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Abstract
This paper delves into the realm of artificial intelligence, where an array of deep learning techniques has proven effective in automating crop leaf
disease identification and classification. The current paper shows mature detection methodologies for apple, tomato, rice, mango, coconut, and
durian leaf diseases with examples while demonstrating research on leaf disease detection in tropical plants. Through this exploration, valuable
insights  into  the  benefits  and  applications  of  detection  techniques  based  on  deep  learning  methods  are  provided  for  leaf  disease  detection.
Highlighting the advantages of deep learning methods are provided for automated feature extraction and disease detection, the paper describes
the salient features and challenges of  the application of  leaf  disease detection in the tropics.  In this  paper,  an introductory overview of a leaf
disease detection model is offered and delve into the factors influencing detection accuracy and speed while proposing ways to mitigate the
inherent trade-offs between these indicators. Furthermore, the challenges, such as multi-scale detection and leaf overlapping, that may occur in
plants in the tropics, have been examined, enriching our understanding of deep learning-driven leaf disease detection in tropical agriculture.
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 Introduction

Deep  learning,  a  subfield  of  machine  learning,  is  distin-
guished  by  its  computational  model's  capacity  to  acquire
knowledge  from  abstract  data  using  structures  consisting  of
multiple processing units[1]. Such models use automatic optimi-
sation  of  model  parameters,  e.g.  stochastic  gradient  descent,
batch gradient descent, Adam optimiser, to systematically opti-
mise the basic parameters of  the data computation within the
model architecture to achieve the goal of optimising or acceler-
ating the optimization of the model parameters. The automatic
optimisation  of  model  parameters  eliminates  the  need  for
manual design of parameters within the model and reduces the
amount  of  manual  work  involved  in  model  development.  In
addition, the trained models can be used to achieve objectives
such as object detection,  localization,  image classification,  and
predictive analytics based on complex abstract data. One note-
worthy advantage of contemporary machine learning method-
ologies  is  their  inherent  capability  for  automated  feature
extraction  and  learning  from  abstract  data,  thereby  obviating
the requirement for manual intervention in guiding the model
through  the  processes  of  feature  extraction  and  learning,  as
demonstrated in conventional feature engineering. In contrast,
traditional  machine-learning  approaches  necessitate  the  con-
struction of relevant features by humans, contingent upon the
dataset,  a  process  commonly  referred  to  as  feature  engineer-
ing.  Performing  the  task  of  feature  engineering  is  inherently
complex  and  time-consuming,  necessitating  iterative  human
adjustments based on changes in the dataset or design require-
ments[2]. Traditional feature engineering may be more advanta-
geous  when  dealing  with  small  datasets  is  required.  But  in
today's  environment  of  increasing labour  costs[3] and decreas-
ing  computer  arithmetic  costs[4],  as  well  as  in  practice  where

large  neural  networks  based  on  deep  learning  can  be  better
generalized  this  is  more  important[5].  Deep  learning  methods
may  be  more  advantageous  when  dealing  with  large  datasets
or  when  a  high  degree  of  automation  is  required.  As  a  result,
the  developmental  costs  associated  with  models  of  this  kind,
which  is  mainly  labour  costs,  significantly  increase,  while  their
generalizability is concurrently limited.

In  contrast,  the  incorporation  and enhancement  of  network
models  which  involve  proficient  feature  extraction  techniques
combined  with  deep  learning,  are  exemplified  by  Convolu-
tional  Neural  Networks  (CNN),  You  Only  Look  Once  series
(YOLO), Single Shot Multibox Detector (SSD), Residual Network
(RstNet),  Densely  Connected  Convolutional  Network
(DenseNet),  GoogleNet,  MobileNet,  and Xception,  have signifi-
cantly  enhanced the automatic  feature-learning capabilities  of
models.  These  advancements  enable  deep-learning  models  to
autonomously  extract  features  of  varying  levels  of  complexity
from  raw  data,  displaying  significant  potential  for  improving
the  reliability  of  models  based  on  leaf  disease  image  analysis.
As a result, models developed within the deep learning frame-
work  align  with  the  processing  of  intricate  abstract  data,  such
as  images,  and  it  also  demonstrates  advantages  in  terms  of
labour  costs,  expenditure  on productivity  costs,  and increased
model versatility[6].

Early  detection  of  diseases  minimizes  the  overuse  of  pesti-
cides  in  disease  prevention[7].  The  utilization  of  deep  learning
techniques for monitoring crop leaf diseases enable the analy-
sis  of  various  disease  types  by  inputting  images  of  diseased
leaves  into  a  model  previously  trained  for  these  leaf  diseases,
eliminating  the  necessity  for  specialized  personnel  and  allow-
ing for an automated identification process, that enables rapid,
timely  control[8].  When  these  trained  models  are  deployed  on
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small  mobile  terminals,  it  helps  non-professional  agriculturists
to  detect  problems  in  time,  even  in  completely  unmanaged
farmland,  so  that  preventive  measures  can be implemented[9].
Due to the good generalisation ability of the model, identifica-
tion  aided  by  the  use  of  a  trained  model  can  provide  a  more
reliable  identification  reference  for  experts[10].  For  example,  in
changing  environments  where  some  leaf  diseases  have  no
obvious  symptoms  or  are  difficult  to  detect,  which  requires
plant  pathologists  to  be  well  observed[11],  deep  learning
models  can  extract  features  that  are  difficult  to  observe  with
the  human  eye[12].  Thereby,  the  application  of  such  technolo-
gies  contributes  to  the  timely  detection  and  prevention  of
plant  leaf  diseases,  optimization  of  crop  yields,  and  advance-
ment  of  precision  agriculture.  Consequently,  this  enhances
productivity,  reduces  labour  costs,  and  strengthens
sustainability[13].

Tropical areas hold a significant position as major producers
of staple food crops such as rice, corn, and millet, as well as vari-
ous fruit crops including banana, mango, coconut,  and durian.
The  region's  consistently  high  temperatures  lead  to  shorter
pathogen incubation periods, exemplified by the reduced diur-
nal  temperature  which  accelerates  the  latency  period  of
pathogens  like Hemileia  vastatrix,  causing  rust  epidemics  in
Central  America[14] Furthermore,  the typically high humidity in
tropical  regions  foster  both  crop  growth  and  the  survival  of
harmful  bacteria[15].  Consequently,  tropical  regions  experience
more frequent occurrences of plant diseases, posing a threat to
food security[16]. Thus, compared to non-tropical regions, crops
in  tropical  areas  have  shorter  growth  cycles  and  are  more
susceptible to rapid disease outbreaks, underscoring the neces-
sity  for  timely  and  effective  plant  disease  prevention  and
control measures[16].  Because deep learning-based leaf disease
detection technology can be mounted on mobile  devices  and
achieve real-time monitoring,  this  technology is  more suitable
for tropical areas.

The  current  study  focuses  on  the  application  of  detection
technologies  for  plant  leaf  diseases  and  pests,  exploring
contemporary  technological  methodologies  and  attributes
underpinning  current  crop  leaf  disease  and  pest  detection
techniques.  This  paper  describes  the  technical  characteristics
and  advantages  of  parallel  detection  using  deep  learning
models.  The development direction and challenges of  deploy-
ing  deep  learning-based  leaf  disease  detection  technology  in
tropical regions have also been discussed.

 The detection models and datasets in leaf
disease detection

Leaf  disease  detection  can  be  regarded  as  the  detection  of
leaf  disease  objects,  which  is  considered  as  a  computer  vision
task,  involving  two  key  targets:  object  recognition  (classifica-
tion)  and  object  localization.  The  process  of  building  object
detection can be divided into three main parts:  data set selec-
tion  or  construction,  model  selection  and  training,  model
evaluation and deployment.

Choosing  the  right  architecture  for  the  detection  model
depends primarily  on the required level  of  accuracy,  inference
speed,  and  available  computational  resources.  The  detection
methods  are  distinguished by  whether  object  localization and
classification are performed in a single stage[17].  The one-stage
methods  directly  predict  bounding  boxes  and  class  probabili-
ties  for  all  objects  in  a  single  pass  without  region  proposal[18],

such  as  YOLO  series,  SSD,  CornetNet,  et  al.  However,  the  tow-
stage  methods  are  much  more  complicated,  like  CNN,  RCNN.
The  first  stage  usually  proposes  potential  regions  of  interest,
and the second stage refines these proposals by classifying and
adjusting  the  bounding  boxes.  This  stage  difference  in  practi-
cal  application  leads  to  the  two  models  having  different
emphasis  on  prediction  speed  and  prediction  accuracy[19],
which the one-stage method emphasizes the prediction speed,
correspondingly,  and  the  other  emphasizes  the  prediction
accuracy.  Popular  CNN  architecture  used  as  the  backbone
includes  AlexNet  and  its  variants  like  VGGNet,  GoogLeNet,
Inception  series,  ResNet  and  its  variants  like  ResNet50  and
ResNet101, DenseNet, MobileNet.

Currently,  based on the literature  summarized in Tables  1 &
2,  the  authors'  models  have  consistently  achieved  recognition
accuracy  exceeding  90%  in  validation  or  prediction  applica-
tions. A 90% recognition accuracy in target recognition models
is often seen as high, but its adequacy depends on the specific
application  and  requirements.  Thus,  there  isn't  a  universal
benchmark,  and  performance  evaluation  should  align  with
specific  tasks  and  applications[20].  Some  models  even  exhibit
recognition  accuracy  surpassing  99%  in  test  sets.  In  the  realm
of  laboratory  development  and  certain  outdoor  applications,
achieving high accuracy with simple models is still a prominent
challenge[21].  Furthermore,  due  to  the  diverse  hardware  plat-
forms employed by different authors and the specific purposes
of  their  applications,  direct  comparisons  of  reasoning  speed
and  computing  resource  requirements  among  various  models
pose  challenges.  Nevertheless,  a  delicate  balance  is  required
between  recognition  accuracy,  model  size,  and  model  infer-
ence  speed.  This  becomes  particularly  critical  when  contem-
plating  the  deployment  of  models  on  mobile  terminals  for
practical  applications.  Achieving  this  balance  represents  a
formidable challenge in the field.

The  model's  ability  to  recognize  is  strongly  tied  to  the  qua-
lity and specifics of the dataset used for training, validation, and
testing.  For  instance,  factors  such  as  the  accuracy  of  object
labels,  the  number  of  images  and  labels  in  the  data  set,
balanced  data  distribution,  and  the  use  of  data  enhancement
methods  impact  the  ultimate  prediction  accuracy  and  the
model's ability to generalize. He et al.[22] suggested that imbal-
anced  data  could  compromise  model  classification  accuracy.
The  size  of  the  dataset  is  commonly  regarded  as  significant
which is the number of images and labels in the data set, yet it
is  not  definitive[23].  While  expanding  the  dataset  size  may
enhance  the  model's  generalization  capability  and  perfor-
mance to some degree,  it  does not imply that a larger dataset
always  leads  to  better  outcomes  or  more  accurate  identifica-
tion  under  identical  conditions[24].  Errors  in  data  labels  can
significantly impact the accuracy of model testing. These views
are  further  extended  and  proposed  by  Priestley  et  al.[25] and
they  pointed  out  differences  in  data  management  practices
between academia  and industry,  underlining that  data  quality
should align with diverse user  needs.  They also proposed that
the  availability  of  data  can  be  supported  by  an  infrastructure
for data collection and management, particularly in large orga-
nizations.  In  academia,  data  sets  are  typically  categorized  as
published  or  non-public,  posing  challenges  in  objectively
assessing  the  quality  of  datasets  used  in  some  researcher-
proposed models.

In  practice,  an  important  consideration  influencing  model
performance is  whether  images  in  the dataset  capture  natural
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environments, encompassing both indoor and outdoor scenes.
For example, as shown in Fig. 1a−c, are all indoor, d is outdoor.
Natural  environment  photos  tend  to  have  complex  back-
grounds,  demanding  models  with  stronger  anti-interference
capabilities  against  intricate  scenarios.  As  researchers  develop
models,  it  is  still  suggested  that  if  the  researchers  want  to
develop  a  model  for  the  identification  of  a  leaf  disease,  it  is  a
very necessary process to collect relevant data and label it. The
research focus of tropical leaf disease detection is still based on
effective  data  collection.  Based  on  datasets  from Tables  1 & 2
this  article  organizes  the  published  datasets,  including  refer-
enced ones, for further reference.

 Characteristics and advantages of deep
learning models in plant leaf disease
detection

A  review  was  conducted  on  a  corpus  of  scholarly  papers
abput  leaf  disease  detection  published  in  the  year  2023.  The
focus of the review includes the characteristics and advantages
of  techniques  for  detecting  leaf  disease  using  deep-learning
models.  The selected papers collectively encapsulated a broad
spectrum of contemporary deep-learning models employed for
the  detection  of  leaf  diseases.  This  article  provided  detailed
insights  into  the  characteristics  of  these  models.  Additionally,
the  review  meticulously  cataloged  the  salient  features  utilized
of  the  model,  thereby  affording  a  understanding  of  the  state-
of-the-art  methodologies  employed  in  the  domain  of  leaf
disease  detection.  The  models  used  in  this  study  include
models based on mature algorithm technology models such as
YOLO,  SSD,  and  CNN.  The  investigator  has  undertaken  perti-
nent  modifications  to  these  infrastructures,  tailoring  them  to
optimize  their  efficacy  for  the  distinct  application  conditions
posed  by  the  identification  of  pathological  manifestations  in
foliage, including methods of identifying leaf disease using first
and second-stage models.

These models exemplify superior accuracy, lightweight archi-
tecture,  and  adept  deployment  on  mobile  devices,  rendering
them  well-suited  for  the  detection  of  leaf  diseases  across
diverse scenarios.  Notably,  enhancements in recognition accu-
racy  are  achieved  through  the  replacement  of  backbone
networks  or  the  introduction  of  innovative  modules.  These
improvements  are  usually  to  enhance  the  ability  to  extract
features from images or the ability to fuse features after extrac-
tion, and to reduce interference as elucidated in Table 2 (No. 1,
2,  3,  5,  6,  9,  11,  12,  13,  16,  17,  18,  20,  26,  27,  30).  Additionally,
attention  mechanisms  play  a  pivotal  role  in  refining  recogni-
tion accuracy by focusing on key information on different chan-
nels or convolution kernels at different scales, as evidenced by
the methodologies delineated in Table 2 (No.  1,  2,  3,  5,  6,  7,  9,
12,  13,  16,  17,  18,  22,  25,  26,  27,  28,  29,  31).  Furthermore,  after
comparing  the  four  state-of-the-art(SOTA)  Vision  Transformer
models  by  Hossain  et  al.[8],  it  is  concluded  that  MaxViT  has
better  recognition  accuracy,  which  proved  that  using  global
attention is more suitable to improve the recognition accuracy
of the leaf disease identification.

Techniques  for  refining  input  image  quality,  exemplified  by
the  implementation  of  Generative  Adversarial  Networks
(GAN)[34,53], further contribute to the augmentation of accuracy.
Finally, introducing other methods to improve the classifier can
also increase the accuracy of recognition[41,56] and optimize the
training method of the model[47].

Moreover, as part of the overarching goal to enhance recog-
nition  accuracy,  the  adoption  of  pre-trained  models  through
transfer  learning  on  newly  curated  datasets  emerges  as  a
commendable  paradigm,  as  advocated  by  Saeed  et  al.[52],
Simhadri & Kondaveeti[64] and Sudhesh et al.[63]. The imperative
for  reduction  in  model  size  is  achieved  through  the  introduc-
tion of novel modules or the replacement of the feature extrac-
tion network, as evidenced by instances in Table 2 (No. 2, 4, 7, 9,
15, 16).

Furthermore,  certain  authors  have  made  notable
contributions  to  practical  field  applications,  exemplified  by

 

Table 1.    Plant disease open data sets.

Data set name Crop Brief description Ref.

Image Database of Plant
Disease Symptoms

21 plant species In October of 2016, this database called PDDB, had 2,326 images of 171
diseases and other disorders affecting 21 plant species including soybean,
citrus, coconut tree, dry bean, cassava, passion fruit, corn, coffee, cashew tree,
grapevine, oil palm, wheat, sugarcane, cotton, black pepper, cabbage, melon,
rice, pineapple, papaya, cupuacu.

[26]

Tomato leaf disease
detection

Tomato A tomato leaf disease dataset includes tomato mosaic virus, tomato yellow
leaf curl virus, late blight, leaf mold, early blight, septoria leaf spot, Spider
mites Two-spotted spider mite, healthy tomato.

[27]

Agricultural Disease Image
Database for Agricultural
Diseases and Pests Research

Rice and wheat, fruits
and vegetables, etc.

The dataset currently has about 15,000 high-quality agricultural disease
images, including field crops such as rice and wheat, fruits and vegetables
such as cucumber and grape, etc.

[28]

Rice disease dataset Rice A rice leaf disease dataset includes bacterial leaf blight, blast and brown spot. [29]

Pathological images of
apple leaves

Apple The apple leaf disease image dataset contains 8 common apple leaf diseases:
Mosaic, rust, gray spot, mottle leaf disease, brown spot, black star disease,
black rot, healthy leaf disease.

[30]

Plant Pathology 2021 -
FGVC8

Apple 2021-FGVC8 contains approximately 23,000 high-quality RGB images of apple
foliar diseases, including a large expert-annotated disease dataset.

[31]

Tomato Disease Multiple
Sources

Tomato Over 20 k images of tomato leaves with 10 diseases and one healthy class.
Images are collected from both lab scenes and in-the-wild scenes, which
includes late blight, healthy, early blight, septoria leaf spot, tomato yellow leaf
curl virus, bacterial spot, target spot, tomato mosaic virus, leaf mold, spider
mites Two-spotted spider mite, powdery mildew.

[32]

Data for: Identification of
Plant Leaf Diseases Using a
9-layer Deep Convolutional
Neural Network

12 plant species The dataset includes 39 different classes of plant leaf and background images
are available. The data-set contain 61,486 images.

[33]
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Table 2.    Leaf disease detection technology and corresponding advantages.

No. Model name Technical characteristics Advantages. Ref.

1 Apple-Net The Feature Enhancement Module (FEM) and Coordinate Attention
(CA) incorporation.
Generative Adversarial Networks (GAN) for interference reduction.

Multi-scale information acquisition,
increased diversity, and noise
resistance.

[34]

2 Mobile Ghost with
Attention YOLO

Ghost modules and separable convolution for reducing model size.
The mobile inverted residual bottleneck convolution with
Convolutional Block Attention Module (CBAM) for improving
feature extraction capability.

Lightweight real-time monitoring
(10.34 MB), suitable for mobile
terminals.

[35]

3 BTC-YOLOv5s Bidirectional Feature Pyramid Network (BiFPN) for a fusion of
multi-scale features.
Transformer attention mechanism for capturing global contextual
information and establishing long-range dependencies.
CBAM for interference reduction.

Reduces irrelevant information, small
model size (15.8 MB).

[36]

4 AlAD-YOLO The backbone network of TOLOv5s replaced with that of
MobileNetV3.

Reduction in parameters and
computational complexity during
feature extraction.

[37]

5 YOLOX-ASSANano Asymmetric ShuffleBlock for enhanceing feature fusion.
Cross stage partial module with shuffle attention for interference
reduction.

Processes complex natural
backgrounds and lightweight model.

[38]

6 V-space-based Multi-
scale Feature-fusion
SSD

Multi-scale attention extremum for automatic lesion detection. Enhances detection ability for
disease lesions, especially small ones.

[39]

7 LAD-Net Asymmetric and dilated convolution as the convolution to reduce
model size.
LAD-Inception designed with an attention mechanism for
improving multiscale detection capabilities.

Small model size (1.25 MB), high
accuracy (97.72%), and
implementation of deployment on
mobile devices.

[40]

8 Enhanced LSTM-CNN Majority voting ensemble classifier replaced the classifier.
Optimal LSTM layer network applied to select deep features
autonomously.

Enhanced feature extraction and
classifier modification.

[41]

9 LALNet EARD module with multi-branch structure and depth separable
modules extracts more feature information with fewer parameters
and computational complexity. SE attention module for increase
the feature extraction capability.

Small size (6.61 MB), fast execution
(6.68 ms/photo), and high
recognition accuracy.

[42]

10 Two-stage detection
system

Three-way classification in the first stage using Xception as the
base model.
Real-time detection in the second stage.

Detects multiple diseases with 87.9%
mean average precision.

[43]

11 Improved Faster R-
CNN

Res2Net and feature pyramid network replaced the backbone of
Faster R-CNN for batter feature fusion.
RoIAlign instead of RoIPool of Faster R-CNN for improving the
identification precision.

Extracts multi-dimensional features
in natural scenes with complex
backgrounds.

[44]

12 BC-YOLOv5 Modify YOLOv5 neck structure with weighted BiFPN and CBAM. Enhanced feature extraction in the
detection layer, reduced irrelevant
information for complex
backgrounds.

[45]

13 PLPNet Perceptual adaptive convolution (PAC) for enhancing the
network's global sensing capability.
location relation attention module (LRAM) for reducing
unnecessary information.
SD-PFAN structure for fusing features batter.

Recognizes leaf diseases at the edge
of the leaf, resist background
interference.

[46]

14 DL Technique U-net with Gradient GSO for leaf segmentation in the first stage.
DbneAlexnet trained using proposed GJ-GSO for leaf classification
using Gradient Jaya-Golden search optimization in the second
stage.

Two-stage approach mitigating
background noise. Optimized
segmentation and classification
through new training methods.

[47]

15 LightMixer Depth convolution with Phish (DCWP) and light residual (LR)
modules to increase feature integration and reduce parameters.
Phish activation function for reducing the information loss.

Identifies diseases in complex
environments, suitable for mobile
deployment.

[48]

16 NanoSegmenter Transformer structure and sparse attention mechanisms to tackle
the instance segmentation task, replacing the CNN backbone.
The bottleneck inversion technique to achieve model
lightweighting.

High accuracy in instance
segmentation, low computational
complexity, and small model size.

[49]

17 DMCNN Multi-scale convolution for disease classification from multiple
channels.

Enhancement of accuracy and
efficiency through multi-scale
detection

[50]

18 CRNN Combines CNN and RNN for improved sequential features
extraction.

Achieves significant improvement in
maximum accuracy compared to
traditional CNN.

[51]

19 Transfer learning with
pre-trained CNN
models.

Transfer learning with Faster-RCNN and Inception ResNetv2
models.

High recognition ability on new
dataset after transfer learning.

[52]

20 PCA DeepNet Data enhancement with CycleGAN
Feature extraction with PCA
Classification with Faster-RCNN.

Innovative PCA method for image
extraction, followed by Faster-RCNN
for classification.

[53]

21 Four transformer-
based models.

Comparative study on four vision transformers (EANet, MaxVit,
CCT, PVT) for tomato leaf disease identification.

MaxViT architecture identified as the
best for tomato leaf disease
identification.

[8]

(to be continued)
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Table 2.    (continued)
 

No. Model name Technical characteristics Advantages. Ref.

22 Fine-grained image
identification
framework

Utilizes OPM, DRM, AADM, and OCB for object identification,
feature learning, and severity assessment.

Assess severity based on categorized
dataset, captures fine-grained details
with DRM.

[54]

23 RiceNet YOLOX identifies disease sites in the first stage.
Siamese Network classifies diseases in the second stage.

Effective two-stage detection,
addressing complex backgrounds
and limited samples.

[55]

24 RWW-NN SetNet isolates the rice crop images.
RWW algorithm (WWO & ROA), for improved classification.

Two-stage approach mitigating
background noise, improved
classifier performance.

[56]

25 The domain
adaptation networks
with novel attention
mechanisms

Channel and spatial attention mechanism (CPAM) in DSAN for key
feature identification.

Alleviates data distribution
differences and small sample
problems.

[57]

26 RiceDRA-Net Res-Attention module based on CBAM for accurate disease
identification and localization.
DenseNet-121 serves as the backbone network.

Precise disease localization, even in
complex backgrounds.

[58]

27 rE-GoogLeNet ECA attention mechanism in GoogLeNe
Residual networks for information loss mitigation.

Improved recognition and
performance over alternatives.

[59]

28 ADSNN-BO Enhanced self-attention mechanism employed along the entire
architecture in MobileNetV1,
Bayesian optimization for hyperparameter tuning.

Outperforms MobileNet with 3.6%
accuracy improvement.

[60]

29 DGLNet Global attention module (GAM) enhances sensitivity by reducing
background noise.
Dynamic representation module (DRM) for flexible feature
acquisition.

Enhances generalization capability
and feature representation in
lightweight models.

[61]

30 Novel rice grade
model

EfficientNet-B0 architecture as the backbone for better recognition
accuracy for spotting diseases.
By identifying leaf instances and disease areas, the ratio of the two
areas was calculated to estimate the severity of the disease.

Reliable disease spot recognition,
quantifies severity of rice disease.

[62]

31 Comparison of pre-
trained residual
network models

Comparison of ResNet34, ResNet50, ResNet18 with self-attention
and ResNet34 with self-attention.

Models with self-attention exhibit
improved recognition accuracy
during transfer learning.

[63]

 

a

c

b

d

Fig. 1    Photographic examples of a plant disease dataset. (a) Balck rot; (b) Northern leaf blight; (c) Isariopsis leaf spot; (d) Brown spot.
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endeavors in real-time processing, the amelioration of environ-
mental challenges and assessment of disease severity. The two-
stage methodology includes classification before detection and
detection  before  classification,  demarcating  the  detection
process  into  initial  leaf  segmentation  and  subsequent  leaf
disease classification, as undertaken by Khan et al.[43] and Badi-
ger  &  Mathew [47],  exhibits  a  proclivity  towards  effectively
discerning multiple diseases on leaves. Pen et al.[55] and Daniya
& Vigneshwari[56] also  used a  two-stage approach to  solve  the
problem  of  disease  identification  from  photos  with  complex
background obtained in actual fields, which can overcome the
interference of complex background environments to recogni-
tion  to  some  extent.  At  the  same  time,  because  a  new
segmented  disease  data  set  is  generated  in  the  process,  the
problem  of  small  samples  with  fewer  original  images  is  also
solved.

Leaf  diseases  of  tropical  plants  usually  have  the  following
characteristics:  a variety of leaf diseases,  rapid outbreak of leaf
diseases,  high  frequency,  and  difficult  to  prevent.  In  addition,
unlike in other regions, tropical plants tend to be relatively tall,
with  thicker  foliage  and  a  faster  growth  cycle.  This  makes
disease  surveillance  and  management  of  tropical  plants  more
difficult.  For some fruit crops,  such as coconut,  mango, lychee,
and  durian,  it  is  difficult  to  achieve  early  detection  and  early
treatment  of  leaf  disease.  Even  though  some  crops  can  be
reduced  in  height  through  dwarfing  management,  they  still
have wider leaves for relatively similar crops such as apples and
tomatoes. This makes it difficult to use a camera to photograph
the  diseased  leaf  in  its  entirety  up  close.  Therefore,  new
requirements  are  put  forward  for  leaf  disease  detection  tech-
nology based on deep learning models especially for real-time
monitoring.

Given the difficulties in the detection of leaf diseases of tropi-
cal plants like coconut, such as the small number of leaf disease
data sets, the mutual occlusion of large leaves, the influence of
leaf  shadows,  and  the  interference  of  complex  leaf  back-
grounds, some researchers have conducted studies. Thite et al.
have published a dataset named 'Coconut (Cocos nucifera) Tree
Disease Dataset',  which contains five diseases:  Bud Root Drop-
ping,  Bud Rot,  Gray Leaf  Spot,  Leaf  Rot,  and Stem Bleeding[65].
The  images  in  this  dataset  are  centered  on  disease  locations
and  also  include  disease  photos  presented  on  tree  trunks.  In
addition,  researchers  have  developed  a  detection  model  for
coconut tree disease. The model uses the newly developed AIE-
CTDDC  technology[66].  To  solve  the  problem  of  identifying
coconut  tree  disease  in  the  complex  coconut  leaf  background
environment, the model uses CapsNet[67] as the feature extrac-
tor,  and  the  data  is  pre-processed  using  MF-based  enrollment
removal technology before this. Similarly, to solve the problem
of mutual  occlusion of large coconut leaves and the impact of
leaf  shadows  on  the  recognition  effect,  Subbaian  et  al.
proposed  a  coconut  leaf  disease  detection  method  based  on
YOLOv4[68].  The  method  improved  the  prediction  accuracy  of
the model  through multi-scale detection,  PANet,  and adaptive
border improvement.

In terms of the portability of detection and solving the prob-
lem that  the  plants  are  too high to  observe,  some researchers
have proposed some methods  and applications  for  the  detec-
tion  of  durian  leaf  disease.  Gallenero  &  Villaverde  designed  a
portable device embedded with the Duri  Premium application
to  identify  durian  leaf  disease.  The  device  was  equipped  with

the  Mobilenet-based  convolutional  network  model,  which
achieved  good  identification  accuracy[69].  Also  for  portable
detection,  a  mobile  application  was  developed  to  detect  the
leaf diseases of mango and grape by Rao et al.[70].  To solve the
problem  caused  by  the  rapid  detection  and  prevention  of
durian  leaf  disease,  Piriyasupakij  &  Prastiphan  designed  an
unmanned aircraft equipped with YOLOv5 for the detection of
durian  leaves  on  the  tree  and  realized  the  effect  of  automatic
cruise shooting and identification of durian leaf disease[71]

From  the  above,  it  can  be  concluded  that  when  identifying
leaf diseases in tropical crops, researchers need to consider two
aspects.  On  the  one  hand,  it  is  to  solve  the  impact  of  large
blade occlusion and complex leaf surface environment around
leaf disease. Another aspect is that to achieve rapid leaf disease
detection, it is necessary to carry out portable design of detec-
tion equipment, such as mounted on mobile terminals, to cope
with  complex  detection  environment  or  to  detect  excessively
high plant leaf disease.

 The balance of speed and precision in leaf
disease detection

There  is  a  trade-off  between  the  speed  and  accuracy  of
model inference. In general, increasing the inference speed of a
model may result in decreasing the recognition accuracy of the
model, and vice versa. This is because when designing a model,
to improve the reasoning speed, it is often necessary to reduce
the  complexity  and  the  number  of  parameters  of  the  model,
which  may  lose  certain  recognition  accuracy.  On  the  contrary,
to  improve  the  recognition  accuracy  of  the  model,  it  may  be
necessary  to  increase  the  complexity  and  the  number  of
parameters of the model, resulting in slower inference speed.

To  assess  and  compare  the  performance  of  the  models,  the
model  prediction  results  are  commonly  used  as  True  Positive
(TP),  which  refers  to  the  number  of  positive  samples  correctly
identified;  False  Positive  (FP),  which  refers  to  the  number  of
negative  samples  incorrectly  identified;  True  Negative  (TN),
which refers to the number of negative samples correctly iden-
tified;  and  False  Negative  (False  Negative,  FP)  refers  to  the
number of negative samples that are incorrectly identified. The
correspondence is shown in Table 3.

Based on the four results of sample classification, it also sets
Accuracy  to  indicate  the  samples  predicted  to  be  classified
correctly  among  all  samples;  sets  Precision  to  indicate  the
proportion of  true-positive samples among those predicted to
be positive;  sets  Recall  to indicate the proportion of  true-posi-
tive  samples  among  those  classified  correctly;  and  sets  the
average  precision.  The  corresponding  formulas  for  Accuracy,
Precision and Recall are as follows, respectively.

Accuracy =
TP

TP+FP+TN +FP
(1)

Precision =
TP

TP+FP
(2)

 

Table 3.    Classification of predicted and actual results.

Actual
Predicted

Positive Negative

True True positive True negative
False False positive False negative
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Recall =
TP

TP+FN
(3)

p (r)

In the assessment of the model classification quality of each
category,  since  the  use  of  quasi-departure  rate,  checking  rate,
and  recall  rate  alone  cannot  be  considered  together  to  assess
the score,  the  researcher,  therefore,  proposes  the  use  of  Aver-
age Precision (AP) as a measure of the quality of the model clas-
sification for a certain category, i.e., integrating a function plot-
ted  on  a  certain  category  of  objects  with  the  Recall  (r)  as  the
horizontal  axis  and  the  corresponding  Precision  ( )  as  a
function  plotted  on  the  vertical  axis  for  integration;  use  of
mean Average Precision (mAP) for evaluating a model for multi-
ple  classes  (n)  of  object  classification  performance  evaluation
metrics;  F1  Score  is  used  as  an  assessment  of  the  combined
consideration  of  check  accuracy  and  recall,  i.e.,  the  reconciled
average  of  check  accuracy  and  recall.  The  Average  Precision
and F1 Score correspond to the following calculation formula:

AP =
1w
0

p (r)dr (4)

mAP =
1
n

∑n

i=1
APi (5)

F1 =
2Precision × Recall
Precision + Recall

(6)

In  improving  the  accuracy  of  recognition,  there  are  limita-
tions  in  the  identification  of  leaf  disease  using  two-dimen-
sional image processing. The approaches mentioned in Table 2,
which  employ  convolutional  and  deep  learning  networks  for
image feature extraction, are inherently designed for the analy-
sis of two-dimensional images. In practical applications, foliage
afflicted with diseases often exhibits characteristics such as leaf
curl,  damage,  and  instances  of  mutual  occlusion  during  the
acquisition of field imagery. Consequently, a nuanced examina-
tion  of  disease  severity,  based  on  a  model  learned  on  two-
dimensional  image  data  alone,  predicated  on  estimating  the
proportion  of  the  diseased  area  relative  to  the  entire  leaf
surface[62],  may  lead  to  the  inadvertent[72].  Researchers  have
suggested a method for creating three-dimensional reconstruc-
tions  using  two-dimensional  images,  aiming  to  overcome
spatial  limitations  present  in  these  types  of  pictures.  The
research shows that it is feasible to deduce crop height and leaf
area  through  3D  modeling[73].  Compared  with  the  2D  RGB
image processing method, the 3D method can accurately esti-
mate  the  number  of  leaves,  avoid  the  influence  of  mutual
occlusion of leaves to a certain extent, and greatly improves the
accuracy of detection[74]. At the same time, it may also solve the
problem  proposed  by  Tang  et  al.[46],  that  the  occurrence  of
diseases  at  the  edge  of  leaves  in  a  complex  background  will
interfere with the recognition. Utilizing the approach of recon-
structing  a  three-dimensional  model  based  on  two-dimen-
sional  images  still  poses  challenges[75−77].  These  challenges
encompass  the  loss  of  depth  information,  compromised  accu-
racy due to low resolution or distorted images,  and difficulties
in  precisely  capturing  intricate  geometric  textures,  particularly
in  complex  scenes.  In  terms  of  computing  cost,  it  cannot  be
ignored  that  three-dimensional  method  consumes  more
computing cost than two-dimensional method[78].

In  addition,  to  improve  the  quality  of  recognition,  the  solu-
tion of the multi-scale detection problems and the application
of  the attention mechanism have played a  great  help.  Objects

of all sizes (objects proportional to the size of the image) need
to  be  detected,  requiring  the  network  to  have  the  ability  to
recognize objects of different sizes, faced with the challenge of
significantly  decreasing  detection  accuracy  for  very  large  or
very  small  scale  targets[36].  However,  the  deeper  the  network,
the smaller the size of the feature map, which makes it difficult
to  detect  small  objects,  which  is  a  problem  that  cannot  be
avoided after the model extracts the feature map[79]. This prob-
lem  can  be  alleviated  in  the  process  of  extracting  features[39]

and in the process of feature fusion[80], to improve the average
precision  of  the  model.  The  attention  mechanism  is  a  self-
supervised  learning  method  used  in  the  natural  language
processing, and applied to enable the network to focus on the
target  region  with  important  information  by  learning  how
much  the  input  data  contributes  to  the  output  data,  while
suppressing  other  irrelevant  information  and  reducing  the
interference  caused  by  irrelevant  background  on  detection
results[36,81].  This  method  can  be  applied  to  the  model  to
extract  features  of  different  channels,  for  example,  CBAM[82],
BAM[83].

The  recognition  speed  of  the  evaluation  target  recognition
model  usually  has  the  following  evaluation  indexes,  such  as
inference time, inference throughput, inference frame rate, and
hardware resource utilization. These evaluation indexes are also
used to  evaluate  the reasoning speed of  the model  in  specific
application scenarios. Inference time is commonly used to eval-
uate the speed of the model in image recognition and classifi-
cation,  which  means  the  time  it  takes  the  model  to  go  from
receiving the input image to outputting the prediction.

In  speeding  up  the  prediction  speed,  the  one-stage  target
detection  method  has  more  advantages.  For  the  one-stage
recognition  method  based  on  YOLO,  the  anchor  method
should be used for  frame selection first,  especially  for  YOLOv2
to  YOLOv6,  which  takes  up  computing  resources.  To  reduce
model  size  and  prediction  speed,  many  researchers  proposed
an anchor-free method, which takes key points as the core. For
example,  the  target  center  of  the  feature  map  is  taken  as  the
key  point  to  locate  the  target.  Based  on  the  number  of  key
points,  the  free-anchor  method  can  be  divided  into  central-
point-based  method  and  multi-key  point-based  method,  such
as  CenterNet[84].  From  a  hardware  aspect,  different  hardware
selected  for  the  prediction  means  different  predictive  speeds
under the same model selection and parameters[85].

In practical production, a single plant can exhibit concurrent
occurrence of multiple diseases,  with distinct characteristics of
various diseases observed on the same leaf, or the same disease
has  different  characteristics  at  different  times[86].  This  multi-
faceted  infection  pattern  can  be  considered  a  more  indicative
measure  for  assessing  current  crop  damage  levels,  placing
higher demands on the accuracy and generalization capacity of
disease identification models.

Overall,  if  the leaf disease identification method is deployed
in practical production, the balance between recognition accu-
racy  and recognition  speed can not  be  achieved only  by  opti-
mizing the model or hardware. However, in terms of the evolu-
tion and development of methods for identifying leaf diseases
using  convolutional  neural  networks,  the  balance  between
accuracy and speed has to be mentioned.

There  are  still  some  ways  to  balance  the  relationship
between speed and accuracy of model inference. These meth-
ods can be roughly divided into three general directions: model
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compression,  hardware  optimization,  and  algorithm  improve-
ment.  Model  compression[87],  such  as  channel  pruning[88] and
knowledge distilling[89],  can  reduce the  number  of  parameters
and  complexity  of  the  model,  thereby  improving  the  model
reasoning  speed  and  maintaining  the  accuracy  of  recognition
to a certain extent[87].  Hardware optimization can often signifi-
cantly  increase  the  speed  of  model  inference.  For  example,
running  a  model  on  a  GPU,  TPU,  or  professional  computing
device can significantly  increase the speed of  the model  infer-
ence[90]. There are more methods to accelerate the model infer-
ence speed and improve the inference accuracy by improving
the algorithm, which are not listed in this paper. All three meth-
ods  can  improve  the  performance  of  the  model  both  during
training and during inference.

It  is  noteworthy that  the lower the error  rate of  the training
model is not equal to the better the quality of the model when
training  models  and  too  low  a  classification  error  rate  usually
leads  to  overfitting  problems.  For  example,  such  as  a  fully
connected  network  classifier,  one  should  not  simply  assume
that  achieving  the  best  learning  quality  is  synonymous  with
minimizing the classification error rate. Some researchers have
delved into understanding the delicate balance between learn-
ing  difficulty  and  learning  speed.  By  utilizing  a  single-layer
perceptron and a double-layer neural network optimized with a
gradient descent learning algorithm, the average accuracy typi-
cally decreases with training time. The model attains a harmo-
nious equilibrium between training difficulty and learning rate
when  the  training  error  rate  is  at  15.87%[91],  resulting  in  an
approximately 85% accuracy.

Hence, in the pursuit of a specific characteristic index for the
model,  it  is  imperative  to  selectively  adjust  and  optimize  the
model  based  on  the  prevailing  circumstances  or  specific
requirements. Furthermore, relying on a singular index is inade-
quate for evaluating the overall quality of a given model.

 Problems and prospects of application in
tropical environment

In the realm of agriculture, the identification of crop diseases
stands as a pivotal task, serving as a key to further assessing the
severity  of  current  or  potential  hazards.  The  foregoing  review
elucidates that the application of artificial intelligence (AI) tech-
nology in monitoring plant leaf diseases attains commendable
levels of recognition accuracy and expeditious identification in
the  model  development  and  testing.  This  methodology
emerges  as  a  proactive  approach  to  disease  identification,
conferring  the  capacity  to  empower  agricultural  stakeholders
and  experts  in  effectually  addressing  extant  diseases  or
preemptively  mitigating  potential  threats.  Moreover,  through
the  implementation  of  smart  agriculture  methodologies,  the
attainment  of  sustainable  and  resilient  production  is  conceiv-
able,  thereby  mitigating  environmental  impact  and  fortifying
food  security[92].  The  judicious  quantification  of  crop  diseases
fosters the formulation of precise protection strategies tailored
to  the  dynamic  and  perpetually  changing  agricultural  milieu.
This  approach  facilitates  the  adoption  of  targeted  disease
prevention  and  control  measures,  consequently  diminishing
the  superfluous  use  of  pesticides.  The  resultant  abatement  in
pesticide application not only serves to curtail production costs
but  also  mitigates  environmental  pollution  arising  from  pesti-
cide  usage[93].  The  application  of  artificial  intelligence  (AI)

technology for identifying leaf diseases, while promising, is not
without potential challenges.

In  the  application  of  tropical  plant  leaf  disease  recognition,
the real-time monitoring and mobile device support character-
istics based on deep learning model can greatly solve the char-
acteristics  of  tropical  plant  leaf  disease  difficult  to  find  and
observe  in  time.  To  further  solve  the  problem  of  insufficient
computing power of mobile hardware devices or high demand
for model recognition accuracy, the Master-Slave structure can
be used. In this structure, the master model acts as the central
node, such as the cloud platform, responsible for coordinating
and  controlling  the  operation  of  the  whole  system,  while  the
receiver acts as the slave node, such as mobile devices, respon-
sible for receiving and processing the instructions or data of the
autonomous  model,  which  can  effectively  realize  the  parallel
processing and collaboration of tasks.

Current  studies  have  shown  that  terahertz  waves  can  be
used  to  detect  physiological  and  biochemical  parameters  in
plant leaves, such as water content[94], chlorophyll content, cell
structure, and cell wall thickness, to indirectly reflect the occur-
rence  and  development  of  leaf  diseases.  Terahertz  waves  are
electromagnetic waves between microwaves and infrared light,
with  frequencies  ranging  from  300  GHz  to  3  THz.  Terahertz
waves have a wide range of applications in biomedicine, mate-
rial  science,  and  safety  testing.  Terahertz  waves  have  strong
penetration  in  biological  materials  and  are  also  resonance
absorbed  by  biomolecules,  so  they  can  be  used  to  detect
changes  in  the  internal  structure  of  plant  leaves  and
biomolecules.  It  is  possible  to  use  deep  learning  models  to
analyze the signals of crop leaves fed back by terahertz waves,
but the technology is still in the research stage[95,96]

The rapid development of large language modeling in recent
years  has  made  it  possible  to  combine  large  language  model-
ing with leaf  disease detection techniques[97].  The rapid devel-
opment of large language modeling in recent years has made it
possible to combine large language modeling with leaf disease
detection  techniques.  Large  language  models  have  excellent
advantages  in  processing  and  analyzing  literature  and  data,
which  can  help  researchers  better  understand  and  grasp  the
research  progress  within  the  field  of  leaf  disease  detection.  In
addition,  the  powerful  text  comprehension  and  text  genera-
tion  capabilities  of  the  big  language  model  can  assist  in  the
annotation and enhancement of plant petiole image data, thus
improving  the  efficiency  of  model  training.  Similarly,  the  Big
Language  Model  can  assist  in  reasoning  and  summarizing  the
results  of  leaf  disease  detection  and  provide  scientific  refer-
ences and bases.

However,  it  is  still  due  to  the  complex  and  changeable
climate  environment  such  as  tropical  high  temperatures  and
high  humidity,  especially  considering  the  production  and
investment  costs,  it  is  not  practical  to  use  mobile  devices
equipped  with  identification  models  for  detection.  Hot  and
humid  environments  tend  to  damage  electronic  equipment,
which  increases  maintenance  costs  after  the  equipment  is
deployed to the field.

 Conclusions

The application of artificial intelligence (AI) technology in the
detection  and  diagnosis  of  crop  leaf  diseases  represents  an
advanced approach in precision agriculture,  which particularly
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in  machine learning and deep learning,  various methods have
proven effective in automating the identification and classifica-
tion  of  crop  leaf  diseases.  However,  in  practical  implementa-
tion, it is imperative to carefully choose the suitable model and
method  for  deployment  based  on  the  specific  circumstances
and  demands.  The  detection  and  management  of  plant
diseases in tropical areas remain a multifaceted issue. This tech-
nological  application  aims  to  swiftly  and  accurately  evaluate
the situation, thereby enabling timely interventions to mitigate
the adverse impact of diseases on crop productivity.
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