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The deployment of intelligent surveillance systems to monitor tomato plant growth poses substantial 
challenges due to the dynamic nature of disease patterns and the complexity of environmental conditions 
such as background and lighting. In this study, an integrated cascade framework that synergizes detectors 
and trackers was introduced for the simultaneous identification of tomato leaf diseases and fruit counting. 
We applied an autonomous robot with smartphone camera to collect images for leaf disease and fruits 
in greenhouses. Further, we improved the deep learning network YOLO-TGI by incorporating Ghost and 
CBAM modules, which was trained and tested in conjunction with premier lightweight detection models 
like YOLOX and NanoDet in evaluating leaf health conditions. For the cascading with various base detectors, 
we integrated state-of-the-art trackers such as Byte-Track, Motpy, and FairMot to enable fruit counting in 
video streams. Experimental results indicated that the combination of YOLO-TGI and Byte-Track achieved 
the most robust performance. Particularly, YOLO-TGI-N emerged as the model with the least computational 
demands, registering the lowest FLOPs at 2.05 G and checkpoint weights at 3.7 M, while still maintaining a 
mAP of 0.72 for leaf disease detection. Regarding the fruit counting, the combination of YOLO-TGI-S and 
Byte-Track achieved the best R2 of 0.93 and the lowest RMSE of 9.17, boasting an inference speed that 
doubles that of the YOLOX series, and is 2.5 times faster than the NanoDet series. The developed network 
framework is a potential solution for researchers facilitating the deployment of similar surveillance models 
for a broad spectrum of fruit and vegetable crops.

Introduction

Tomatoes abound in a rich of essential nutrients, positioning 
them as one of the most popular fruits worldwide [1]. With 
the increasing adoption of modern breeding techniques and 
advanced automated fertilization technologies in greenhouses, 
there has been a notable upsurge in both tomato yield and 
quality [2]. However, due to the intensive planting practices 
employed, several contagious diseases have the potential to 
swiftly propagate among tomato plants, posing a substantial 
threat to sustainable production [3]. An elucidative report 
underscores that the direct production losses attributed to vari-
ous diseases could exceed approximately 30% [4]. Furthermore, 
diseases affecting the foliage may spread onto the fruit surface, 
resulting in fruit deformities and thereby exerting a deleterious 
impact on economic value.

In response to these challenges, several artificial intelligence 
and machine vision-based approaches have been deployed to 
address the detection and analysis of tomato plant diseases [5]. 
Since early symptoms of certain plant diseases manifest on 
leaves, the utilization of diverse algorithms for leaf-based 
assessment and identification proves to be a more efficient 
tool of inferring the plant’s health status [6]. A dataset known 
as Plant Village, comprising dozens of tomato diseases, has 

been established and used to evaluate various benchmark con-
volutional neural networks (CNNs) [7]. For the characterization 
of leaf diseases, plenty of classification algorithms such as LeNet 
[8] and ResNet [9] have been implemented and achieved out-
standing scores in accuracy. However, the practical intricacies 
of tomato cultivation in the real world introduce a heightened 
level of complexity. Dynamic fluctuations stemming from fac-
tors such as lighting conditions, plant density, and the compli-
cated leaf growth have been demonstrated to pose challenges 
to the effectiveness of such algorithms in real-world applications 
[10]. To validate these algorithms with the authentic conditions 
of tomato growth, Singh et al. [11] embarked on the collection 
of leaf images from agricultural environments. This endeavor 
led to the creation of the PlantDoc dataset, which includes a 
wide variety of 13 different plant species. Based on this data-
set, several state-of-art detection algorithms were tested and 
attained a modest score of 0.37 (mAP).

In real-world scenarios involving leaf analysis, detection 
algorithms demonstrate more complexity than disease clas-
sification algorithms. These networks play a multifunctional 
role that transcends simple object categorization, encompass-
ing the crucial task of providing spatial location information 
of the targets [12]. Presently, the detection networks can be 
broadly categorized into two primary categories: region-based 
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two-stage convolutional neural networks (RCNNs) [13] and 
one-stage networks represented by the YOLO series [14]. Notably, 
the performances of YOLO series are primarily due to their 
lightweight architecture, making them exceptionally well suited 
for deployment in the applications. The YOLO networks typi-
cally comprise feature extraction backbones and specialized 
heads for diverse target tasks. By leveraging an end-to-end 
training paradigm, they effectively streamline parameter com-
plexity and have the capability to concurrently predict both 
the position and category of target objects. Through refine-
ments applied to the backbone, attention mechanisms, and 
loss functions, the YOLO series algorithms have demonstrated 
their capability to achieve precise detection of small disease 
regions on tomato leaves. For example, Wang refined the 
YOLOv3 network with MobileNetv2 [15], while Tang and col-
laborators introduced PLPNet [16], a solution module adept 
at mitigating soil-related interference. These research findings 
underscored the practicality of employing YOLO networks 
for tomato leaf detection. Nevertheless, they offer limited 
insight into the performance of detection algorithms under 
real-world conditions. The efficacy of visual models is contin-
gent upon a complex interplay of factors, encompassing model 
architecture, fine-tuning of hyperparameters, and deployment 
strategies [17]. While disparities in model architecture are 
readily observable, critical technical intricacies associated 
with hyperparameter configuration and deployment strategies 
are often undisclosed, making hard for others to replicate 
results on customized datasets.

Within the realm of tomato production monitoring, the fast 
and accurate quantification of tomato yields stands as a pivotal 
yet unresolved challenge [18]. Conventional visual detection 
methods heavily rely on color variations to perform threshold-
based tomato segmentation and subsequent counting. For 
instance, manually crafted features such as color-based thresh-
olding methods were commonly employed to delineate tomato 
regions. These methodologies exhibit limitations, particularly 
in scenarios marked by fluctuating environmental lighting con-
ditions, resulting in substantial omission errors [19]. Recent 
deep learning-based detection approaches, which capitalize on 
robust high-dimensional features, have been successfully per-
formed in the counting task targeted at apples and tomatoes 
[20]. These methods excel in the segmentation and counting 
of individual fruits within single images. Their capabilities 
fall short when confronted with the task of aggregating yield 
statistics across the entire planting areas. In greenhouse envi-
ronments, tomatoes are typically cultivated in rows, and the 
utilization of video scanning presents a straightforward and 
rapid approach for fruit data acquisition. Nevertheless, accu-
rately counting fruits from dynamic video footage remains a 
major technical challenge. Inspired by the simple online and 
real-time tracking (SORT) technique succussed in the video 
processing, several researchers have conducted the application 
of the Kalman filtering algorithm for fruit counting tasks [2,3]. 
Nonetheless, owing to a multitude of factors including the 
capability of base models, leaf occlusion, and computational 
resource constraints, current algorithms are still unable to 
achieve superior performance in the task of counting tomatoes 
based on video stream method.

In the domain of leaf disease detection and fruit tracking 
and counting, we introduce an algorithm that could integrate 
both functionalities simultaneously in this study. Speci
fically, for the detection of tomato leaf diseases, we employ 

a fixed-point static method to acquire high-resolution leaf 
images, subsequently performing categorization using a detec-
tor. For tomato fruit detection and counting, a high-speed 
inspection approach, employing mounted cameras, is deployed 
to facilitate the mass scanning of tomato plants. Based on the 
shared feature extraction model, the improved SORT method 
will be employed to accomplish tracking and counting within 
each frame of the video. The key contributions are summarized 
as follows: (a) We built an RGB image dataset featuring tomato 
disease-infected leaves and fruits. All the images were captured 
within an authentic greenhouse environment. (b) A new type 
of YOLO series network named YOLO-TGI was introduced 
for tomato growth inspection, with the specific Ghost module 
and convolutional block attention module (CBAM) designed for 
addressing leaf occlusion during fruit detection. (c) Furthermore, 
a unified framework integrating detection and tracking algo-
rithms was developed for the task of tomato fruit tracking 
and counting, as well as testing their practical applicability in 
real-world scenarios.

Materials and Methods

Field data collection and preprocessing
The images of tomato leaves and fruits were captured in the 
intelligent greenhouse facilities of Jiangsu Agricultural Science 
Academy in 2023. The tomato plants were nourished using a 
blend of cocopeat and an advanced nutrient fertilization sys-
tem. An autonomous mobile platform was employed, outfitted 
with a commercial high-resolution smartphone camera (iPhone 
12 Pro) mounted on a specialized bracket for data acquisi-
tion, capturing images at an original resolution of 3,024 × 
4,032 pixels (Fig. 1A). Annotation of these images was facili-
tated using the Roboflow platform (Fig. 1B) [21]. The dataset 
(https://universe.roboflow.com/jaas/leaf-and-tomato) encom-
passes leaf diseases such as the bacteria spot disease, mosaic 
virus, late blight, and spider mold leaves. The detection targets 
within the dataset were categorized into unhealthy leaf, healthy 
leaf, and tomato fruit (Fig. 1C). Utilizing the ImgAug plugin 
[22], we augmented the annotated dataset via rotations, reflec-
tions, and translations, and subsequently resized the images to 
640 × 640 pixels. Annotation structures were converted into 
both COCO and YOLO formats. The final dataset comprises 
5,280 training images, 1,320 validation images, and 660 test 
images. To avoid the potential data leakage, the training, vali-
dation, and test datasets were stored in the different folders. 
Throughout the experimentation phase, the yaml file was 
utilized for data retrieval, guaranteeing the complete invisibil-
ity of test data during the model training process. Additionally, 
video stream of tomatoes was amassed for fruit counting tasks, 
with manual annotations serving as ground truth against algo-
rithmic predictions. The detailed image acquisition works were 
summarized in the Supplementary Materials.

Development of the detection and tracking pipeline
In our detection framework, we considered YOLO-v8, YOLOX 
[23], and NanoDet-Plus [24] as candidate detectors, while Byte-
Track [25], Motpy [26], and FairMot [27] were implemented 
as candidate trackers. The primary role of the detection net-
works lies in identifying the leaf health status and the fruit 
bounding boxes, whereas the tracking networks facilitate the 
continuous detection by updating the fruit’s position within 
video sequences. Contemporary detection models frequently 
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draw upon their specific intricate architectures to augment net-
work performance. For instance, YOLOX introduced anchor-
free design to replace the anchor-based part, which is the 
essential part of YOLO series, leveraging the efficiencies of 
feature proposal networks and focal loss algorithms to enhance 
feature detection. Similarly, YOLO-v8 adopted the anchor-free 
approach, introducing a method centered around a center-based 
paradigm. Conversely, NanoDet employs the ShuffleNet-v2 archi-
tecture as its backbone, striking an optimal balance between 
model speed and accuracy. To harmonize detection precision 
and processing speed, we instituted specific improvements to 
the backbone of YOLO-v8. Details were described as follows.

1. Replacing ordinary convolutional layers with Ghost mod-
ules. Drawing inspiration from GhostNet [28], we incorporated 
the deep Ghost module (yellow block in Fig. 2A) into the 
YOLO-v8 architecture to reduce network size and computational 
overhead. As shown in Fig. 2B, the Ghost module (the yellow 
block) initiates with 1 × 1 primary convolutions (Primary-Conv) 
to compress feature channels and subsequently employs a cheap 
operation for layered convolutions, yielding an increased num-
ber of feature maps. The cheap operation in Ghost module 
primarily relies on linear transformations, enabling the pro-
duction of additional feature maps (also named as “ghost fea-
tures”) through elementary computations. This improvement 
of cheap computation allows the Ghost module to markedly 
reduce both the computational load and the number of param-
eters in the model. Leveraging the Ghost module to generate 
an equivalent number of feature maps as a conventional con-
volutional layer, we seamlessly removed the convolutional 
layers and integrated the depth-wise separable convolution 

(DW-Conv) into the existing neural network framework 
(Fig. 2A), thereby diminishing computational burdens [29]. 
Furthermore, the classic structures of C2f module and spatial 
pyramid pooling fast (SPPF) module were kept in the estab-
lishment of YOLO-TGI network. The C2f module is kept in 
enhancing gradient flow and feature utilization efficiency dur-
ing the network backpropagation, while the SPPF module is 
employed for the extraction and integration of features across 
different scales.

2. Addressing leaf occlusion issues. Traditional detection 
algorithms grapple with the challenge of leaves obstructing 
fruits, primarily attributed to the sensitivity of nonmaximum 
suppression (NMS) thresholds, leading to missed detections. 
Our devised CBAM amplifies the network’s capacity to discern 
fruits concealed by leaves. CBAM module primarily operates 
on two mechanisms: spatial attention and channel attention, 
which allow it to adaptively focus on the main parts of an image, 
thereby enhancing the model’s representational capability [30]. 
As shown in Fig. 2C (the green block), the feature map F with 
dimensions H × W × C undergoes separate processes of global 
max pooling (MaxPool) and global average pooling (AvgPool) 
along its width and height, respectively, yielding two feature 
maps of dimension 1 × 1 × C. These condensed feature maps 
are then each fed into a shared two-layer neural network, which 
is also named as shared multilayer perceptron (MLP). After 
MLP processing, the features are combined via element-wise 
addition, followed by a sigmoid activation to yield the channel 
attention feature (Channel Attention). The final step involves 
an element-wise multiplication with the original input feature 
map F, furnishing the requisite input features for the Spatial 

A B C

Fig. 1. The image acquisition process in a tomato field. (A) Image acquisition system. An autonomous platform is utilized for capturing images and video scan of tomato plants. 
(B) Representative examples of labeled images. This dataset is annotated through the Roboflow platform. (C) Categories of the dataset. Instances of unhealthy leaves, healthy 
leaves, and tomato fruits are showcased within the dataset.
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attention module. The integration of the CBAM module endows 
the YOLO-TGI network with the capability to autonomously 
focus on and amplify pertinent features. This attention-driven 
approach refines the network’s ability to discern and prioritize 
crucial aspects of the target, even in complex visual environments 

with obstructions. Specifically, the adaptive mechanism enables 
the YOLO-TGI to highlight key characteristics of partially 
obscured objects, thereby effectively addressing the issue of 
fruit detection in scenarios where fruits are partially concealed 
by leaves.
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Fig. 2. The architecture of YOLO-TGI network. (A) Backbone of YOLO-TGI. (B) Ghost modules. (C) CBAM modules. (D) Head of YOLO-TGI. The yellow blocks represent the 
utilization of Ghost modules for replacement, while the green blocks denote CBAM modules. Details of the internal computations for these newly added network modules 
are showcased in the top right corner. The blue blocks denote the features of Ghost modules that will be concatenated for the next processing module. The aim of the three 
detecting blocks is to extract features of various scales to enhance the model’s robustness.
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Current outperforming multi-object tracking (MOT) meth-
ods applied tracking by detection paradigm, which consisted 
of two pivotal functionalities: object detection and re-identifi-
cation (Re-ID). The base detector was employed to precisely 
discern the location of targets within each individual frame, 
whereas the Re-ID process establishes intricate associations 
between current targets and their antecedent counterparts in 
prior frames. As shown in Fig. 3, the tracking modules incor-
porated in our work were formatted in modular design, pre-
dominantly comprising the Hungarian matching algorithm, 
Kalman filters, and track management for state updates [31]. 
The Hungarian matching algorithm meticulously resolves issues 
of cascaded matching across consecutive frames, while Kalman 
filters proffer predictive insights into the anticipated positions 
and velocities of the targets. Within this paradigm, both Motpy 
and Byte-Track networks utilize intersection over union (IOU) 
between detected and Kalman-predicted bounding boxes as a 
cost function, ensuring the seamless continuity of targets across 
frames. In the case of Motpy shown in Fig. 3A, successful 
matches culminate in the update of the extant track IDs. 
Conversely, failed matches necessitate the instantiation of a new 
track ID, followed by its initialization within the Kalman filter 
module. FairMot, which is shown in Fig. 3B, meticulously 
tracks changes in the trajectory of point positions, employing 
Kalman filters to predict the future locales of each point, and 

leveraging distance functions, such as the Euclidean distance, 
for alignment judgments. An inertia counter quantifies the 
frequency of matches for each point position on the detected 
object, with pre-established upper and lower thresholds dictat-
ing the decision to maintain or dissolve prolonged associations 
with the tracking entity. Byte-Track shown in Fig. 3C intro-
duces a suite of enhancements, primarily through the categori-
zation of detection boxes into groups of high and low confidence. 
High-confidence detection boxes are seamlessly integrated into 
the trajectories, while the strategic association between low-
confidence detection boxes and unmatched tracking entities 
mitigates the challenges posed by missed detections.

To enhance the accessibility and streamline the utilization 
of both the detector and tracker, we have meticulously exported 
all varieties of trained detector models into the open neural 
network exchange (ONNX) format [32]. By applying ONNX 
format, various trained models from different frameworks or 
tools can be easily moved for further purposes. Currently, we 
have built the pertinent initiation files for each tracker to realize 
a seamless integration. The fine-tuning of various parameters 
is adeptly handled through configuration files (in json format), 
allowing for nimble modifications. The complexity of the 
YOLOX, NanoDet, and YOLO-TGI detectors can also be 
adjusted through config files (currently support nano N, small 
S, and medium M). Detailed insights into the dataset and code 

A B

C

Fig. 3. The implementation mechanism of trackers. Internal computational logic of the (A) Motpy tracker, (B) the FairMot tracker, and (C) the Byte-Track.
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can be reached from the repository (https://github.com/RuiKangnj/
TGI/tree/main).

Evaluation metrics
To evaluate the performances of our detection models, metrics 
such as the floating point operations per second (FLOPs), mAP, 
parameters (M), and the inference speed (ms) were employed 
[33]. As shown in Eq. 1, p denotes the precision value and r 
denotes the recall value. For multi-class classification tasks, the 
AP of each class and then take the average calculation to obtain 
the final mAP (Eq. 2). For base detectors, we tested their respec-
tive performances using the image dataset. However, for the 
tracking models, we used videos for fruit counting evaluation. 
These videos were taken by scanning the tomato planting site 
with a smartphone, containing a varying number of tomato 
fruits. The counting results of the test videos were compared 
to manual counting results by employing the coefficient of 
determination (R2; following Eq. 3) and root mean square error 
(RMSE; following Eq. 4). The proposed detection models 
were trained on a server running the Ubuntu operating sys-
tem utilizing the A100 graphics processing unit (GPU, NVIDIA, 
40 GB memory), PyTorch 1.12, and CUDA 10.2. The train-
ing process incorporated an adaptive adjustment of learning 
rates using an stochastic gradient descent (SGD) strategy 
complemented by momentum, and featured functionalities for 
automatic weight saving and early stopping. The specific details 
were also provided in the code. We obtained the models’ 
FLOPs and Params through relevant interfaces, while the mAP 
was calculated based on the independent test set. The inference 
speed of the models is jointly determined by the network’s com-
plexity, hardware, and the resolution of the processing images. As 
such, we utilized a Mac notebook with M1 CPU, 16 GB mem-
ory, and PyTorch 1.13 to conduct the tracking assessments.

Results and Discussion

Performance of base detectors
The evaluation of detection accuracy for the YOLOX, NanoDet, 
and YOLO-TGI algorithms was conducted on the test data-
set. Confidence distributions for categories of unhealthy 
leaf, healthy leaf, and tomato were represented through violin 
plots (Fig. 4). It was observed that an augmentation in the com-
plexity of the network tends to be associated with an enhance-
ment in detection accuracy across the detectors examined. 

Particularly, YOLOX-M was seen to achieve the optimal con-
fidence distribution, with a predominant concentration of 
leaf detection confidence scores situated around 0.9, and those 
for tomato detections lying in the range of 0.6 to 0.9. In contrast, 
YOLOX-N was found to exhibit the most inferior confidence 
distribution, characterized by a variability of scores from 0.2 
to 0.7. This suboptimal performance was likely attributable to 
its employment of a more lightweight network structure, 
which was speculated to lead to a drastic reduction in detection 
capabilities. NanoDet and YOLO-TGI were observed to display 
nearly analogous trends in confidence distribution, with both 
detectors producing confidence scores above 0.4. It merits 
emphasis that a greater robustness in detection outcomes for 
both healthy and unhealthy leaves was demonstrated by 
NanoDet and YOLO-TGI, compared to the tomato detec-
tions, which presented a bimodal distribution of confidence 
scores. For some base detection models, the values at the top 
of the violin plots were observed to slightly exceed 1.0. This is 
due to the confidence prediction values of these models being 
tightly clustered and close to 1 when applying kernel functions 
for data visualization. The confidence distribution in the violin 
plots is beneficial for us to visually understand the perfor-
mance of various detectors on different classes of targets, and 
it also assists in selecting more suitable threshold values for 
actual classification.

To further elucidate the performance characteristics of the 
detectors, a comprehensive summary of the data has been col-
lated in Table 1. It was noted that YOLOX, within its N and S 
scale network architectures, operates at a resolution of 416 × 
416, while NanoDet utilizes a resolution of 320 × 320 at the S 
scale, with the remaining detectors functioning at a resolution 
of 640 × 640. Generally, higher-resolution inputs are associated 
with the capture of more detailed image information, which 
typically translates to increased detection precision; however, 
this is often at the expense of reduced inference speed and a 
reliance on more substantial computational resources. Each 
detection model demonstrated distinct advantages within vary-
ing attributes. For instance, the YOLOX model achieved the 
fastest inference speed at 32.35 ms and the highest mAP of 0.85. 
NanoDet, on the other hand, boasted the smallest model size 
with parameters tallying to 1.16 M, whereas YOLO-TGI had 
the lowest number of FLOPs at 2.05 and checkpoint weights 
amounting to 3.7 M.

Furthermore, the efficacy of different detectors was tested 
on the task of identifying four categories of leaf diseases. 
Their specific inference results are shown in Fig. 5. The colors 
red, green, and yellow denote tomatoes, healthy leaves, and 
unhealthy leaves, respectively. In the case of bacterial spot 
detection, both YOLOX-S and NanoDet-S models exhibited 
omission errors, while the YOLO-TGI-S model demonstrated 
heightened sensitivity to small regions, all of which were indi-
cated by yellow arrows in the imagery. Notably, the YOLOX-S 
model was prone to marked misidentification during the 
detection of leaves with yellow virus, mistakenly classifying 
unhealthy leaves as healthy (labeled in yellow arrows). The 
NanoDet-S model tended to overlook tomatoes, suggesting 
a lack of sensitivity to tomatoes obscured by foliage (labeled 
in red arrows). The YOLO-TGI-S model, augmented with 
the CBAM module, showed excessive sensitivity. For instance, 
leaves designated as background in the case of purple leaf dis-
ease were erroneously assessed. After further inspection of the 
incorrectly detected cases (labeled in arrows in different colors), 
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most false detections were subjected to complexities such as 
blurring, partial concealment of lesions, and stem infections in 
the field, leading to indeterminate or ambiguous target regions. 
These instances were more prevalent among healthy leaves, 

where detectors failed to draw rectangles on many small healthy 
leaves, since these were often trained as background in the 
original dataset. However, the detection of unhealthy leaves 
was notably precise, owing to the abundant annotations for 
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Fig. 4. The confidence distribution trends of various base models across multiple classes at scales N, S, and M. In this context, a model with better performance should exhibit 
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Table 1. The summary of inference results of various base detectors

Base detection 
models Resolution Backbone FLOPs (G) Param (M)

Checkpoint 
weights (M) mAP

Inference speed 
(M1-CPU) (ms)

YOLOX-N 416 × 416 C2f 4.93 2.24 9.00 0.50 32.35

YOLOX-S 416 × 416 C2f 6.44 5.03 20.20 0.68 38.34

YOLOX-M 640 × 640 C2f 26.76 8.94 35.80 0.85 99.3

NanoDet-N 640 × 640 ShuffleNet-v2-1.0x 18.40 1.16 5.50 0.78 166.08

NanoDet-S 320 × 320 ShuffleNet-v2-1.5x 8.95 2.43 10.60 0.81 72.3

NanoDet-M 640 × 640 ShuffleNet-v2-1.5x 35.8 2.44 10.60 0.83 245.40

YOLO-TGI-N 640 × 640 GhostNet 2.05 1.59 3.70 0.72 54.20

YOLO-TGI-S 640 × 640 GhostNet 6.08 5.43 21.90 0.83 88.20

YOLO-TGI-M 640 × 640 GhostNet 12.3 11.6 46.80 0.83 143.00
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such samples in the dataset. Hence, the imbalance in sample 
quantity had a slight potential impact on the results, an effect 
that was challenging to mitigate in real-world scenarios due to 
the prevalence of fragmented leaves throughout the growth of 
tomatoes.

Fruit counting results of the tomato  
tracker scanning
To track the regions of tomato fruits within video streams, we 
adopted a cascading approach that integrates detectors with 
trackers. Representative tracking scenarios are depicted in 
Fig. 6, where the regions of tomatoes were delineated with 
red bounding boxes, and their motion trajectories were plot-
ted based on the coordinates of the box centers. Video demon-
strations showcasing the performance of three categories of 
detectors on tomato detection can be reached via the link 
of the code repository. While the tracking algorithms were 
capable of continuous tracking for most of tomato regions, 
instances of missed and erroneous detections were still evi-
dent. The detection images on the left side of Fig. 6 illustrated 
some of these occurrences. For tomatoes unobscured by foli-
age, all types of detection trackers were successful in recogniz-
ing and following the tomato regions. However, in some results, 
leaves afflicted with disease such as purple leaves of yellow 

bacteria exhibited textural characteristics similar to those of 
unripe tomatoes (fruits with yellow or black color). This issue 
often exacerbated in video streams of low resolution. Another 
interesting observation was the inadvertent enhancement of 
recognizability by specular reflections on the fruit surfaces, 
which presented a distinguishable gloss signal not replicable 
by either healthy or diseased leaves.

To illustrate the impact of scale on detection, we modeled 
the total count predictions generated by the tracking algorithms 
against the ground truth, with the regression comparison 
results of Byte-Track, Motpy, and FairMot displayed on the 
right side of Fig. 6. The combination of YOLO-TGI-S with Byte-
Track manifested the highest coefficient of determination R2 at 
0.93 and the lowest RMSE at 9.17, while NanoDet-S coupled 
with FairMot yielded the lowest R2 at 0.34 and the highest 
RMSE at 28.54. Within the same tracking framework, both 
YOLO-TGI-S and YOLOX-S markedly outperformed the 
NanoDet-S model. In Fig. 6, scatterplot trends revealed mini-
mal variance among models for test videos with a lower total 
count of tomatoes. However, as the tomato count numbers 
increased, a substantial deviation between predicted values and 
ground truth emerged, indicating the potential for compounded 
errors in tracking tasks. Besides, interference from the back-
ground and foliage was identified as the primary contributor 

Fig. 5.  Inference results of various base detection models in leaf disease and tomato fruit detection tasks. The yellow rectangular boxes indicated unhealthy leaves, green 
rectangular boxes represented healthy leaves, and red rectangular boxes denoted the tomato fruit area. The performance of the network was characterized by rectangular 
boxes accurately encompassing the specific target pixel areas.
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to these discrepancies. As depicted in Fig. 6 (case 1), in the 
Framet−10 image, some tomatoes were occluded by leaves and 
therefore not classified by the detector (labeled in yellow dashed 
bounding box). Yet, at Framet+10, as the camera moved, these 
regions were detected and marked, leading to an inflated count. 
Conversely, certain tomato regions fully visible in Framet−10 
became partially or completely obscured due to camera movement 
and changing angles of capture, resulting in a reduced count 
(shown in case 2 in yellow dashed bounding box). To mitigate 
such ID-switching scenarios, we incorporated an ID-filtering strat-
egy based on virtual boundary ranges, indicated by the yellow 
lines in the imagery, which enforces counting only when tomato 
IDs enter this designated area.

Table 2 reports the performance outcomes achieved through 
the integration of various classifiers with trackers. The combination 

of YOLO-TGI-S and Byte-Track was reported to have attained 
the optimal R2 value of 0.93 and the minimum RMSE of 9.17, 
while the YOLOX-N and Motpy ensemble exhibited the most 
rapid inference time, recorded at 49.8 ms. In terms of tracker 
performance, FairMot was observed to be suboptimal, with the 
YOLOX-N–FairMot pairing yielding the lowest R2 of 0.32 and 
an RMSE of 29.13, and the YOLO-TGI-M–FairMot combina-
tion obtaining an R2 of 0.69 and an RMSE of 19.48. The capabil-
ity of FairMot to support the task of tomato detection and 
tracking was suggested to be inadequate, with Byte-Track being 
better suited for integration with YOLO-TGI, and Motpy more 
compatible with YOLOX-N. The inference time served as a 
critical metric for objective detection models, signifying the 
alacrity with which detections were made, a factor of quintes-
sential importance for real-time applications. It was noted that 

Fig. 6. Scattering plot of predictions and ground truth for various detector-trackers and instances of tracking failures. A good tracker should exhibit the highest R2 value and 
the lowest RMSE. The tracking failure cases were primarily characterized by the inability to continuously track a specific target during video frame transitions.
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the N and M scale models of YOLOX achieved the fastest 
and slowest detection speeds at 49.8 and 308.1 ms, respec-
tively, indicating that network architecture selection must be 
meticulously considered during application deployment. At 
the S and M scales, the YOLO-TGI–Byte-Track combination 
was found to have a substantial advantage in terms of opera-
tional speed while preserving high accuracy, being nearly 
twice as fast as YOLOX and about 2.5 times faster than 
NanoDet. Paradoxically, an increase in network scale from 
N to M was accompanied by a decrease in the precision of 
YOLO-TGI detections. Further investigation attributed this 
situation to the incorporation of the CBAM network, which 
resulted in a greater number of fragmented regions being 
incorrectly identified as tomato fruit regions, which were 
originated from the background and not annotated in the 
manual labeling process.

In conclusion, the highest detection accuracy was mani-
fested by the YOLO-TGI-S–Byte-Track configuration, with 
R2 and RMSE values reported at 0.93 and 9.17, respectively.

Discussion
The monitoring of plant growth conditions in production envi-
ronments is a challenging endeavor, compounded by the vari-
able nature of disease patterns, intricate background contexts, 
and complex lighting conditions. This study unveils a novel 
resource: a comprehensive, annotated database of tomato leaves 
and fruits designed for real-world scenarios. The database cap-
tures the dynamic postures of growing tomato plants, encom-
passing a variety of diseases, and features diverse backgrounds 
that facilitate the training of deep learning algorithms tailored 
for in-field application. Presently, there are only two extensive 
annotated datasets for tomato leaf images: Leaf Village and Plant 
Doctor. The dataset we have constructed serves a distinct pur-
pose from these two. Its primary advantage lies in its focus on 
the health status of tomato leaves throughout the growth cycle 
and the potential fruit yield. Leaf Village predominantly consists 
of images of individual leaves from various plant species. 
Numerous studies have pointed out that the homogeneous 
backgrounds in these data do not favor the training of robust 
models [34]. While Plant Doctor does offer some data from 
real-life settings, the lack of a large-scale, proprietary cultivation 
greenhouse means that many of its images are randomly sourced 
from the internet, failing to reflect authentic contexts, thereby 
limiting its utility in constructing detection models for field 
applications. Our detection results also demonstrated the poten-
tial value of this large and diverse dataset, particularly in the 
training of robust detection networks. The veracity of the dataset 
in depicting real agricultural settings enhances its relevance and 
applicability for developing algorithms aimed at real-time, in-
field monitoring and disease detection in tomato plants.

In the domain of deploying machine learning models in 
real-world scenarios, the increasing complexity of network 
architectures presents substantial obstacles for implementa-
tion on farms. To evaluate the adaptability of various detec-
tion and tracking models during deployment comprehensively, 
we have synthesized a full analysis in Fig. 7. In this radar 
chart, each vertex represents a performance metric, and nine 
different colors denote distinct detection and tracking com-
binations that have achieved their respective optimal perfor-
mances. We report on five metrics: detection score, tracking 
score, FLOP score, checkpoint weights score, and speed. The 
ideal network would occupy the entire pentagon, signifying 
optimal detection accuracy, tracking precision, and speed, 
with minimal checkpoint weights and FLOPs. The YOLOX-N–
Byte-Track combination boasts the fastest detection speed 
but falls short in detection accuracy. NanoDet, designed spe-
cifically for mobile devices, is resource-efficient but lags in 
tracking precision and is among the slower networks. The 
YOLO-TGI series, incorporating CBAM for attentional mecha-
nisms, leads in tracking scores, while its use of Ghost modules 
reduces the network’s parameter count, placing it at a moderate 
level in terms of checkpoint weights and FLOPs. Overall, the 
YOLO-TGI-S–Byte-Track network scores highly on most ver-
tices and maintains an average score in calibration. Therefore, 
it emerges as a formidable contender for applications requiring 
high-speed and high-accuracy operations.

Conclusion

Monitoring diseases and counting fruits are pivotal tasks in the 
cultivation of tomatoes, traditionally relying on labor-intensive 

Table 2. The inference results on real video streams of tomato 
fruits of different detector-tracker combinations

Tracker R2 RMSE
Inference 

speed (ms)

YOLOX-N Byte-Track 0.84 13.88 56.9

Motpy 0.77 16.91 49.8

FairMot 0.32 29.13 61.3

YOLOX-S Byte-Track 0.86 13.3 192.6

Motpy 0.89 11.64 209.6

FairMot 0.51 24.59 201.3

YOLOX-M Byte-Track 0.84 13.96 283.6

Motpy 0.90 11.23 303.8

FairMot 0.49 25.26 308.1

NanoDet-N Byte-Track 0.78 16.58 267.9

Motpy 0.86 13.87 270.6

FairMot 0.57 23.03 276.4

NanoDet-S Byte-Track 0.63 21.36 249.2

Motpy 0.69 19.55 248.6

FairMot 0.34 28.54 249.6

NanoDet-M Byte-Track 0.89 11.79 269.0

Motpy 0.85 13.82 268.6

FairMot 0.65 20.82 282.4

YOLO-TGI-N Byte-Track 0.90 11.32 115.7

Motpy 0.88 12.38 103.0

FairMot 0.63 21.55 110.2

YOLO-TGI-S Byte-Track 0.93 9.17 118.2

Motpy 0.87 12.77 107.0

FairMot 0.64 21.25 111.8

YOLO-TGI-M Byte-Track 0.86 13.29 121.0

Motpy 0.84 14.06 106.7

FairMot 0.69 19.48 112.9
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manual visual inspections. Our research introduces a novel 
paradigm with the development of a lightweight detection and 
tracking model that offers a potential solution to these chal-
lenges. Utilizing mobile field-operating devices allows for the 
rapid acquisition of extensive data on tomato growth processes. 
The proposed YOLO-TGI series detection and tracking meth-
odology facilitates prompt diagnosis of infections and quantita-
tive yield estimation, providing invaluable tools for farmers and 
greenhouse managers. Throughout our research, we incorpo-
rated the CBAM module to address issues such as leaf occlusion 
and motion blur, while generally adopting Ghost modules to 
reduce the model’s parameters, thus achieving a more light-
weight design. We have re-engineered the interfaces of various 
detection and tracking models to allow for the seamless integra-
tion of the most advanced networks within a unified frame-
work. This integration paves the way for selecting optimal 
models tailored to the specific requirements of tomato growth 
monitoring tasks. Based on multiple technical enhancements 
to lightweight detection and tracking networks, continuous 
and quantitative monitoring of the growth state of tomatoes 
in cultivation fields were enabled. Notably, with retraining, 
this model has the potential to be extended to a broad spectrum 
of similar monitoring tasks for widely cultivated fruits and veg-
etables such as apples, oranges, grapes, and strawberries, under-
scoring its versatility and broad applicability.
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