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Rice lodging, a phenomenon precipitated by environmental factors or crop characteristics, presents 
a substantial challenge in agricultural production, notably impacting yield prediction and disaster 
assessment. Despite that the application of conventional methodologies like visual assessment, 
mathematical models, and satellite remote sensing technologies has been employed in the segmentation 
of crop lodging, these approaches are still constrained in precision, immediacy, and capacity for large-scale 
evaluation. This study introduces an innovative convolutional neural network architecture, AFOA + APOM + 
UConvNeXt, that integrates intelligent optimization algorithms for automatic selection of optimal network 
parameters, thereby enhancing the accuracy and efficiency of crop lodging segmentation. The proposed 
model, empirically validated, outperforms recent state-of-the-art models in crop lodging segmentation, 
demonstrating higher accuracy, lower computational resource requirements, and greater efficiency, thereby 
markedly reducing the cost of segmentation. In addition, we investigated the segmentation on half lodging 
rice, and the results indicate that the model exhibits commendable performance on the half lodging dataset. 
This outcome holds significant implications for the prediction of rice lodging trends. The fusion of deep 
learning with intelligent optimization algorithms in this study offers a new effective tool for crop lodging 
monitoring in agricultural production, providing strong technical support for accurate crop phenotypic 
information extraction, and is expected to play a significant role in agricultural production practices.

Introduction

Crop lodging is a common phenomenon in agricultural produc-
tion. Lodging refers to the inability of crops to stand upright due 
to various external factors such as wind, rain, pest infestation, 
or improper agricultural management, or due to genetic or trait 
expressions of the crops themselves, leading to lean or fall over 
in the field [1]. This phenomenon occurs in many crops, 
including wheat, rice, corn, and barley. The impact of crop lodg-
ing on agricultural production is multifaceted [2]. On the one 
hand, lodging directly affects crop yield. Lodging during the crop 
growth stage causes overlapping of leaves, increases crop density, 
and reduces the leaf area exposed to sunlight, thereby affecting the 
efficiency of photosynthesis [3]. Additionally, lodging causes the 
leaves and fruits of crops to come into contact with the ground, 
increasing the risk of pest infestation. Lodging during the harvest 
stage significantly increases the difficulty of harvesting [4], espe-
cially for grains, where lodging can lead to a substantial increase 
in grain loss. Therefore, harvesting must be done carefully, which 
in turn increases labor and time costs to some extent. The causes 
of crop lodging in agricultural production are diverse. Among 
them, climatic factors are one of the main reasons. Strong winds, 
heavy rains, and hail can all lead to crop lodging. Moreover, soil 
conditions, fertilization and irrigation management, pest infes-
tation, and improper operation of agricultural machinery can 

also cause lodging [5]. To prevent and reduce crop lodging, 
farmers and agricultural researchers have taken various mea-
sures, such as selecting lodging-resistant varieties, applying 
fertilizers and irrigation reasonably, timely pest control, and 
proper use of agricultural machinery. However, these measures 
cannot completely avoid the occurrence of lodging. Therefore, 
monitoring and predicting crop lodging situations is of great 
significance. Timely acquisition of crop lodging information 
can guide farmers or agricultural machinery operators to carry 
out targeted remedial measures, such as using appropriate 
fertilization, irrigation, and operational conditions to reduce 
the adverse impact of lodging on agricultural production. 
Moreover, timely acquisition of lodging information provides 
valuable data for agricultural researchers, helping them better 
understand the causes and mechanisms of crop lodging, and 
thereby develop more effective prevention and management 
measures.

Traditional methodologies for acquiring information on 
crop lodging are characterized by their labor-intensive nature, 
inefficiency, and poor timeliness, severely constrained by geo-
graphical, meteorological, and various external factors. These 
limitations render them inadequate for meeting practical 
demands. With the advancement of remote sensing technol-
ogy, the application of this technology for monitoring crop 
lodging conditions has emerged as an efficient and effective 
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alternative to conventional manual methods. In the field of 
satellite remote sensing monitoring, Guo et al. [6] explored 
the practicality of Sentinel-1 and Sentinel-2 data in the iden-
tification of crop lodging, achieving an overall accuracy rate 
of 78% for the automatic recognition of crop lodging. However, 
the recognition accuracy still needs to be improved. Qu et al. 
[7] conducted regional-scale monitoring of the severity of corn 
lodging based on time-weighted dynamic time warping of 
multi-temporal Sentinel-1 images, successfully categorizing 
the severity of corn lodging. However, the segmentation per-
formance for local features of crop lodging is poor, mainly 
because crop lodging sometimes occurs only in local areas, 
and the low resolution of satellite remote sensing greatly limits 
the effective capture of local lodging areas. Although satellite 
data offer the advantages of covering large geographical areas 
and providing repeated observations, the observational scale 
of satellite remote sensing data is large, and its spatial resolu-
tion is relatively low, making it challenging to quantify the 
degree of lodging. Additionally, the timeliness of satellite 
observations is poor, and they are susceptible to interference 
from atmospheric cloud cover, often only accurately identify-
ing lodging after it has occurred, thus introducing a certain 
degree of latency. Synthetic aperture radar (SAR) is an active 
remote sensing technology that uses radar waves (usually micro-
waves) to detect surface characteristics. In the field of agriculture, 
particularly in monitoring crop lodging, SAR has shown its 
potential application value. Shu et al. [8] conducted monitoring 
of corn lodging based on multi-temporal SAR data. By analyzing 
the optimal sensitive polarization combination of corn plant 
height before and after lodging, they achieved an overall accu-
racy rate of 67% in grading the severity of corn lodging. SAR 
monitoring of crop lodging has its unique advantages, such as 
the ability to observe under all-weather conditions, but the radar 
scattering characteristics of crops are affected by various factors, 
including the type of crop, growth stage, soil moisture, and the 
structural characteristics of the crops themselves. These variables 
increase the complexity of accurately monitoring crop lodging 
using SAR data. While satellite remote sensing methods are 
effective, their effectiveness in monitoring lodging in small-sized 
crops like wheat and rice still requires improvement. Due to 
limitations in temporal and spatial resolution, satellite remote 
sensing technology cannot acquire lodging information in real 
time and with accuracy. Furthermore, the acquisition of satellite 
images is easily affected by cloud cover, with long access cycles 
and high costs. In recent years, significant progress has been 
made in the monitoring and prediction of crop lodging with the 
development of unmanned aerial vehicle (UAV) remote sensing 
technology and information technology. UAVs can provide high-
resolution, high-timeliness image data, allowing researchers to 
monitor large agricultural areas in real time, enabling farmers 
and researchers to assess crop conditions more accurately 
and detect crop lodging promptly. Shu et al. [9] from China 
Agricultural University have used UAV-based multi-temporal 
digital images to assess the severity of corn lodging. They employed 
two linear regression and three machine learning methods to 
classify maize lodging severity and used a random forest model 
to map the severity of corn lodging in the study area. Although 
the random forest model may perform well within the study 
area, its generalizability (its performance under different areas 
and environmental conditions) remains unknown. The soil types, 
climate conditions, and crop varieties of different geographic 
locations may affect the accuracy and reliability of the model. 

Zhang et al. [10] utilized UAV RGB imagery to improve the 
detection performance of lodging areas in wheat fields. They 
introduced three evaluation indicators—accuracy, potential, and 
stability—and selected three feature adaptive models to fully 
assess the lodging situation of wheat crops. For the evalua-
tion indicators introduced (accuracy, potential, and stability), 
although helpful in fully assessing model performance, their 
accurate measurement and interpretation may be relatively com-
plex, requiring detailed statistical analysis and interpretation, 
greatly limiting the widespread application of this method. 
Li et al. [11] from the Chinese Academy of Sciences proposed a 
UAV-based framework for effectively assessing crop lodging, 
concluding that UAV visible light imagery is more practical for 
field-scale assessment of crop lodging. However, crop lodging is 
not a binary state, and it is a continuous changing process, with 
various degrees from slight to complete lodging. This study has 
certain limitations in identifying these subtle differences in con-
tinuous change. Additionally, by analyzing remote sensing data, 
researchers can also predict the risk of crop lodging, providing 
decision support for farmers. Thus, based on the flexibility and 
timeliness of UAV platforms, the monitoring effectiveness for 
crop lodging shows significant advantages. However, the stud-
ies mentioned above largely rely on traditional approaches or 
machine learning for analyzing UAV remote sensing data, with 
limitations in flexibility, efficiency, and accurately pinpointing 
the locations of crop lodging.

In recent years, with the rapid development of artificial intel-
ligence and deep learning, convolutional neural networks (CNN) 
have shown great potential in extracting information about 
crop lodging. Azizi et al. [12] developed an approach based on 
deep learning to analyze aerial RGB images for wheat lodging 
identification and classification. They employed CNN models 
such as ResNet50 and EfficientNet-B7 to classify wheat lodging 
at individual and over time, achieving improved extraction 
effectiveness with their refined models. Modi et al. [13] evalu-
ated seven state-of-the-art (SOTA) deep learning models for 
the identification of sugarcane lodging. They found that the 
residual blocks and skip connection features of ResNet50 pro-
vided the highest accuracy (98.5%) and the lowest error rate 
(1%). Wang and Xiao [14] proposed a grid-level segmentation 
model tailored for crop lodging scenarios, combining dense 
connections and inception to build a feature extraction net-
work. This approach offered a good balance between parameter 
efficiency, computational efficiency, and acceptable accuracy. 
Song et al. [15] conducted research on identifying the lodging 
status of sunflowers using UAV remote sensing imaging. They 
found that deep learning CNNs outperformed classical support 
vector machines in terms of accuracy for lodging identifica-
tion. Additionally, within semantic segmentation models, an 
improved version of SegNet achieved the best performance in 
terms of accuracy and generalization. However, the current 
practice for determining the number of convolutional kernels 
and other parameters in CNNs still relies heavily on human 
experience or extensive repeated experiments. Researchers try 
different parameter combinations to see which performs best 
on the validation set. Therefore, the parameter choices in many 
of today’s popular CNN architectures are based on extensive 
experimental findings. This method can consume significant 
computational resources and time [16]. With the development 
of intelligent optimization algorithms, such as genetic algo-
rithms, particle swarm optimization, and Bayesian optimiza-
tion, a new approach has emerged: using these algorithms to 
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automate and optimize the structure and parameter selection 
of CNNs. These algorithms can explore more optimal network 
configurations in a shorter time by simulating natural selection 
or other optimization mechanisms. For instance, genetic algo-
rithms optimize network structures by simulating biological 
evolution processes like crossover and mutation [17]. Particle 
swarm optimization, on the other hand, finds optimal solutions 
by mimicking the social behavior of bird flocks or fish schools 
[18]. This research further explores the application of this tech-
nology in the acquisition of crop phenotypic information, 
potentially leading to more efficient and effective tools for 
tasks such as crop lodging segmentation and other agricul-
tural monitoring needs.

Therefore, the purpose of our research is to apply intelligent 
optimization algorithms to optimize deep learning networks, 
specifically for the task of crop lodging segmentation in the 
agricultural field. We propose an innovative CNN architecture 
that integrates intelligent optimization algorithms for the auto-
matic selection of optimal network parameters. This is aimed 
at automating the choice of the best network parameters to 
enhance the accuracy and efficiency of crop lodging segmenta-
tion. Through comparative experiments, we demonstrate the 
superiority of the optimized network in crop lodging segmenta-
tion tasks compared to traditional methods, including higher 
accuracy and lower computational resource requirements. This 
research not only provides a new perspective for parameter 
optimization in deep learning for specific applications but also 
offers an effective technical means for crop phenotypic infor-
mation extraction.

Materials and Methods

Study area
The study area for the research is situated at the rice experi-
mental base of Northeast Agricultural University, located in 
Acheng District, Harbin City, Heilongjiang Province, China. 
The geographic location of the experimental site is shown in 
Fig. 1. This site lies in a region characterized by a continental 
climate influenced by the Asian monsoon, with distinct seasons 
including freezing, dry winters and hot, rainy summers [19]. 

The warm season extends from around May 9 to September 21, 
with average daily high temperatures exceeding 19 °C, and 
the hottest month being July with an average high of 27 °C and 
a low of 16 °C. Conversely, the cold season spans from 
November 27 to February 22, during which the average daily 
high temperature falls below −6 °C [20]. The soil at the experi-
mental base is black soil, as is common in the Harbin area. Black 
soil in this region is known for their high organic carbon con-
tent, with a dark to black soil surface extending to a depth of 
at least 25 cm. These soils are characterized by high-quality 
humus, resulting from a high base saturation of over 50%, and 
a stable aggregate structure [21]. The soil properties in Harbin, 
as indicated by a study, showed a soil organic matter of 26.7 g/kg 
and total nitrogen of a certain value, indicating a fertile ground 
that supports metabolic activity and microbial communities, 
crucial for rice cultivation [22]. The rice variety selected for 
cultivation in this study is the DF159 rice variety, which exhibits 
a suite of agronomic traits that are delineated by its growth 
and morphological characteristics. The developmental timeline 
from germination to maturity spans approximately 128 days, 
necessitating an accumulated temperature of around 2,350 °C 
at or above a base temperature of 10 °C. This cultivar typically 
develops 11 leaves on the main stem, manifesting an elliptic 
grain shape. The plant architecture is characterized by a stature 
reaching approximately 90 cm in height, and bearing panicles 
with a length of around 20 cm. Each panicle comprises about 
150 grains, culminating in a thousand-grain weight of 27.4 g. 
The climate and soil conditions are conducive for rice cultiva-
tion, providing a suitable environment for the growth and devel-
opment of the DF159 rice variety. The well-distributed rainfall 
during the summer months is beneficial for the rice crop, ensur-
ing adequate water supply during the critical growth stages. 
Moreover, the fertile black soil provides essential nutrients and 
a suitable structure for rice root development, which are criti-
cal for achieving optimal growth and yield [23]. The detailed 
characterization of the study area including the climatic 
and soil conditions provides a robust foundation for under-
standing the environmental factors influencing the growth 
and performance of the DF159 in the experimental plots situ-
ated at the Northeast Agricultural University rice experimen-
tal base.

A B C

Fig. 1. The geographic location of the experimental site. (A) Harbin City, Acheng District. (B) Scientific Research Base. (C) Imagery acquisition area.
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Dataset
UAV platform and data acquisition
Our study employed a DJI Matrice 300 RTK UAV platform (SZ 
DJI Technology Co., Shenzhen, China) equipped with a DJI P1 
camera with dimensions of 198 × 166 × 129 mm for capturing 
high-resolution imagery of the rice fields to assess lodging. The 
UAV was launched with a takeoff speed of 10.8 m/s and cruised 
over the trial area at a speed of 1.5 m/s at an altitude of 20 m, 
which provided a ground sample distance (GSD) of 0.55 cm/
pixel. The flight path covered a length of 642 m, encompassing 
13 waypoints and generating 173 images over an area of 11.1 mu 
(0.74 hectares). The flight configuration ensured an 80% over-
lap along both the flight direction and across adjacent flight 
lines, enhancing the spatial continuity and redundancy of the 
acquired imagery, which is crucial for accurate mosaicking 
and analysis. The data acquisition process was carried out 
under clear and cloudless weather conditions, minimizing atmo-
spheric interference and ensuring consistent illumination across 
the study area. The UAV traversed the trial area in a fully auto-
mated flight mode, which was configured using the DJI GS Pro 
software. The built-in real-time kinematic (RTK) of the UAV 
facilitated the acquisition of high-precision position and ori-
entation system (POS) information during image capture, which 
was crucial for accurate georeferencing of the data. The high-
resolution imagery captured by the DJI Zenmuse P1 camera, 
coupled with the precise geolocation data acquired through 
the M300 RTK’s built-in RTK, provided a robust dataset for 
assessing the extent of rice lodging in the study area. Additio-
nally, the data acquisition period spanned from September 1 to 
October 20, during which the rice fields underwent several 
stages of lodging, ranging from mild to severe. As the maturity 
of rice plants increases, some transition from an upright posi-
tion, denoted as no lodging (NL), gradually bending into a half 
lodging state, referred to as half lodging (HL). Ultimately, influ-
enced by factors such as decreased moisture content and cli-
matic conditions, some plants reach a fully lodging state (L). 
To facilitate more precise segmentation of lodging in rice, this 
study proposes the differentiation of crop states into three cat-
egories: NL, HL, and L. The meticulous planning and execution 
of the UAV flights, along with the high-performance specifica-
tions of the UAV and camera, ensured the acquisition of high-
quality data, setting a solid foundation for the subsequent 
analysis and findings of this study.

We utilized the UAV to continuously capture orthophotos 
of rice during the harvest season (from September 1 to October 20) 
on the temporal dimension and to persistently acquire changes 
in crop lodging characteristics (from NL to L) on the spatial 
dimension, as shown in Fig. 2. Given that the process of rice 
lodging unfolds gradually—transitioning from an upright state 
through an HL phase to full lodging—the experimental design 
included a sampling interval of every 6 days. This approach 
ensures that the collected data comprehensively span the entire 
rice harvest period in the temporal dimension and encapsulate 
the entire sequence of rice lodging phases, from NL, through 
HL, to L, in the spatial dimension.

Dataset construction
Ensuring the quality of data annotation is paramount for guar-
anteeing the accuracy of model segmentation. To achieve con-
sistency in the annotation of different categories within the 
images, we utilized DJI Terra (SZ DJI Technology Co., Shenzhen, 
China), an orthomosaic software, for stitching together 173 

images collected by drones. This process yielded eight digital 
orthophotos, which were subsequently annotated using Labelme. 
The categories annotated include background (BG), NL, HL, 
and L. Examples of the digital orthophotos and their corre-
sponding annotations are presented in Fig. S1.

Due to the large size of the digital orthophotos, direct input 
into semantic segmentation models results in insufficient com-
puter memory and GPU (graphics processing unit) memory. 
To address this issue, the study involved segmenting both the 
digital orthophotos and the manually annotated images. This 
segmentation aimed to preserve as much image detail as pos-
sible, enabling the model to learn image features at various 
scales and enhance its adaptability to scale transformations, 
thereby improving the model’s generalization capabilities. The 
digital orthophotos were segmented into sub-images with 
resolutions of 2,048 × 2,048, 1,024 × 1,024, and 512 × 512 pixels. 
Subsequently, images with resolutions of 2,048 × 2,048 and 
1,024 × 1,024 were scaled down to a uniform resolution of 
512 × 512 pixels, resulting in a total of 3,941 image samples 
with a resolution of 512 × 512 pixels, which constituted the rice 
lodging dataset. Examples of this dataset are shown in Fig. S2.

UConvNeXt segmentation model
The Unet-ConvNeXt (UConvNeXt) segmentation model rep-
resents a novel fusion of the U-Net architecture with ConvNeXt 
convolutional strategies. This integration aims to leverage 
the strengths of both architectures to achieve high-precision 
semantic segmentation. The U-Net model initially designed for 
biomedical image segmentation stands out for its encoder-
decoder structure with skip connections, enabling efficient 
multi-scale feature fusion [24]. This architecture is particularly 
advantageous in preserving detailed spatial information and 
context, crucial for intricate tasks like crop lodging segmenta-
tion. Compared to other segmentation models like FCN [25] 
or DeepLab [26], U-Net’s ability to integrate features at different 
scales and its robustness to variations in object size make it an 
ideal choice for accurately delineating the irregular and varied 
patterns of crop lodging. As a recent innovation in CNNs, the 
ConvNeXt introduces modifications to traditional CNNs by 
incorporating elements inspired by Transformers [27]. Its design 
is tailored to extract more complex and hierarchical features 
from images, crucial for distinguishing subtle differences in 
crop conditions. By replacing the conventional convolutional 
layers in U-Net with ConvNeXt blocks, the UConvNeXt model 
gains enhanced feature extraction capabilities, crucial for iden-
tifying varying degrees of lodging in dense and complex agri-
cultural scenes. The specific structure of the UConvNeXt model 
is shown in Fig. 3.

Fig. 2. The acquisition of rice lodging information via unmanned aerial vehicles.
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In Fig. 3A, the ConvNeXt block is highlighted within a red 
frame, and its structure is depicted in Fig. 3B. The ConvNeXt 
block comprises depthwise separable convolutions that utilize 
7 × 7 depthwise convolutions and 1 × 1 pointwise convolu-
tions. The 7 × 7 depthwise convolutions, applied independently 
on each input channel, not only significantly reduce the com-
putational load and model size but also extract more extensive 
global lodging semantic information within each channel. 
The 1 × 1 pointwise convolutions mix all channel informa-
tion together, extracting cross-channel features and compen-
sating for the inability of 7 × 7 depthwise convolutions to 
capture cross-channel features. Thus, the ConvNeXt block sig-
nificantly reduces the number of parameters and computa-
tional cost while maintaining powerful feature extraction 
capabilities, enhancing the model’s computational efficiency. 
Moreover, the reduction in parameters also decreases the risk 
of model overfitting. Additionally, the use of layer normal-
ization (layer normalization) and Gaussian error linear unit 
(GELU) activation functions within the ConvNeXt block fur-
ther enhances the model’s training stability and nonlinear rep-
resentation capabilities. Layer normalization helps stabilize 
the training process by normalizing the activations of each 
hidden layer, especially beneficial when training deeper net-
works. The GELU activation function provides a smooth non-
linearity, aiding in capturing complex patterns and relationships. 
The ConvNeXt block also includes residual connections, crucial 
for mitigating the vanishing gradient problem in deep net-
works. These connections allow gradients to flow directly through 
the network, enabling effective information propagation even 

in very deep networks, allowing the model to learn and express 
deeper features. In summary, the ConvNeXt block provides the 
model with a richer and more discriminative feature repre-
sentation, crucial for improving the model’s performance in 
complex semantic segmentation tasks.

The UConvNeXt model begins with a standard 7 × 7 con-
volution, offering a large receptive field to capture extensive 
contextual information. Then, by stacking the ConvNeXt block, 
the encoder’s feature extraction capability is enhanced, mean-
ing the decoder can utilize richer features for precise pixel-
level prediction. Through its hierarchical structure design, the 
ConvNeXt model effectively captures features at different levels, 
from fine-grained textures to higher-level semantic features. 
This rich feature expression improves the model’s ability to 
recognize various patterns in images, especially in processing 
high-resolution images, capturing more refined details.

Overall, using ConvNeXt as the backbone provides U-Net 
with a powerful feature extraction mechanism, enhancing the 
model’s expressive and generalization abilities while improving 
parameter and computational efficiency. These improvements 
ultimately translate into performance gains in semantic seg-
mentation tasks.

Proposed AFOA-APOM algorithm
Yang et al. [28] introduced the aptenodytes forsteri optimiza-
tion algorithm (AFOA), inspired by the movement strategies 
of aptenodytes forsteri during their warmth-seeking behavior. 
AFOA incorporates the concept of gradients to enhance the 
algorithm’s development capability and has achieved notable 

A B

Fig. 3. (A and B) The U-Net architecture with ConvNeXt blocks.
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results in engineering optimization problems, combinatorial 
optimization algorithms, and scheduling issues. This research 
focuses on addressing the limitations of AFOA and, in combi-
nation with the characteristics of the deep learning semantic 
segmentation framework, proposes the adaptive perturbation 
of oscillation and mutation (APOM) operation. The APOM 
operation can be specifically divided into oscillation adaptive 
perturbation movement strategy I, simplified movement strat-
egy II, global optimization movement strategy III, an adaptive 
selection strategy, and a mutation operation.

Oscillation adaptive perturbation movement strategy I
In the standard AFOA’s movement strategy I, the introduction 
of gradient theory for updating the optimal individual enhances 
the algorithm’s optimization capability. However, it is well 
known that in the deep learning framework, gradient methods 
have drawbacks such as a tendency to fall into local optima, lim-
ited applicability, and difficulty in determining an appropriate 
learning rate. Additionally, the computation of gradient values 
dimension-wise incurs high computational costs. Consi dering 
these issues, the APOM introduces oscillation adaptive pertur-
bation movement strategy I to replace gradient computations. 
The individual update method for the maximization problem 
is as follows:

where Xb(t) represents the optimal individual, in which t 
denotes the current iteration number. q is either 0 or 1, with 
the probability of being 0 set at 0.5. Ub signifies the upper 
bound of the variable, while Lb indicates the lower bound. 
Maxg is the maximum runtime of the algorithm. D represents 
the dimensionality of the variable, β is a perturbation term, and 
λ is an adaptive change amount.

The improved movement strategy I, in the early stages of 
iteration, allows for a wider range of search around the optimal 
solution of the algorithm, which is beneficial in reducing the 
probability of the algorithm falling into premature convergence. 
In the later stages, it enables a narrower range of search around 
the optimal solution, which helps in minimizing the chances 
of missing the global optimal solution. Therefore, the improved 
movement strategy I exhibits excellent local search capabilities 
and the ability to escape local optima.

Simplified movement strategy II
In the standard AFOA’s movement strategy II, the standard 
deviation of the best position in each dimension from every 

aptenodytes’ memory is used to determine if the population 
is clustering prematurely. However, this approach has several 
issues: (a) The gradient value is computed for each dimension, 
resulting in a large computational load and high algorithmic 
complexity; (b) a small standard deviation in a single dimen-
sion does not necessarily mean that the individual distances 
are not large; (c) moving aptenodytes over shorter distances 
does not reduce the likelihood of individuals falling into local 
optima; (d) The method of determining premature clustering 
is not rational. Overall, the method in AFOA for determining 
premature clustering is not only irrational but also adds to the 
complexity of the algorithm, significantly slowing down the 
computational speed. To address these issues and reduce 
the complexity of the algorithm, AFOA-APM proposes a sim-
plified movement strategy II, with the updated formula pre-
sented as Eq. 5.

where Ub denotes the upper bound of the variable and Lb rep-
resents the lower bound. Xmr1(t) and Xmr2(t) are the optimal 
positions in the memory of two randomly selected aptenodytes 
forsteri. The term d from a represents the distance between 
Xmr1(t) and Xmr2(t).

Compared to the original AFOA, Eq. 5 eliminates the deter-
mination of premature convergence and updates according to 
individual dimensions, thereby reducing the complexity of 
the algorithm. When Xmr1(t) ≠ Xmr2(t), individuals in the popu-
lation search in random directions near the optimal solution, 
enhancing the algorithm’s ability to escape local optima. 
Conversely, when Xmr1(t) = Xmr2(t), individuals will search 
toward potentially promising spaces, thus enhancing the algo-
rithm’s local search capabilities.

Global optimization movement strategy III
In the standard AFOA’s movement strategy III, the update 
mechanism includes guidance from the optimal individual 
to other individuals, providing a balanced capability between 
local and global searches. However, an analysis of movement 
strategies I and II in the standard AFOA reveals that the for-
mer only updates the optimal individual, while the latter uses 
the globally optimal individual to update others in the popu-
lation, both predominantly emphasizing local search capabili-
ties. To enhance the global search capability in the early stages 
of the algorithm’s iterations, movement strategy III has been 
modified. Instead of guiding individuals toward the position 
of the optimal individual, it now guides them toward the 
position of a randomly chosen individual. This change allows 
aptenodytes forsteri to move randomly, greatly expanding the 
search range of the algorithm and strengthening its global 
search capability. The updated formula is presented as Eq. 7.

(1)

(2)v =
‖�‖0.8 ∗�

4∗‖ (Ub − Lb)‖

(3)𝜆= exp

(
− 0.25∗Ub∗

(
t−0.3∗Maxg

)

Maxg

)
⊗ rand(1, D)

(4)� = Ub∗q∗�

(5)

(6)a = exp

(
−d

2∗D

)0.8

(7)Xi(t) = Xi(t − 1) + Ai(t)

(8)

Ai(t)= rand(1,D) ∗Ai(t−1)+a1
∗rand(1,D)⊗

(
Xr(t)−Xi(t−1)

)
+a2

∗rand(1,D)⊗
(
Xmi(t)−Xi(t−1)

)
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where Xr(t) represents an individual randomly selected from 
the population. The parameters a1 and a2 are calculated using 
Eq. 6. In a1, the term d denotes the distance between Xr(t) and 
Xi(t), while in a2, d represents the distance between Xmi(t) and 
Xi(t), and D indicates the dimensionality of the variables.

From Eq. 8, it is evident that the improved movement strat-
egy III incorporates guidance toward the positions of ran-
dom individuals. This change allows the individuals within 
the population to search in random directions within the solu-
tion space, thereby expanding the search range of the algorithm. 
As a result, this enhancement significantly strengthens the global 
search capabilities of the algorithm.

Mutation operation
For optimization problems, when the algorithm discovers a 
region with an extremum, individuals in the population will 
continuously converge toward this extremum point. As the 
number of iterations increases, the quantity of identical or 
similar individuals in the population gradually grows. In 
extreme cases, it is possible for all individuals in the popula-
tion to become identical. Having a large number of identical 
or similar individuals can lead to a stagnation issue where the 
algorithm’s update operation fails to produce offspring that 
are different from their parents, thereby affecting the algo-
rithm’s efficiency. To enhance the diversity of the algorithm 
while maintaining its inheritance properties, this study intro-
duces a random mutation operation into the AFOA. The muta-
tion operator can increase population diversity and reduce 
the likelihood of premature convergence. The steps for the 
random mutation operation are as follows: (a) randomly gen-
erate a 0 to 1 array with the probabilities of 0 and 1 set at 0.4 
and 0.6, respectively; (b) randomly initialize the dimensions 
corresponding to 1.

Figure S3 illustrates the specific process of the random muta-
tion operator. As can be seen from Fig. S3, after the random 
mutation operation, Xi(t) not only inherits some characteristics 
of Xi(t − 1) but also develops new features. The low similarity 
between Xi(t) and Xi(t − 1) indicates that the random mutation 
operation contributes not only to enhancing population diversity 
but also to maintaining the algorithm’s heredity.

Adaptive selection strategy
The performance of an algorithm is determined by its local and 
global search capabilities. Throughout the iterative process, 
global and local searches should alternate. After each global 
search, multiple local searches should be conducted. This 
approach effectively balances the global and local search capa-
bilities of the algorithm, avoiding the trap of local optima while 
enhancing the algorithm’s convergence speed and solution 
accuracy. In the improved algorithm, the three types of move-
ment strategies and the random mutation operation are designed 
to enhance these capabilities. Oscillatory adaptive disturbance 
movement strategy I and simplified movement strategy II 
exhibit stronger local search capabilities, whereas global opti-
mization movement strategy III demonstrates enhanced global 
search capabilities. Additionally, the added random mutation 
operation increases population diversity. Therefore, to balance 
the global and local search capabilities of the algorithm, an 
adaptive selection probability Pr is employed to choose among 
the four updating strategies. The calculation formula for Pr is 
shown in Eq. 9.

where ti represents the current iteration number, Tmax denotes 
the maximum number of iterations for the algorithm, and g is 
the exponent.

The pseudocode for the adaptive selection strategy is shown 
in Algorithm 1.

As can be seen from Algorithm 1, Pr1, Pr2, and Pr3 change 
incrementally from smaller to larger values. In the early stages 
of iteration, there is a higher probability of executing simplified 
movement strategy II, which endows the algorithm with strong 
exploratory capabilities. In the later stages, there is a higher 
probability of executing oscillation adaptive perturbation move-
ment strategy I, global optimization movement strategy III, 
and mutation operation, enhancing the algorithm’s exploitation 
capabilities and aiding in maintaining the diversity of the popu-
lation. Therefore, the adaptive changes in Pr1, Pr2, and Pr3 
effectively balance the algorithm’s exploration and exploitation 
abilities, contributing to improved algorithmic performance.

Multi-objective AFOA-APOM-based UConvNeXt 
structure optimization algorithm
Encoding process optimization
The structure optimization of the UConvNeXt model based on 
the multi-objective AFOA-APOM uses real number encoding 
and randomly generates decision variables within the range of 
[−0.5, 0.5]. Each decision variable corresponds to the change 
in the number of channels in each convolutional layer of the 
model. Assuming the population size is n, the number of con-
volutional layers in the UConvNeXt model is m and the number 
of channels in the convolutional layers is L, with the initial 
population being X. Therefore, L = (l1, l2, …, lv, …, lm), where 
lv represents the number of channels in the vth convolutional 
layer of the model; X = (X1, X2, …, Xi, …, Xn), where Xi = 
(x1

i, x
2

i, …, xv
i, …, xm

i). Here, Xi is an individual in AFOA-
APM, and the ith windividual Xi in the initial population can 
be randomly i nitialized as follows:

where rand(1, m) is an m-dimensional random vector within 
the range of [0, 1]. xv

i represents the vth component in the ith 

(9)Pr = 0.3 +

(
ti

2Tmax

)g

(10)Xi = rand (1, m) − 0.5

(11)l
�

v =
⌊
lv − lv

∗xvi
⌋
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individual of the population, and l′v denotes the number of 
channels in the vth convolutional layer of the model after 
adjustment and ⌊⌋ indicates round down.

To illustrate the adjustment of the channels in the convo-
lutional layers of the model, Fig. 4 presents the ConvNeXt 
convolution block after adjustment using the multi-objective 
AFOA-APM. Here, Cin represents the number of channels in 
the vth convolutional layer, xv

i indicates the vth component 
in the ith individual within the AFOA-APM population, and 
xi

v + 2 represents the (v + 2)th component in the ith individual 
of the population.

Establishment of multi-objective fitness function
The fitness function, used to evaluate the quality of solu-
tions, is a crucial component in intelligent optimization 
algorithms. In this study, the speed and accuracy of iden-
tifying lodging crop areas are equally important. Therefore, 
when using AFOA-APM to automatically search for the 
optimal number of channels in convolutional layers of the 
UConvNeXt model, a balance should be struck between 
model performance and model complexity (in terms of the 
number of parameters and computational load). However, 
the objectives of model performance and complexity often 
conflict. Generally, increasing the complexity of the model 
can improve prediction accuracy, but it also increases the 
number of parameters and computational requirements, slow-
ing down inference speed. Hence, a multi-objective fitness 
function is needed to balance these objectives and find a 
model that performs well across all targets.

Considering all these factors, the multi-objective fitness 
function for optimizing the number of channels in the convo-
lutional layers of the UConvNeXt model using AFOA-APM is 
formulated as shown in Eq. 12.

where n represents the size of individuals in the population, pri 
is the number of parameters of the model corresponding to the 
ith individual, fli is the computational load of the model cor-
responding to the ith individual, Pi is the value related to the 
number of parameters of the ith individual, and fi is the value 
related to the computational load of the ith individual. mIoUi 
is the segmentation performance of the model corresponding 
to the ith individual on the rice lodging dataset.

Loss function
Due to the randomness of rice lodging occurrences, the lodging 
category represents a lower proportion in the entire dataset. 
Even after data augmentation, a certain level of imbalance still 
exists among the four types of pixel classifications in the dataset. 
To further reduce the impact of this imbalance on the model, 
the UConvNeXt employs a combination of Focal_loss and Dice_
loss as the loss function for rice lodging semantic segmentation 
tasks. This combination enhances the model’s predictive ability. 
Focal_loss was initially applied in object segmentation tasks to 
balance the loss between easy and difficult samples. It enables 
better optimization of parameters during backpropagation [29]. 
Dice_loss, on the other hand, is a region-based loss function 
that measures the overlap between the predicted segmentation 
area and the actual segmentation area [30]. Unlike pixel-level 
loss functions (such as cross-entropy loss), Dice_loss focuses 
more on the overall quality of segmentation, thereby improv-
ing segmentation accuracy. The combination of these two loss 
functions allows the model to consider both the global issue of (12)f iti = 0.6

∗mIoUi + 0.1
∗Pi + 0.3

∗fi

(13)Pi = 1 −
pri∑n
i=1pri

(14)fi = 1 −
fli

∑n
i=1fli

Fig. 4. Schematic diagram of ConvNeXt convolution block adjusted by multi-objective AFOA-APM.
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class imbalance and the local quality of segmentation, increas-
ing the model’s focus on difficult samples and enhancing its 
robustness for better segmentation results. The formulas for 
Focal_loss and Dice_loss are presented in Eqs. 15 and 16.

where pt represents the confidence level of the predicted class 
for a sample and γ is a tuning parameter, typically set to 2 by 
default.

where yil and yi respectively denote the label value and the pre-
dicted value for pixel i, while Num is the total number of pixels 
in the image.

Evaluation metrics
To validate the effectiveness of the proposed model for rice 
lodging area segmentation, we utilize pixel accuracy (PA), 
mean pixel accuracy (MPA), intersection over union (IoU), 
mean intersection over union (mIoU), and F1 score.

PA is the most intuitive evaluation metric. It calculates 
the proportion of correctly predicted pixels by the model. 
The higher this value, the more accurate the model’s ability 
to locate class information. The formula for calculating PA 
is shown in Eq. 17.

where Pc represents the number of pixels correctly predicted 
by the model, while PT denotes the total number of pixels in 
the image.

MPA evaluates the overall locational accuracy of the model 
by aggregating and then averaging the PA for each class. This 
metric is fairer than PA as it is not affected by class imbalance. 
The formula for calculating MPA is shown in Eq. 18.

where Nm represents the number of categories in the data and 
PAi is the pixel accuracy for the ith category.

IoU reflects the consistency between the segmented image 
and the manually annotated image in terms of both class pixels 
and background pixels. It calculates the ratio of the overlap 
between the target and the prediction result. The value of IoU 
ranges from 0 to 1, with values closer to 1 indicating better 
model segmentation performance. The formula for calculating 
IoU is shown in Eq. 19.

where TP (true positives) represents the number of pixels that 
are correctly predicted as positive cases, FP (false positives) 
denotes the number of pixels that are negative cases but pre-
dicted as positive, and FN (false negatives) indicates the num-
ber of pixels that are positive cases but predicted as negative.

mIoU is a comprehensive metric that evaluates the overall 
segmentation accuracy of a model and considers the balance 

between different categories. In semantic segmentation tasks, 
mIoU is often used as a key evaluation metric to compare per-
formance differences between various models or training set-
ups. The method for calculating mIoU is shown in Eq. 20.

where Nm denotes the number of categories in the data and 
IoUi is the intersection over union for the ith category.

The F1 score is an integrated metric for evaluating model 
performance. It is the harmonic mean of precision (P) and 
recall (R), considering both the model’s precision and recall, 
offering robustness against class imbalance issues. The F1 score 
provides a more nuanced assessment of model performance, 
particularly useful in handling complex scenes and objects with 
rich details.

Confusion matrices serve as an insightful tool for under-
standing how well a model performs across different categories, 
pinpointing areas of strength and identifying categories where 
the model may face challenges. To facilitate a clearer under-
standing of confusion matrices, we present a confusion matrix 
for a four-category problem in Table 1. In this table, TPX rep-
resents the number of instances that are actually X and correctly 
predicted as X, FPYX represents the number of instances that 
are actually Y but incorrectly predicted as X, and FNXY repre-
sents the number of instances that are actually X but incorrectly 
predicted as Y.

Beyond the standard confusion matrix, the normalized con-
fusion matrix is also an important tool. It involves normal-
izing the values in each row by dividing them by the sum of 
values in that row so that the sum of each row equals 1. This 

(15)Focal_ loss = −
(
1−pt

)�
log

(
pt
)

(16)Dice_loss=1−
2
∑Num

i=1 yiyil
∑Num

i=1 yi+
∑Num

i=1 yil

(17)PA =
Pc

PT

(18)MPA =

∑Nm

i=1
PAi

Nm

(19)IoU =
TP

TP + FP + FN

(20)mIoU =

∑Nm
i=1 IoUi

Nm

(21)P =
TP

TP + FP

(22)R =
TP

TP + FN

(23)F1 score =
2PR

P + R
=

2TP

2TP + FP + FN

Table 1. The confusion matrix

True category/
predict  
category

Predict 
category 

is A

Predict 
category 

is B

Predict 
category 

is C

Predict 
category 

is D

True category  
is A

TPA FNAB FNAC FNAD

True category  
is B

FPBA TPB FNBC FNBD

True category  
is C

FPCA FPCB TPC FNCD

True category  
is D

FPDA FPDB FPDC TPD
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normalization process helps us compare classification perfor-
mance between different categories more intuitively because it 
reflects the distribution of predicted categories for a given true 
category as relative proportions. The normalized confusion 
matrix is particularly useful in dealing with class imbalance, 
as it provides a more balanced perspective on performance 
assessment by showing information in relative proportions 
rather than absolute numbers.

In the normalized confusion matrix, the diagonal elements 
represent the recall for each category; for each category X, its 
recall can be represented as TPX divided by the total number 
of true instances for that category (TPX plus all instances of 
X incorrectly predicted as other categories). Observing the 
diagonal of the normalized confusion matrix allows us to 
quickly assess the model’s accuracy in identifying each cat-
egory. Meanwhile, the off-diagonal elements provide insights 
into the confusion scenarios of the model, showing the 
relative frequency at which instances of one category are 
incorrectly predicted as another, helping us identify potential 
difficulties the model may have in distinguishing between 
certain categories.

To validate the lightweight performance of the proposed 
model for rice lodging area segmentation, we utilize the param-
eters and floating-point operations per second (FLOPs) as 
the evaluation metrics. These metrics provide insight into the 
efficiency and computational resource requirements of the 
model, crucial for practical applications where computational 
resources might be limited.

System setup
To ensure the fairness of results, all experiments are conducted 
on the same computer. To ascertain the segmentation accuracy 
and computational time of the proposed networks, the experi-
ments are executed on a Windows 10 operating system. The 
computer is equipped with a Core i7-13700KF @ 3.40 GHz 
CPU and 64 GB RAM. Python is used as the programming 
language, with PyCharm as the compiler. Network model 
construction, training, and testing are conducted using the 
Pytorch deep learning framework. An NVIDIA GeForce RTX 
4090 with 24 GB of memory is employed to facilitate network 
training during the experimentation process. The rice lodging 
dataset, described in the “Dataset” section, was employed to 
train all models, with the dataset being divided into a training 
set and a validation set at a ratio of 0.75:0.25. This division 
resulted in 2,956 images allocated to the training set and 535 
images to the validation set. For the optimization of CNN struc-
ture parameters with the multi-objective AFOA-APOM, the 
population size is set to 8, and the algorithm iterates 10 times. 
All participating models undergo 500 epochs of training, with 
a batch size set to 4. The model optimizer is AdamW. The initial 
learning rate is set at 0.0015 with a weight decay coefficient of 
5 × 10−5.

Results and Discussion

The structure of AAUConvNeXt
The structural diagram of the model is presented in Fig. 5, 
which represents the optimized version of the UConvNeXt 
model achieved through the multi-objective AFOA-APM 
optimization. In the diagram, C, C1, C2, and C3 denote the 
number of output channels for the convolutional layers, p 

denotes the number of padding units, s represents the stride 
of the convolutional kernel, Bilinear refers to bilinear interpo-
lation used for resizing the feature maps, and f is the scale 
factor indicating the multiple by which the image size is 
increased during bilinear interpolation. A factor of f = 2 means 
that the image dimensions are doubled both horizontally and 
vertically.

As seen from Fig. 5, compared to the UConvNeXt model, 
the AAUConvNeXt model maintains the same positioning for 
convolutional and pooling layers; however, there is a signifi-
cant change in the number of channels in the convolutional 
layers. In the UConvNeXt model, the number of channels in 
the convolutional layer doubles with the reduction of feature 
map sizes during the down-sampling process and halves with 
the increase in feature map sizes during the up-sampling 
process. Traditional models enhance the network’s learning 
capability by increasing the number of convolutional layer 
channels, but this also means higher computational costs and 
memory usage. After algorithm optimization, the number of 
channels in the AAUConvNeXt model’s convolutional layers 
no longer adheres to a simple principle of multiplicative 
increase or decrease. Through the optimization process of the 
algorithm, the model increases the number of channels in key 
layers that significantly contribute to learning features of rice 
lodging data for the task of segmenting lodging rice areas 
while reducing the number of channels in noncritical layers 
to balance model complexity and performance. By precisely 
adjusting the number of channels through the algorithm, the 
model’s accuracy and generalization ability in segmenting 
lodging rice areas under limited computational resources are 
improved.

Ablation experiment
To compare the performance of three different models, the 
UConvNeXt model, the UConvNeXt model optimized by AFOA, 
and the UConvNeXt model improved with AFOA-APOM were 
conducted, as shown in Table 2. In this context, AUConv-
NeXt represents AFOA combined with UConvNeXt, while 
AAUConvNeXt signifies the combination of AFOA, APOM, 
and UConvNeXt.

From Table 2, it is evident that with the addition of different 
strategies, the model’s performance improved across the PA, 
MPA, and mIoU metrics. Both AUConvNeXt and AAUConvNeXt 
achieved higher PA, MPA, and mIoU than UConvNeXt, with 
a decrease in the number of parameters and FLOPs by 4.21% 
and 8.66%, respectively. Compared to the baseline UConvNeXt 
model, the AUConvNeXt model optimized using AFOA improved 
PA, MPA, and mIoU by 0.7%, 0.8%, and 1.2%, respectively. 
The AAUConvNeXt model, employing the APOM optimization 
strategy, further improved PA, MPA, and mIoU by 1.1%, 1.1%, 
and 1.9%, respectively. When compared with the AUConvNeXt 
model, the AAUConvNeXt model showed increases of 0.4%, 
0.3%, and 0.7% in PA, MPA, and mIoU, respectively. These 
results indicate that the utilization of APOM to optimize the 
traditional AFOA can significantly enhance the model’s perform-
ance based on the baseline [31], with improvements observed 
both in mIoU accuracy and in terms of parameter count and 
operational speed. This analysis suggests that the approach of 
using multi-objective AFOA-APOM to optimize the number 
of channels in the convolutional layers of a semantic segmenta-
tion model is feasible, and the two-stage training strategy is 
effective.

D
ow

nloaded from
 https://spj.science.org on N

ovem
ber 10, 2024

https://doi.org/10.34133/plantphenomics.0182


Zhang et al. 2024 | https://doi.org/10.34133/plantphenomics.0182 11

Comparison of model channel numbers after  
multi-objective AFOA-APOM optimization
The number of channels in the convolutional layers of a CNN 
model greatly influences its complexity and performance. This 

observation is consistent with the findings of Yang et al. [32], 
who noted that while increasing the number of channels can 
expand the receptive field, it also increases computational time 
and training difficulty, and can decrease efficiency. Table 3 
shows the reduction ratio of the number of channels in each 
convolutional layer of the model before and after optimization 
using the multi-objective AFOA-APOM algorithm. In this con-
text, DSCL (down-sampling convolutional layer) refers to the 
convolutional layers in down-sampling, and USCL (up-sampling 
convolutional layer) refers to those in up-sampling [the con-
volutional layers in Table 3 do not include the depthwise 
convolutional (DW) layers in the model]. As can be seen from 
Table 3, the number of channels in 23 feature layer convolu-
tional layers increases after optimization with the multi-objective 
AFOA-APOM algorithm, while the remaining 20 channels 
decrease. The results indicate that this optimization process 
does not simply increase or decrease the number of channels 
indiscriminately, but rather adjusts them in a targeted manner 
according to the model’s requirements and performance at dif-
ferent stages. In the initial stages (such as DSCL1-DSCL10 and 

Fig. 5. The structure of AAUConvNeXt model.

Table 2. Ablation experiment results

Evaluation 
metrics UConvNeXt AUConvNeXt AAUConvNeXt

PA (%) 95.2 95.9 96.3

MPA (%) 95.2 96.0 96.3

mIoU (%) 91.3 92.5 93.2

Parameters (M) 5.83 5.23 4.87

FLOPs (G) 4.04 3.87 3.69
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USCL1-USCL6), there is a notable increase in the number of 
channels. This is likely because the model requires more fea-
tures to capture and express the complexity of the input data 
in these early stages. This observation is consistent with the 
findings of Leite and Xiao [33], who discovered that increasing 
the number of channels in the early stages of feature extraction 
in deep learning models can effectively enhance the F1 score. 
This underscores the crucial role of the model’s early-stage fea-
ture recognition capabilities in determining overall perform-
ance. Additionally, Sunil et al. [34] have proposed that increasing 
the number of channels can aid the model in better learning 
and understanding the data. However, this strategy of increas-
ing the number of channels may lead to increased model 
complexity. Therefore, in the later stages, the algorithm begins 
to seek ways to reduce the number of channels to optimize 
model complexity. In the later stages, such as DS11-DS31 and 
US7-US12, there is a more frequent reduction in the number 
of channels. This reduction is likely because, after learning com-
plex features in the initial stages, the model has already acquired 
sufficient feature representation. Hence, in the later stages, it 
is possible to reduce model complexity by decreasing the num-
ber of channels while maintaining model performance. This 
approach is a key aspect of the current trend toward simplifying 
deep learning models. Liu et al. demonstrated that reducing 
the number of channels in deep CNNs through network slim-
ming techniques can decrease the model size, reduce runtime 

memory usage, and lessen computational operations without 
compromising accuracy. This validates the effectiveness of 
reducing the number of channels in the later stages of the model 
to optimize complexity [35].

Moreover, it is noteworthy that in some layers (DSCL8, 
DSCL14, DSCL20, and USCL6), the increase in the number of 
channels is exceptionally high (exceeding 40%). This suggests 
that these layers may play a significant role in the model’s ability 
to learn data features, and a smaller number of channels might 
not sufficiently capture the important features of the input data. 
This observation aligns with the research of Wang et al. [36], 
which indicated that increasing the feature extraction channels 
in critical layers of deep learning network structures can effec-
tively prevent the loss of key spatial information, thereby better 
learning deep features. Therefore, the optimization algorithm 
increases the number of channels in these layers, which may 
help enhance the model’s performance. In some layers, there 
is a high reduction ratio in the number of convolutional layer 
channels, indicating that these layers may have a lesser role in 
learning data features. Substantially reducing the number of 
channels in these layers can decrease the model’s complexity 
without significantly impacting its performance. Cheng et al. 
[37] have conducted in-depth research in this area, finding that 
reducing the number of channels in feature maps can decrease 
the number of parameters without significantly affecting the 
model’s performance. This finding is also consistent with our 

Table 3. Convolutional layer channel counts of the segmentation models before and after optimization

Convolutional 
layer UConvNeXt AAUConvNeXt Reduction ratio

Convolutional 
layer UConvNeXt AAUConvNeXt Reduction ratio

DSCL 01 32 37 −15.63% DSCL 23 1,024 1,469 −43.46%

DSCL 02 128 141 −10.16% DSCL 24 256 166 35.16%

DSCL 03 32 44 −37.50% DSCL 25 1,024 1,382 −34.96%

DSCL 04 64 41 35.94% DSCL 26 256 231 9.77%

DSCL 05 256 267 −4.30% DSCL 27 256 176 31.25%

DSCL 06 64 46 28.13% DSCL 28 1,024 703 31.35%

DSCL 07 256 301 −17.58% DSCL 29 256 214 16.41%

DSCL 08 64 96 −50.00% DSCL 30 1,024 540 47.27%

DSCL 09 128 118 7.81% DSCL 31 256 303 −18.36%

DSCL 10 512 640 −25.00% USCL 01 128 172 −34.38%

DSCL 11 128 158 −23.44% USCL 02 512 418 18.36%

DSCL 12 512 697 −36.13% USCL 03 128 169 −32.03%

DSCL 13 128 134 −4.69% USCL 04 64 45 29.69%

DSCL 14 256 383 −49.61% USCL 05 256 351 −37.11%

DSCL 15 1,024 853 16.70% USCL 06 64 94 −46.88%

DSCL 16 256 337 −31.64% USCL 07 32 36 −12.50%

DSCL 17 1,024 656 35.94% USCL 08 128 101 21.09%

DSCL 18 256 361 −41.02% USCL 09 32 28 12.50%

DSCL 19 1,024 674 34.18% USCL 10 32 24 25.00%

DSCL 20 256 372 −45.31% USCL 11 128 135 −5.47%

DSCL 21 1,024 681 33.50% USCL 12 32 24 25.00%

DSCL 22 256 156 39.06%
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research results. It shows that by using intelligent optimization 
algorithms, different optimization strategies can be employed 
at various stages to effectively adjust the number of channels 
in the model, achieving a balance between model complexity 
and performance. This optimization strategy offers a potential 
solution for enhancing the computational efficiency and per-
formance of the model.

Model performance comparison
Accuracy and loss
To demonstrate the performance differences between the pro-
posed AAUConvNeXt and existing SOTA models, Fig. 6 illus-
trates the loss and accuracy variation curves during the training 
process of nine deep learning models: DeepLabV3+ with the 
backbone MobileNetV2 (DeepLabV3 + MobileNetV2) [38], 
U2Net [39], PSPNet with the backbone Resnet-50 (PSPNet-
ResNet50) [40], HRNet [41], ConvUNext [42], FA + ensemble + 
DeepLabV3+ [43], UConvNeX, AUConvNeXt, and AAUConvNeXt. 
From the loss curve in Fig. 6, it can be observed that the loss 
trends of the nine models are fundamentally similar. At the 
beginning of training, the model loss decreases rapidly; the 
speed of loss reduction slows down in the middle phase and 
stabilizes in the later stages. After 500 training epochs, the loss 

of the AAUConvNeXt model converges around 0.23, followed 
by AUConvNeXt at 0.25, with HRNet and PSPNet-ResNet50 
converging around 0.3. From the PA curve, it is apparent that for 
the UConvUNext, AUConvUNext, ConvUNext, DeepLabV3 + 
MobileNetV2, FA + ensemble + DeepLabV3+, HRNet, AAU-
ConvNeXt, PSPNet-ResNet50, and U2Net models, their PA 
reached 0.952, 0.959, 0.956, 0.933, 0.947, 0.959, 0.963, 0.952, 
and 0.956, respectively. This indicates that after extensive itera-
tive training, these deep learning models are capable of effi-
ciently recognizing the characteristics of crop lodging, thereby 
enabling precise segmentation of crop lodging areas. Notably, 
the AAUConvNeXt model demonstrated superior performance, 
achieving a PA of 0.963, leading all compared models. This high-
lights the efficiency and superiority of our proposed model in 
handling the task of crop lodging segmentation. The improved 
performance of the AAUConvNeXt model can be attributed to 
the multi-objective adaptive algorithm used for optimization, 
which endows it with finer feature extraction capabilities and 
higher pixel classification accuracy in complex agricultural sce-
narios. The characteristics of the AAUConvNeXt model, such 
as its lower loss values and higher accuracy, clearly demonstrate 
its potential in the field of crop lodging segmentation research 
among deep learning models.

Fig. 6. The PA and training loss function graph of the SOTA models for identifying rice lodging.
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Segmentation results of semantic segmentation model
To visually validate the effectiveness of the proposed strategies, 
Fig. 7 presents the segmentation results of nine semantic seg-
mentation models across four sets of rice images, showcasing 
their performance in segmenting areas of rice lodging at vari-
ous degrees.

From Fig. 7, it can be observed that for the categories BG 
and NL, most methods exhibit good segmentation perfor-
mance. This could be attributed to the distinct features of these 
two categories, which are less likely to be confused with other 
categories, and the abundance of samples. The quality of sam-
ples directly influences the model’s performance [44], Moreover, 
most studies on crop lodging focus only on the discussion of 
L or NL areas [45], with very limited research on partially lodg-
ing situations.

Compared with the segmentation effect of BG and NL cat-
egories, most methods show lower accuracy in identifying HL 
and L categories. This is due to the high similarity in features 
between the edges of the L category and the HL category in 
the rice lodging dataset. However, the AUConvNeXt and 
AAUConvNeXt models exhibit significantly higher accuracy 
in recognizing HL and L categories compared to other models. 
This is because these models, after being optimized through 
the multi-objective AFOA algorithm, effectively adjusted the 
number of channels in each convolutional layer of the model. 
This optimization strategy makes targeted adjustments based 
on the needs and performance of the model at different stages. 
By increasing the number of channels in certain critical feature 
layers, the model’s capability to express features is enhanced, 
enabling it to learn more complex features.

Figure 8 presents the precision, recall, and F1 score metrics 
for each category of lodging rice data across the nine models. 
Figure 8 demonstrates the performance of various semantic 
segmentation models in segmenting rice lodging areas across 
different categories. In our analysis of the performance metrics 
across all models, we observed that for the NL category, both 
precision and F1 scores are consistently lower than those for 
the L category. However, in terms of recall, the NL category 
surpasses the L category in the majority of models. This dis-
crepancy underscores the distinct insights that precision, recall, 

and F1 score metrics contribute to understanding model per-
formance. A higher recall for the NL category suggests that the 
models miss fewer instances of this category, potentially due 
to the more distinct or widely distributed features of the NL 
category within the dataset, facilitating more accurate identi-
fication of NL states by the models. Conversely, the lower preci-
sion for the NL category compared to the L category might 
indicate that there are more false positives within the samples 
predicted as NL, meaning that some samples actually belonging 
to the HL or L categories might be incorrectly predicted as NL, 
thereby reducing the precision for NL. The F1 score, being the 
harmonic mean of precision and recall, aims to balance both 
metrics. The lower F1 score for the NL category relative to the 
L category suggests that despite the higher recall, the lower 
precision negatively impacts the F1 score, resulting in a lower 
overall performance evaluation for the NL category compared 
to the L category. This analysis highlights the complexity 
of evaluating model performance in semantic segmentation 
tasks and underscores the importance of considering multiple 
metrics to gain a comprehensive understanding of a model’s 
capabilities and limitations in distinguishing between differ-
ent lodging states.

Among all the models, HRNet exhibits the highest precision 
for the L category. However, its precision for the NL category 
falls below that of AUConvNeXt and AAUConvNeXt, and in 
the HL category, it is surpassed by U2Net, PSPNet-ResNet50, 
ConvUNeXt, AUConvNeXt, and AAUConvNeXt. On the other 
hand, U2Net shows the best recall performance in the NL cat-
egory but has lower recall than HRNet, AUConvNeXt, and 
AAUConvNeXt in the BG, HL, and L categories. This pattern 
may suggest a certain bias in HRNet toward the L category and 
in U2Net toward the NL category, indicating lower stability in 
these models’ performance across different categories. Both 
AUConvNeXt and AAUConvNeXt models demonstrate supe-
rior performance across precision, recall, and F1 score metrics, 
particularly notable in F1 scores. Except for the BG category, 
where AUConvNeXt performs slightly lower than HRNet, and 
the NL category, where it equals HRNet, AUConvNeXt and 
AAUConvNeXt exceed the performance of other models in the 
remaining categories. Moreover, AAUConvNeXt stands out as 

Fig. 7. Segmentation effects of nine semantic segmentation models.
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the best-performing model among the nine models, with the 
exception of having a lower precision in the L category com-
pared to HRNet and a lower recall in the NL category compared 
to U2Net. The remaining metrics significantly outperform the 
other models; this indicates a better stability of AUConvNeXt 
and AAUConvNeXt.

Confusion matrices
By comparing the performance of models under different met-
rics, their stability can be assessed. A good model should not 
only perform well under all conditions but also show relatively 
consistent performance under different conditions. As can 
be seen from the above PA, MPA, mIoU, F1 score, recall, 
precision, and segmentation effects, both AUConvNeXt and 
AAUConvNeXt demonstrate superior performance, indicating 
high stability of the models. Additionally, to present the seg-
mentation performance of each model more clearly across vari-
ous categories, Fig. 9 provides the confusion matrices for the 
nine models. In Fig. 9, each row of the matrix has been normal-
ized to facilitate an intuitive comparison across categories.

From the confusion matrices, it can be observed that 
AAUConvNeXt performs better than the eight comparative 
algorithms from the literature in all categories except for the 
NL category, where it is slightly lower than U2Net. This indi-
cates the effectiveness of using the multi-objective AFOA-
APM to optimize the channels in the model’s convolutional 
layers. The segmentation accuracy of AUConvNeXt in the L 
category, excluding AAConvNeXt, stands out as the highest 
among the models evaluated, while HRNet achieves the high-
est segmentation accuracy in the HL and BG categories. This 
performance underscores the robust capabilities of both 
models. The effectiveness of the multi-objective AFOA in 
optimizing the channels of the model’s convolutional layers 
is particularly evident in AUConvNeXt’s performance. Such 
optimization allows for a more efficient and targeted feature 
extraction process, contributing significantly to the model’s 

precision in specific categories. HRNet distinguishes itself 
by maintaining high-resolution feature maps throughout the 
entire network, a departure from traditional deep learning 
models that typically reduce resolution in the early stages of 
the network. By preserving high resolution, HRNet possesses 
enhanced feature representation capabilities, enabling the 
capture of fine-grained information. Consequently, HRNet 
can maintain higher segmentation accuracy in certain cat-
egories, illustrating the advantages of its architecture in han-
dling complex segmentation tasks.

Moreover, all models show lower segmentation accuracy for 
the HL category compared to the other three categories. This 
is due to the similar features of NL and HL categories, and the 
presence of features at the edges of the L category that resemble 
those of HL, resulting in the lowest segmentation accuracy for 
the HL category among the nine models. Among all compara-
tive methods, DeepLabV3 + MobileNetV2 shows the lowest 
category segmentation accuracy, possibly due to its fusion 
strategy’s ineffectiveness in handling information with a high 
degree of similarity. This finding diverges to some extent 
from the conclusions of Zhang et al. [46], potentially due 
to DeepLabV3 + MobileNetV2’s weaker capability in capturing 
detailed texture features of crops in specific scenarios. The 
DeepLabV3 + MobileNetV2 model employs MobileNetV2 as 
its backbone network, which is initially designed to balance 
accuracy and efficiency. Consequently, its lightweight structure 
may exhibit limitations in capturing complex textures and fine 
details. This limitation becomes particularly evident when pro-
cessing rice lodging scenes with highly similar information. 
Moreover, the rice lodging dataset features highly diverse envi-
ronmental conditions, complex background textures, and vary-
ing degrees of lodging. These characteristics necessitate a model 
with a larger receptive field and higher model capacity to effec-
tively capture and distinguish various texture features. The 
relatively small receptive field and limited model capacity of 
MobileNetV2 might not meet these requirements, leading to 
deficiencies in classification accuracy.

Fig. 8. Precision, recall, and F1 score results of nine SOTA models.
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The overall performance of the SOTA models
Table 4 shows that among the nine models, AAUConvNeXt 
excels in performance, achieving the highest PA at 96.3%, MPA 
at 96.3%, and mIoU at 93.2%. This indicates its outstanding 
accuracy and effectiveness in image semantic segmentation 
tasks. AUConvNeXt also performs admirably, with a high PA 
of 95.9%, MPA of 96.0%, and mIoU of 92.5%, striking a good 
balance between performance and resource efficiency. The 
HRNet model also achieves high performance, especially in 
mIoU at 92.4%, but it has a relatively higher parameter count and 
computational complexity. AUConvNeXt and AAUConvNeXt 
models show a clear advantage in terms of parameter count 
and computational complexity among the nine models. In 
terms of computational demand, apart from ConvUNext 

and DeepLabV3 + MobileNetV2 models, AUConvNeXt 
and AAUConvNeXt have lower computational complex-
ity relative to the other comparative models. The param-
eter of AAUConvNeXt is only higher than the ConvUNext 
model among the six comparative models, suggesting the effec-
tiveness in situations with limited computational resources.

Conclusion
To effectively address the challenges of rice lodging segmenta-
tion, this study introduces a novel approach using the AFOA + 
APOM + UConvNeXt network architecture. This method uti-
lizes ConvNeXt as its backbone, incorporating AFOA-APOM 
intelligent optimization algorithms to improve the model’s 

Fig. 9. Confusion matrices pertaining to rice lodging segmentation.
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performance. Specifically designed for the intricacies of crop lodg-
ing segmentation, such as adaptive optimization of convolutional 
layer channels, the model significantly increases the accuracy of 
segmenting rice lodging areas, reduces the model’s parameter 
count, and enhances computational speed, effectively lowering 
the consumption of computational resources. Compared to eight 
SOTA models, AAUConvNeXt excels in performance, achieving 
the highest PA of 96.3%, MPA of 96.3%, and mIoU of 93.2%. This 
demonstrates its exceptional accuracy and efficacy in image 
semantic segmentation tasks. Additionally, AAUConvNeXt’s 
parameter and computational complexity are notably advanta-
geous among the nine models considered. Overall, AAUConvNeXt 
maintains high segmentation accuracy for lodging, HL, and NL 
areas. The integration of deep learning with intelligent optimiza-
tion algorithms in this study represents a significant advancement 
in the field of crop phenotypic information extraction. Future 
research is aimed at exploring the segmentation of HL areas, 
which is expected to aid in making precise predictions of lodging 
trends, facilitating the acquisition of rice phenotypic information, 
and promptly addressing yield losses due to crop lodging.
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