis

PCA and AHC analysis were used to analyze the correlation
between and within groups. The data were subjected to one-
way analysis of variance (ANOVA) by XLSTAT version 2016.7
(Addinsoft, NY, USA). Differences between means were
assessed with Tukey's range test at a 95% significance level (p <
0.05).

Results

PCA and AHC analysis of metabolic and flavor
profiles of RUSF and RGSF

This study investigated the metabolic and flavor profiles of
19 samples (including 18 roasting treatment samples and the
raw sample) obtained from RUSF and RGSF at 125, 135, and 145
°C for 30, 45, and 60 min. A total of 169 metabolites and flavor
compounds identified by GC-FID and HS-SPME-GC-MS were
analyzed using PCA (Spearman correlation) to determine the
main sources of variation in the dataset (Fig. 1). PC1 and PC2
explained 44.29% of the data variability of 169 compounds. The
clustering of RUSF grouped to the right was separated from the
clustering of RGSF grouped to the left. The aldehydes (2-
methylbutanal, 3-methybutanal, isobutanal, 2-phenyl-2-bute-
nal), pyrazines (2,3-dimethylpyrazine, 3-ethyl-2,5-dimethylpyra-
zine, 2-methylpyrazine) and 2-heptanone were grouped to the
top side on PC2 (positively associated with RGSF at the higher
temperature). The amino acids and reducing sugars were
grouped to the left side (negatively associated with RGSF).

To examine the distribution of the individual metabolite and
flavor compound among different roasting conditions, a
heatmap diagram combined with AHC was applied for the
selected 50 compounds which had a loading value higher than
0.7 (Fig. 2). The 50 compounds are shown in Table 1. Amino
acids and reducing sugars were higher in RGSF compared to
RUSF because of the increase of these metabolites during
germination. Meanwhile, RGSF appears to have higher levels of
pyrazines (2-methylpyrazine 2-ethyl-3,5-dimethyl-pyrazine, and
3-ethyl-2,5-dimethylpyrazine). The grouping result of AHC
followed the PCA which grouped the samples into two groups.

Guo et al. Food Materials Research 2024, 4: €012
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Fig. 1 Biplot of metabolic and flavor profiles of RUSF and RGSF. Compound codes are explained in Table 1 (loading score higher than or equal
to 0.7). The sample names represent RUSF described as: u1-1 =125 °C 30 min, u1-2 = 125 °C 45 min, u1-3 = 125 °C 60 min, u2-1 =135 °C 30 min,
u2-2 = 135 °C 45 min, u2-3 = 135 °C 60 min, u3-1 = 145 °C 30 min, u3-2 = 145 °C 45 min, u3-3 = 145 °C 60 min. The sample names represent
RGSF described as: g1-1 = 125 °C 30 min, g1-2 = 125 °C 45 min, g1-3 = 125 °C 60 min, g2-1 = 135 °C 30 min, g2-2 = 135 °C 45 min, g2-3 = 135 °C
60 min, g3-1 =145 °C 30 min, g3-2 = 145 °C45 min, g3-3 = 145 °C 60 min

Table 1. Varimax rotated factor loadings of the significant principal components of the metabolic and flavor profiles of RUSF and RGSF.

PCA code Compounds PC1 PCA code Compounds PC1
x1 trans-2-Heptenal 0.960 x27 Valine —0.850
x2 3-Methyl-nonane 0.894 x28 Mannitol —-0.842
x3 Pantoic lactone 0.881 x29 Glycine —-0.832
x4 5-Ethyl-1-nonene 0.871 x30 Glutamine -0.828
x5 (Z2)-2-Octene 0.807 x31 20:1FAME —-0.806
x6 1-Ethyl-1H-pyrrole-2-carboxaldehyde 0.804 x32 S-Aminoisobutyric acid —-0.745
x7 N,N-Dimethylbenzylamine 0.802 X33 Glucose -0.739
x8 24:0 fatty alcohol 0.798 x34 18:0ffa —-0.701
x9 Methional 0.791

x10 Glutamic acid 0.776 PC2
x11 2-Ethenyl-6-methyl-pyrazine 0.772 x35 Myrtenol 0.846
x12 Methyldisufide 0.751 x36 2-Ethyl-3,5-dimethyl-pyrazine 0.844
x13 (E)-2-Methyl-5-(1-propenyl)-Pyrazine 0.746 x37 p-Cymene 0.840
x14 Methyl ferulate 0.735 x38 2-Heptanone 0.837
x15 2,6-Dimethylheptane 0.717 x39 3-Ethyl-2,5-dimethylpyrazine 0.831
x16 2,4-Nonadienal,(E,E)- 0.711 x40 3-Methylbutanal 0.813
x17 n-Hexanol 0.710 x41 2-Methylbutanal 0.813
x18 2,4-Dimethyl-1-decene 0.709 x42 4-Methyl-5-propyl-nonane 0.789
x19 Fructose —-0.948 x43 2-Phenyl-2-butenal 0.782
x20 Asparagine -0.916 x44 1-Tetradecene 0.754
x21 Leucine -0.914 x45 Dodecane 0.738
x22 20:2FAME —-0.900 x46 2-Methylpyrazine 0.732
x23 GABA -0.894 x47 2,3-Dimethylpyrazine 0.731
x24 Serine —-0.893 x48 Isobutanal 0.714
x25 Alanine -0.879 x49 2,4-Dimethyldodecane -0.778
x26 Phenylalanine —-0.865 x50 2-Ethylhexanol —-0.732

The most volatile compounds were clustered to the left. The
majority of metabolites, Maillard reaction substitutes (amino
acids and reducing sugars), products (pyrazines), and Strecker
degradation products (3-methylbutanal, 2-methylbutanal, and
isobutanal) clustered to RGSF group. The observed differentia-
tion between RUSF and RGSF reflected the volatile compounds
were formed more in RUSF compared to RGSF. The groups of
shorter roasting times were separated from those of longer

Guo et al. Food Materials Research 2024, 4: €012

roasting times both in RUSF and RGSF. The results indicated
that the metabolic and flavor profiles were affected by temper-

ature and time significantly.

Changes of representative metabolites in fraction

I-IV from RUSF and RGSF

Changes in the representation of different metabolites
observed during the roasting process are shown in Figs 3—6.
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Fig.2 Heatmap and AHC dendrogram of metabolic and flavor profiles of RUSF and RGSF. The compounds with loading scores higher than 0.7
were presented in the heatmap. Metabolite levels correspond to the color temperature. The higher the temperature (red), the higher the
content of the corresponding compound.
FAMEs detected in fraction | were produced by transesteri-  contents of FAMEs were lower in RGSF compared to those in
fication of lipid extract. In our previous study, FAMEs decreased ~ RUSF (Fig. 3). In RUSF, roasting resulted in increases in C16:0,
significantly (p < 0.05) after germination. Therefore, the  C18:0, and C18:1, and a decrease in C18:3. Roasting
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Fig.3 Changes in relative quantification of representative compounds in fraction I. (a) C16:0 FAME, (b) C18:0 FAME, (c) C18:1 FAME, (d) C18:2
FAME, and (e) C18:3 FAME during roasting of ungerminated and germinated sunflower seeds at 125, 135, and 145 °C.

temperature and time influenced the composition of C18:2 to a
small extent in RGSF, but the decrease of C18:2 occurred in
RUSF. The results indicated that roasting resulted in a loss of
the content of unsaturated fats. Previous studies also showed
that higher baking temperatures of soybeans and hazelnuts
resulted in higher relative percentages of saturated fat acids,
while lower relative percentages of polyunsaturated fatty
acids!™. C16:0 increased at 125 °C, an even more increase was
observed at 135 and 145 °C in RUSF and RGSF. C18:0 showed
the same behavior. The results indicated that roasting resulted
in a loss of the content of unsaturated fats (C18:2 and C18:3)
and an increase of C18:1. This difference might be attributed to
hydrolytic and oxidative degradation of the lipid fraction
during roasting. An increase of C18:1 has been also reported for
15 min microwave roasting of sunflower seeds!’’l. However,
microwave heating for 9 min did not remarkably affect the fatty
acid composition of sunflower seeds!'6l,

Peroxide value (PV) and FFA are evidence of autoxidation
and hydrolytic rancidity, respectively('”]. The content of FFAs of
sunflower seeds submitted to the different roasting conditions

Guo et al. Food Materials Research 2024, 4: €012

are presented in Fig. 4. The predominant FFAs in sunflower
seed were C16:0, C18:0, C18:1, C18:2, and C18:3. C18:1, C18:2,
and C18:3 was more affected by roasting than C16:0 and C18:0.
Roasting at 145 °C for 60 min caused the reduction of FFAs
especially for unsaturated FFAs. The longer the roasting time,
the less the content of C18:1, C18:2, and C18:3. The higher the
temperature, the more the reduction of C18:1, C18:2, and C18:3.
Sesame seeds roasted at high temperature long term increases
more lipid oxidation products!’®l. As FFAs increased at the first
24 h of germination in our previous study, FFAs content in
germinated sunflower was higher compared to that in RUSF
during roasting. The lower decrease of C18:3 in RGSF compared
to that in RUSF may be due to the higher content of a-toco-
pherol present in germinated seeds, slow down the lipid oxida-
tion rate. However, the higher decrease of C18:1 was observed
in RGSF. The results were similar to a previous report!l,

The effect of roasting on a-tocopherol content of the sun-
flower seeds is shown in Fig. 4. a-Tocopherol was the predomi-
nant tocopherol in the sunflower seeds. Germination increased
a-tocopherol. As the results revealed, a-Tocopherols in
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ungerminated and germinated sunflower seeds exposed to
roasting significantly (p < 0.05) decreased with temperature
and time. The result was in agreement with those of Vaidya &
Eunl', As a-tocopherol is not stable, higher temperatures and
long-time heating resulted in a large loss of a-tocopherol. The
highest content of a-tocopherol was observed at 125 °C for 30
min in RGSF. The value of a-tocopherol in different oils reported
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in the previous study was comparable to this study. Alpha-
Tocopherol reduced around 20% after 15 min by microwave
heating!'>1. The highest rate of loss of a-tocopherol during heat-
ing was reported in the sunflower seeds!l.

Sterols, mainly found in the cell membranes are steroid alco-
hols, they are hydrophobic, hence, typically associated with the
lipid fraction in plants. The sterols found in sunflower oils

Guo et al. Food Materials Research 2024, 4: €012
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include B-sitosterol, stigmasterol, and campesterol. The change
observed for f-sitosterol is shown in Fig. 4. An increase of f-
sitosterol was observed in RUSF and RGSF at 125 and 135 °C
less than 45 min, and increased more at 125 °C in RGSF
compared to that in RUSF. While p-Sitosterol significantly
decreased (p < 0.05) at 145 °Cin RGSF and RUSF.

Fructose and glucose concentration was significantly higher
(p < 0.05) in RGSF as a result of germination (Fig. 5). Roasting at
145 °C for a longer duration (45 and 60 min) might cause a
higher reduction of fructose and glucose as the result of Mail-
lard reaction. Sucrose decreased in RUSF and RGSF except for
125 °C of roasting, while mannitol increased during roasting.

The effects of roasting conditions on amino acid profiles and
GABA of sunflower seeds are shown in Fig. 6. Free amino acids
(alanine, glycine, serine, and phenylalanine) initially at low
levels in RUSF, were highly decreased during roasting, espe-
cially at 145 °C. Roasting resulted in the reduction of alanine,
glycine, threonine, phenylalanine, serine, asparagine, and GABA
content in both RUSF and RGSF at three temperatures. This fact
might be related to their inherent thermal stabilities. The
decrease in amino acids may be due to their heat
destruction29, The statement also agree with those reported
by Damame et al.l?'l, However, the increase of leucine and thre-
onine content was observed during roasting. Therefore, possi-
bly protease enzymatic activity could be taking place during
this step, despite this not having been described previously.
Lower temperature resulted in a lower loss of amino acid. The
processes of boiling and roasting generally have very high total
amino acid content compared with the fresh safflower seeds(?2.
The reason for the variation in results among studies is not
known. The amino acid content of RGSF was significantly
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(p < 0.05) higher than those of RUSF because of the increase of
amino acids during germination. The content of alanine,
glycine, phenylalanine, serine, asparagine, and GABA was
higher at 125 °C compared to the other two temperatures. A
56%—72% decrease in GABA content was observed for RUSF.
The overall changes of GABA at lower temperatures were much
less than those observed at the higher temperature. GABA was
largely involved in Maillard reaction during baking, resulting in
GABA trace levels in wheat bread samples(23, Whereas, the
drying temperature did not significantly affect the GABA
content of cooked germinated brown rice, except at the
temperature of 130 °C for hot air drying?4. Germination
markedly improved GABA content in the RGSF. The content of
GABA was greater higher at 125 °C than that at 135 and 145 °C.
Roasting for 45 min at 125 °C resulted in the lowest reduction in
GABA content.

Changes in flavor profiles of RUSF and RGSF
Flavoromics investigates sample constituents considered
collectively and opens new perspectives for correlating the
particular sensory attributes of food with its chemical composi-
tion. Tables 2 & 3 show concentrations (ug/g) of volatile
components in RUSF and RGSF at 125, 135 and 145 °C for 30,
45, and 60 min. The main volatile components in RUSF and
RGSF were 2-methylbutanal, pyridine, a-pinene, p-pinene,
furfural, hexanal, pyrazines. The main volatile compounds in
raw sunflower seeds were a-pinene, hexanal, furfural, octane,
y-butyrolactone. Table 4 shows the key odorants content
obtained from RUSF and RGSF. 2,5-Dimeththylpyrazine,
2,3-dimethylpyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-ethyl-3-
methylpyrazine, and 2-ethyl-3,5-dimethylpyrazine, found in the
RUSF and RGSF were to be considered representative of the

® 135 °C germinated ™ 145 °C germinated
3 r

o
T

60 min

Fig. 5 Changes in relative quantification of representative compounds in fraction lIl. (a) fructose, (b) glucose, (c) sucrose, (d) mannitol during
roasting of ungerminated and germinated sunflower seeds at 125, 135, and 145 °C.
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Fig. 6 Changes in relative quantification of representative compounds in fraction IV. (a) alanine, (b) glycine, (c) leucine, (d) phenylalanine, (e)
sering, (f) threonine, (g) asparagine, and (h) GABA during roasting of germinated and ungerminated sunflower seed at 125, 135, and 145 °C.

active compound, suggesting that nutty, roast characteristics
might contribute greatly to the aroma of roasted sunflower
seeds.

The dominant pyrazines presented in RUSF were 2-ethyl-3,5-
dimethylpyrazine, 2,6-diethyl-3-methylpyrazine, 2,3-dimethyl-
pyrazine, 2-ethyl-3-methylpyrazine, 2,5-dimethylpyrazine.
While the major pyrazines in the RGSF samples were

Page 8 of 14

2-methylpyrazine, 2,3-dimethylpyrazine, 2,5-dimethylpyrazine,
2-ethyl-6methylpyrazine, 2-methyl-5-ethylpyrazine and 2-ethyl-
3,5-dimethylpyrazine. These compounds formed during Mail-
lard reaction, under conditions similar to those used in this
study has been reported in a previous study!?l. The reducing
sugars and amino acids increased during germination that
leads to a significant increase of pyrazines in RGSF compared to

Guo et al. Food Materials Research 2024, 4: €012
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60 min
1.01+0.14
1.06 +0.14

45 min
0.38 +£0.05
0.56 = 0.07
0.39 +0.05
0.54 £ 0.07
0.65 + 0.09
0.26 +0.02
0.26 £0.03
0.26 = 0.03
0.31+0.04

30 min
0.11 +£0.02
0.44 +0.06
0.16 +£0.03

60 min
0.57 +£0.08
0.63 +0.08
0.73+£0.10
1.09+0.15

45 min
0.17 £0.02
0.54 +£0.07
0.26 +0.03

30 min
0.27 +£0.07
0.24 +0.06
048 +£0.13

60 min
0.89+0.24
0.79+£0.21

45 min
0.23 +£0.06
0.51+0.14

30 min
0.12 +£0.03
0.21 +0.06

0.25+0.07
0.32+0.09
0.38+0.10

1065
1081
1083

2,4-Dimethyl-1-decene

Nonanal

1.19+0.16
3.97+£0.53

1.25+0.34
1.64 +0.45
1.99+0.53
0.74+0.20
0.68+0.18
0.45+0.12
0.73£0.19

6-Ethyl-3-octanone

1120
1140
1157

1171

2,6-Dimethylundecane
6,6-Dimethylundecane

5-Methylundecane

1.94+0.26
0.74+0.10
0.70 + 0.09
0.67 +0.09

0.80£0.11

0.19+0.03
0.09 = 0.01

1.26+0.17
0.51+0.07
0.48 £ 0.06
0.49 +£0.07
0.55+0.07

0.35+0.05

0.19£0.02

0.84 +0.22
0.66+0.18

022+0.06 044+0.12
0.39+0.10

0.10 £ 0.02

0.42+0.11

0.28 £ 0.08

3-Methylundecane

1-Dodecene
Dodecane

0.010+0.01
0.13+0.02

0.19+0.03
0.20 £ 0.03
0.10£0.01
0.10+0.01
0.09 +0.01
0.11£0.01
0.12+0.02
0.20 £ 0.03
0.07 £0.01
0.27 +0.04
0.20 £ 0.03

0.58+0.16
0.65+0.19
0.09 +0.02

0.40+0.11

0.17 £ 0.05
0.34£0.09

0.13+0.03
0.13+0.04

0.27 +0.07
0.35+0.10

1189
1201
1368
1388

3-Methyltridecane
1-Tetradecene
Tetradecane

0.44 + 0.06
0.31+0.04
0.40 £ 0.04
0.41+0.05
0.70 £ 0.09

0.13+0.01
0.03+0.01
0.14 +0.02
0.116 £ 0.02

0.12+£0.02
0.01+0.00
0.06 = 0.01
0.06 = 0.02
0.08 = 0.01

0.31+0.04
0.03 +£0.00
0.29 £ 0.04
0.33 +0.04
0.42 +0.06

0.25 +0.07

0.14 + 0.04
0.02 +£0.00
0.17 £0.05
0.16 + 0.04
0.33+0.09
0.12+0.03
0.39+0.10
0.33£0.09

0.07 +0.02
0.06 = 0.02

0.14 + 0.04
0.13+0.03
0.18 £0.03
0.20 +0.05
0.31+0.08
0.12+0.03
0.46 +0.12
0.27 £0.07

0.19 £ 0.05
0.35+0.09

0.40+0.11

1399
1424
1429
1433

0.33+0.09
0.38+0.10
0.62+0.17

Octyl methacrylate
7-Methyltridecane

Calarene

0.08 +0.02
0.12+0.03

0.24 +£0.02

0.57+0.15
0.20 + 0.05
0.86+0.23

042+0.11

0.18 +0.05
0.03 £0.01

1456
1465

Chamigrene

0.14 +£0.02
0.07 £ 0.01

5,6-Dipropyldecane

p-Bisabolene

0.48 £ 0.06

0.21£0.03

0.27 £ 0.04

1499

Metabolic and flavoromic profiling

RUSF. Heating L-threonine could form 2,5-dimethylpyrazine.
Dehydration of heating L-serine following decarbonylation
could form products or intermediates methylpyrazine and
ethylpyrazinel?6l, The content of 2-methylpyrazine, 2,5-
dimethylpyrazine, 2,3-dimethylpyrazine, 2-ethyl-3,5-
dimethylpyrazine at 60 min were 24.15, 72.53, 9.58, and 30.74
ug/g in RGSF, respectively. During roasting ungerminated
sunflower seeds, 2,3-dimethylpyrazine required a minimum
reaction time of 45 min, corresponding to a temperature of at
least 145 °C. When heated at 145 °C for 45 and 60 min, the
concentrations of 2,3-dimethylpyrazine were 0.55 and 1.30
ng/g,  respectively.  2,5-Dimethylpyrazine,  2-ethyl-3-
methylpyrazine, 2-ethyl-3,5-dimethylpyrazine increased as
time and temperature increase. The concentration range of
2,5-dimethylpyrazine was 0.20 to 10.19 ug/g, the concentra-
tion in the raw material was the lowest, and the highest
concentration was found after roasting at 145 °C for 60 min.
The concentration of 2-ethyl-3-methylpyrazine ranged from
0.14 (raw material) to 3.89 pg/g (145 °C for 60 min). 2-ethyl-
3,5-dimethylpyrazine was 0.19 pug/g of seed roasting at 125 °C
for 30 min, reached to the highest concentration at 145 °C for
60 min (2.09 ug/g). The formation of the 2,6-diethyl-3-
methylpyrazine requires a minimum reaction time of 45min
at the corresponding temperature of 125 and 135 °C, a mini-
mum reaction time of 30 min at 145 °C. It indicated that the
heat treatment of seeds was necessary for the formation of
these compounds. These pyrazines had also been reported in
previous studies on the typical flavor of other roasting seed,
such as pumpkin seed(?%], perilla seeds!?7], The results of previ-
ous studies indicated that the minimum roasting tempera-
ture required for the formation of these compounds in pump-
kin seeds was 100 °C, and the temperature required for the
formation of pyrazine was higher than 150 °C.

Aldehydes mainly contribute to the overall flavor of
roasted oilseed. They mainly came from the lipid oxidation
and degradation or Strecker reaction(?8l, Fourteen aldehydes
were identified in the RUSF which varied with different roast-
ing conditions. The concentrations of isobutanal, 2-methylbu-
tanal, 3-methylbutanal, and phenylacetaldehyde increased
significantly during the roasting process, especially at 60 min.
2-Methylbutanal and 3-methylbutanal was responsible for a
pleasing odor in many roasted foods[?°l. The concentration of
these compounds were significantly higher (p < 0.05) in RGSF
compared to those in RUSF. Benzaldehyde contributed to
bitter aromat3%, showed higher content in sunflower seeds at
the 145 °C for 60 min. Hexanal detected in the RGSF
(0.55-3.75 pg/g) was lower than that in the RUSF (0.48-8.49
ug/g). Higher temperature and long-time heating led to the
large accumulation of undesirable flavor notes, such as
hexanal, nonanal, and pyridine, especially in RUSF. Mean-
while, reduction of unsaturated fats (C18:2 and C18:3) were
observed in RUSF and RGSF. The short chain branched alde-
hydes might be attributed to hydrolytic and thermal oxida-
tive decomposition of unsaturated fatty acids3'l.

Aliphatic alcohols, mostly formed by the decomposition of
hydroperoxides of fatty acids or the reduction of
aldehydes!32331, The major alcohols in RGSF included furfuryl
alcohol, hexanol, 1-octen-3-ol, verbenol, myrtenol. 1-Penta-
nol, hexanol, 1-octen-3-ol, and 3-methyl-2-propyl-1-pentanol
were identified in RUSF. In RGSF, furfuryl alcohol began to
appear and reached max at 30 min at all temperatures, and

Guo et al. Food Materials Research 2024, 4: €012
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Table4. Key odorants content obtained from RUSF and RGSF which were roasted at 125, 135, and 145 °C for 30, 45, and 60 min.
Compounds Odor quality RUSF seeds RGSF seeds
Pyrazines
2,5-Dimethylpyrazine Roasty, flowery, cocoa 5,79,10 3,48.9,10
2,3-Dimethylpyrazine Nut, peanut, cocoa, meat 9,10 3,4,8,9,10
3-Ethyl-2,5-dimethylpyrazine Potato, roast N 489,10
2-Ethyl-3-methylpyrazine Nutty, cereal like 1,2,3,45,6,7,89 13,4789
2-Ethyl-3,5-dimethylpyrazine Nutty 2,3,4,5,6,7,89,10 1,2,3,4,7,89,10
Aldehydes
2-Methylbutanal Cocoa, almond 1,2,56,7,89,10 1,2,3,4,6,7,89,10
3-Methylbutanal Malt 1,24,6.7.89,10 1,2,3,45,6,7,89,10
Hexanal Green, fatty 1,2,3,4,5,6,7,89,10 1,2,4,5,6,7,89,10
Furfural Bread, almond, sweet 789,10 49,10
Heptanal Fat, citrus, rancid N N
Nonanal Fatty, green 1,3,4,6,7,89,10 1,4,6.8.9
Benzaldehyde Almond, sugar N N

Phenylacetaldehyde Flowery, honey like
Ketones

2-Heptanone Soap

y-Butyrolactone Creamy
Alcohols

1-Pentanol Balsamic

1-Hexanol Resin, flower, green

Furfuryl alcohol Sweet, caramellic

Pyridine Burnt, smoky
Sulfur compounds

Dimethyl disulfide Onion, cabbage, putrid

Methional Cooked, potato
Others

a-Pinene Pine, turpentine

2-Acetylfuran Peanut, sweet

1,2,3,4,5,6,7,8,9,10

1,2,3,4,5,6,7,8,9,10

N N
1,4,5,7,9,10 10
5 10
1,2,57 1,6
N 5
4,79,10 N
N 9,10
2,34,7,89,11,12,13 3,4,7,8

1,23,5,6911,12,13 1,2,3,4,5,6,7,89,10
N N

Number representation: 1 (raw seed), 2 (125 °C 30 min), 3 (125 °C 45 min), 4 (125 °C 60 min), 5 (135 °C 30 min), 6 (135 °C 45 min), 7 (135 °C 60 min), 8 (145 °C 30

min), 9 (145 °C 45 min), 10 (145 °C 60 min).

decreased with the increasing time. Hexanol decrease with
prolonged time may be due to the formation of hexanal.
Hexanol showed the same behavior in RUSF, the highest
concentration was observed at 125 °C. 1-Octen-3-ol which
contributes to an herbaceous aroma is generated from thermal
decomposition of methyl linoleate hydroperoxide. It began to
appear at 125 and 135 °C for 60 min and 145 °C for 45 min and
reached maximum at 145 °C for 60 min (13.38 pg/g), but the
content in RUSF decreased significantly with roasting tempera-
ture and time.

Besides, terpenes including a-pinene and f-pinene were also
important constituents of aroma. a-Pinene was the most abun-
dant volatile component in RGSF. The concentration of a-
pinene ranged from 3.58 to 38.85 ug/g in RGSF, 7.05 to 21.85
ug/g in RUSF and 7.57 ng/g in raw seed. -Pinene has a woody-
green pine-like smell. It reached max at 135 °C for 60 min with a
concentration of 4.15 pg/g. In RUSF, S-pinene concentration
increased from 0.76 to 3.00 ug/g with increasing temperature
and time.

Conclusions

The germination process leads to structural modification and
synthesis of new compounds. The content of fructose, glucose,
amino acids, and GABA increased during germination. In addi-
tion, aroma precursors, such as reducing sugars and free amino
acids are formed during germination. Therefore, germinated
sunflower seeds are used in the roasting process to improve
the nutritional quality of sunflower seed. To obtain the high

Guo et al. Food Materials Research 2024, 4: €012

nutritional quality of roasted sunflower seeds, the roasting
temperature and time should not exceed 135 °C and 45 min.
The best roasting temperature was suggested to roast at 125
°C. Metabolomics and flavormics technologies were able to
differentiate the roasted sunflower seeds based on the roast-
ing temperature and time. The roasting temperature and time
had a significant effect on the metabolic and flavor profiles of
RUSF and RGSF. Differences in these flavors between RUSF and
RGSF may have been driven by differences in concentrations of
precursor substances which increased due to the germination
process. Pyrazines have a positive correlation with amino acids
and reducing sugars. The amino acids, reducing sugars,
pyrazines, and aldehydes could be identified as the biomarker
to predict the flavor in the roasting process.
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