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Leaves, crucial for plant physiology, exhibit various morphological traits that meet diverse functional 
needs. Traditional leaf morphology quantification, largely 2-dimensional (2D), has not fully captured the 
3-dimensional (3D) aspects of leaf function. Despite improvements in 3D data acquisition, accurately 
depicting leaf morphologies, particularly at the edges, is difficult. This study proposes a method for 3D 
leaf edge reconstruction, combining 2D image segmentation with curve-based 3D reconstruction. Utilizing 
deep-learning-based instance segmentation for 2D edge detection, structure from motion for estimation 
of camera positions and orientations, leaf correspondence identification for matching leaves among 
images, and curve-based 3D reconstruction for estimating 3D curve fragments, the method assembles 
3D curve fragments into a leaf edge model through B-spline curve fitting. The method's performances were 
evaluated on both virtual and actual leaves, and the results indicated that small leaves and high camera 
noise pose greater challenges to reconstruction. We developed guidelines for setting a reliability threshold 
for curve fragments, considering factors occlusion, leaf size, the number of images, and camera error; the 
number of images had a lesser impact on this threshold compared to others. The method was effective 
for lobed leaves and leaves with fewer than 4 holes. However, challenges still existed when dealing with 
morphologies exhibiting highly local variations, such as serrations. This nondestructive approach to 3D 
leaf edge reconstruction marks an advancement in the quantitative analysis of plant morphology. It is 
a promising way to capture whole-plant architecture by combining 2D and 3D phenotyping approaches 
adapted to the target anatomical structures.

Introduction

Leaves are highly important organs for plants since they are the 
sites of fundamental physiological processes, including photo-
synthesis, transpiration, and respiration. The phenotypic diver-
sity of leaves underlies the various functional demands associated 
with their habitats [1–4]. Furthermore, their morphological 
properties are essential in balancing the multiple functional 
demands of individual plants and canopies [5–7], such as light 
interception [8,9], heat transfer [10,11], hydraulic conductivity 
[12,13], mechanical constraints [14,15], and growth efficiency 
[16,17]. Quantifying the morphological traits of leaves provides 
a quantitative understanding of the relationships between the 
morphological traits and genetics of plants, morphogenesis, 
and environmental conditions, providing valuable insights into 
plant growth and development, improving crop yields, and 
enhancing plant productivity.

Leaves have complex 3-dimensional (3D) shapes. Despite 
this, traditional measurement, quantification, and evaluation 
techniques rely on 2-dimensional (2D) methods because they 
are simple and more feasible to use, especially considering 
existing technical limitations. In many cases, botanical specimens 
are preserved 2-dimensionally [18] and undergo morphological 

changes upon drying [19,20]. Quantitative evaluations are based 
on 2D imaging (e.g., flatbed scanners) and image analysis (e.g., 
[21,22]). Leaves exhibit a wide range of patterns in 3D shapes 
[23], and their functionality is highly dependent on their con-
figuration in 3D space [24–27]. For example, the spatial con-
figurations and 3D shapes of leaves affect light interception and 
penetration within individual plants [28] and canopies [29]. 
These 3D leaf shapes also contribute to light and heat acclima-
tization (e.g., lamina folding [29,30] and nonplaner leaves 
[30,31]). Therefore, the 3D shape of leaves is crucial for agri-
cultural applications, with its impact on photosynthesis at the 
canopy level being investigated in major crops such as maize, 
wheat, and rice through the development of morphological mod-
els and evaluation techniques [32–35]. According to the studies 
incorporating simulations with morphological and growth mod-
els, such as functional-structural plant models (FSPMs), account-
ing for the 3D leaf structure may influence the conditions 
necessary for optimal plant growth [36,37]. In regulating such 
functional leaf shapes through morphogenesis, the marginal 
region of the leaf, including leaf edges, is crucial, serving as a 
place for integrating mechanical properties, genetic controls, 
differentiation patterns, and tissue growth [38]. Moreover, some 
shapes cannot be adequately projected 2-dimensionally (e.g., 
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twisted leaves of Codiaeum variegatum ‘Spirale’). Consequently, 
many leaf characteristics have not been appropriately evaluated 
through 2D methods, inspiring interest in 3D evaluations.

High-resolution 3D morphological data can be acquired 
efficiently and cost-effectively using light detection and rang-
ing sensors, depth cameras, and photogrammetry techniques 
[39–41]. A pipeline utilizing structure from motion (SfM) 
and multiview stereo (MVS), which reconstructs a 3D surface 
as point cloud data from a series of 2D images captured from 
different angles, has been implemented in several libraries 
and software products (e.g., [42,43]). Several devices and 
techniques for acquiring the structures of plants in 3D have 
been developed to facilitate 3D evaluation in plant phenotyp-
ing studies [44,45]. However, point cloud data produced by 
point-based 3D reconstruction methods, such as the com-
monly used SfM/MVS pipeline, may not be ideal for repre-
senting 3D leaf morphologies because of unclear leaf edges 
[46] and uncertainties regarding whether the holes in point 
cloud data are actually real or the results of reconstruction 
errors [47]. Point cloud data reconstructed using the point-
based reconstruction method often include points represent-
ing both leaves and artifacts owing to the keypoints detected 
in the background (Fig. S1A). Even if the background regions 
are excluded by using the mask images, the inherent nature 
of being represented as a set of points makes it challenging 
to recognize the exact position of the leaf edges. The holes in 
the output point cloud data comprise reconstruction deficien-
cies and actual holes; it is difficult to distinguish between 
them solely based on point cloud data (Fig. S1B and C). It is 
preferable to establish phenotyping methods that enable the 
direct estimation of leaf edges.

In this study, we proposed a method to reconstruct leaf edges 
from multiview images using deep-learning-based instance 
segmentation for 2D edge detection (Fig. 1A and B), SfM for 
estimating camera positions and orientations (Fig. 1C), leaf 

correspondence identification for matching leaves among mul-
tiview images (Fig. 1D), curve-based 3D reconstruction for 
estimating leaf edges as curve fragments in 3D spaces (Fig. 1E), 
and B-spline curve fitting for integrating curved fragments into 
3D leaf outlines (Fig. 1F). The applicability and limitations of 
the proposed method were examined using both simulated data 
and actual multiview images of soybean plants. Our analysis 
revealed that leaf size, errors in camera parameter estimation, 
and mask estimation errors had significantly impacted accuracy. 
The proposed method is expected to be a valuable tool for clari-
fying the morphological characteristics of 3D leaf edges, which 
are difficult to quantitatively evaluate.

Materials and Methods

A method for 3D leaf edge reconstruction using a 
combination of 2D and 3D approaches
To estimate leaf edge morphological properties directly in 3D 
Euclidean space, we proposed a method to reconstruct 3D leaf 
edges from multiview images. We assumed that the multiview 
images were obtained from the simple photogrammetry system 
(Fig. S2). Then, the 3D leaf edges are reconstructed via the fol-
lowing procedure (Fig. 1):

Instance segmentation of leaves in 2D images
To extract the 2D edges of leaves individually, mask images for 
each leaf were obtained from multiview images (Fig. 1A) using 
Mask R-CNN [48], a deep neural network (DNN) model for 
instance segmentation. We used Detectoron2 [49], a library for 
detection and segmentation tasks, to utilize the Mask R-CNN 
model with the backbone ImageNet and the model weights pre-
trained on the COCO dataset. The model was trained on a train-
ing dataset that comprised 80% of the dataset consisting of 
multiview images, and the remaining 20% of images were used 
for validation (validation dataset) (see Actual data for details).

Fig. 1. Overview of the proposed method for 3D leaf edge reconstruction. The method reconstructs 3D leaf edges from multiview images. (A) Each leaf in each image is segmented 
using Mask R-CNN. (B) Each 2D leaf edge is detected from the segmented leaves. (C) Camera positions and orientations are estimated based on SfM. Simultaneously, sparse 
point cloud data and projection matrix are obtained for the leaf correspondence step, in which (D) the leaves in the multiview images are identified. (E) The curve fragments 
are reconstructed in 3D space using the 3D curve sketch, which integrates the 2D leaf edges, projection matrix, and leaf correspondence. (F) The 3D leaf edges are obtained 
after fitting closed B-spline curves on each set of 3D curve fragments corresponding to a single leaf.
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Leaf edge extraction in 2D images
Leaf edges in the 2D images were extracted from the predicted 
mask image for each instance (Fig. 1B), using the OpenCV 
library [42]. The extracted 2D edges were divided into frag-
ments that have a certain range of lengths (lmin, lmax) and mini-
mum overlap length τoverlap for utilizing the curve-based 3D 
reconstruction (see [50] for details). In this study, we used 
lmin = 40 pixels, lmax = 100 pixels, and τoverlap = 15 pixels for the 
simulated data and lmin = 80 pixels, lmax = 200 pixels, and 
τoverlap = 30 pixels for the real data, depending on their image 
sizes (see Materials).

SfM
The SfM technique was utilized to obtain the projection matrix 
for each camera and the sparse point cloud from a multiview 
image (Fig. 1C). SfM is a photogrammetric method for simul-
taneously estimating the camera parameters and the depth of 
corresponding points (i.e., sparse 3D point clouds) from mul-
tiview images. In this study, we used Metashape (Agisoft, St. 
Petersburg, Russia), which is commercial photogrammetry 
software that includes SfM. The projection matrices, including 
the optical center, focal length, orientation, and position of the 
cameras, were exported as Extensible Markup Language (XML) 
files. Markers were placed on the image to optimize image 
placement and thereby make it easier to obtain the correspond-
ing points.

Leaf correspondence identification
To individually process and reconstruct the leaves, we deter-
mined the correspondence of the leaves between the images 
(Fig. 1D). First, the point cloud obtained from SfM was clustered 
into each leaf, i.e., each cluster corresponds to a single leaf (Fig. 
2A). To preclude the leakage of points from the backside into 
the front during reprojection, hidden point removal [51] was 
applied to each view. Then, the point cloud was associated with 

the mask on which most of the points had been located (Fig. 
2B). Leaf correspondences were identified by counting the 
number of reprojected points belonging to each cluster in each 
image (Fig. 2C). If this was performed for all the mask images, 
the correspondence between the leaves of the images could be 
obtained via a point cloud.

In this study, density-based spatial clustering of applications 
with noise (DBSCAN) [52] was used for clustering on simu-
lated data. Color-based region-growing segmentation imple-
mented in the Point Cloud Library [53] was used on real data 
because it is difficult to separate leaves in physical contact using 
DBSCAN. Hidden point removal [51], which determines the 
visible points in a point cloud from a given viewpoint using a 
sphere and a spherical inversion operator, was used for remov-
ing behind points.

Curve-based 3D reconstruction
The key idea of the proposed method is directly estimating 3D 
leaf edges using curve-based 3D reconstruction. In this study, 
we adopted a curve-based MVS reconstruction used in the 
work of Fabbri and Kimia [50], which proposed a method 
called 3D curve sketch that reconstructed a set of 3D curve 
fragments from the 2D edges of a target object in multiview 
images (Fig. 1E). All the subsequent processes were applied to 
each leaf. Obtaining 3D curve edges involves the following 
steps: (1) camera pair definition, (2) pair hypothesis generation, 
and (3) 3D curve fragment reconstruction and filtering by 
reprojection.

1. Camera pair definition: To perform curve-based 3D 
reconstruction, camera pairs were defined based on the rela-
tive positions of the cameras in the scene. Angle bij, which 
is the angle between cameras i and j from the average posi-
tions of all the cameras (p), was calculated for all the camera 
combinations. The camera pairs were defined as the com-
binations that satisfied bij ≤ bmax. Since the cameras had been 

Fig. 2. Leaf correspondence identification. (A) An example of a set of point cloud data clustered into each leaf with the hidden point removal from a particular viewpoint (left) 
and mask image of the corresponding view (right). (B) Correspondence of leaves between images is identified by projecting the clustered point cloud onto each image. 
(C) Heatmap of the count data of projected point cloud data on a mask image. Peaks indicating the correspondence between clusters and instances in a mask image.
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assumed to be equally spaced to cover the plants, b corresponded 
to the baseline in [50]. In this study, we used angles of 30°, 
40°, and 60° on the simulated data of 32, 64, and 128 multiv-
iew images, respectively. For the real data, bmax was set to 30°, 
regardless of the number of images.

2. Pair hypothesis generation: Let γip be the p-th 2D curve 
fragment in the i-th image. A potentially corresponding pair 
of 2D curve fragments, called pair hypothesis, is defined as a 
pair of 2D curve fragments 

(
γip, γ

j
q

)
. In epipolar geometry, a 

fundamental matrix Fij computed from the projection matrices 
corresponding to images (Pi and Pj) maps a point in the i-th 
image to a line in the j-th image. The line mapped by the fun-
damental matrix is called the epipolar line (or epiline), and any 
existing corresponding points along the line are found. By 
extending this concept to a 2D curve fragment, Fij maps a 2D 
curve fragment in the i-th image to a band (a set of epipolar 
lines) in the j-th image. Pair hypotheses were generated based 
on the 2D curve fragments overlapping the bands (Fig. 3A). 
For a robust reconstruction, 2D curved fragments tangential 
to the epipolar line were excluded from the process (see [50] 
for details). The number of pairs of hypotheses per band was 
set to a maximum of only 10 to account for the limited com-
putational resources.

3. 3D curve fragment reconstruction and filtered by repro-
jection: Then, 3D curve fragments (� i,j

p,q), which correspond to 

the pair hypotheses 
(
γip, γ

j
q

)
, were reconstructed using projec-

tion matrixes in 3D Euclidean space. Each reconstructed 3D 
curve fragment was reprojected onto multiview images, exclud-
ing the i- and j-th images, to evaluate how closely the recon-
structed curve fragments generated the true projection (Fig. 
3B). The reconstructed curve fragments were supported by 
reprojections if the reprojected curve fragments had been 
located close to the edges of the target object (i.e., leaf) on the 
image; i.e., a reprojected curve fragment was supported if at 
least τv (%) of the curve fragment was located within τd pixels 
of the edges in τt images. Only curves supported with a suffi-
cient number of images (i.e., greater than the support threshold 
τt) were reconstructed (Fig. 3C). We also excluded points sup-
ported by less than τp on a well-supported curve in addressing 
an issue related to the “erroneous grouping” described in the 
work of Usumezbas et al. [54], which proposed an enhanced 
method of Fabbri and Kimia [50]. A τv of 80% was used for all 
cases, and τd was 11 and 39 pixels for the simulated leaves and 
actual soybean specimens, respectively.

B-spline curve fitting
The 3D curve fragments were integrated into a closed 3D curve 
by using B-spline fitting (Fig. 1F). A B-spline function is a 
smooth piecewise degree k polynomial function. In the closed 
B-spline curve fitting, a continuous periodic function is approx-
imated by the B-s, which is a linear combination of the order j 
B-spline basis over the i-th interval bi, j(l) as follows:

(1)
f (l) = w b(l) =

�
w1 ⋯ wn−1

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,j(l)

⋮

bn−k−1,j(l)

bn−k,j(l)+b1−k,j(l)

⋮

bn−1,j(l)+b0,j(l)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig.  3.  Curve-based 3D reconstruction of a leaf edge. (A) Pair hypotheses are 
generated in a camera pair by searching for intersecting curve fragments in the 
2D images along a band of epipolar lines (blue band). (B) The 3D curve fragments 
are reconstructed and reprojected onto other images to evaluate how closely the 
reconstructed curve resembles the true projection. The pair hypothesis is supported 
if the reprojected 2D curve fragment sufficiently close to the 2D leaf edges (within 
gray dashed curves). (C) Only the 3D curved fragments supported by a sufficient 
number of images are reconstructed.

Fig. 4. Examples of 3D leaf edge reconstruction on simulated leaves. Reconstructed 
3D edges of a single leaf (upper, green) and multiple leaves (lower, gray) using the 
proposed method. Each reconstructed 3D leaf edge is indicated by a different color. 
Original meshes (left), reconstructed 3D edges (middle), and overlaid ones (right) 
are shown.
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where wi denotes the coefficient of the i-th B-spline basis. Based 
on the coordinate values of the reconstructed 3D curve frag-
ments, the B-spline coefficients were estimated for x-, y-, and 
z-coordinate values using the “curve_fit” function in SciPy [55]. 
In this study, the number of intervals (n) was set to 16 for 
all simulated and actual datasets (datasets1, dataseta1, and data-
seta2), with the exception of datasets2, for which adopted n = 64.

Materials
Simulated data
Virtual plant models (single and multiple leaves) were created 
using Blender (Blender Foundation, Amsterdam, Netherlands). 
Three individuals were generated based on the multiple-leaf 
model; each leaf was translated randomly—horizontally from 
−33.33 to 33.33% and vertically from −14.28% to 14.29% of 
the bounding box dimensions—and rotated randomly from 
−10 to 10°.

Based on the created models, we generated several multiview 
images from cylindrically arranged views using Unity (Unity 
Technologies, San Francisco, CA, US). The dataset (datasets1) 
includes multiview images of various levels of occlusion (no, 
thin, and thick pillars), different numbers of multiview images 
(32, 64, and 128 images), and different degrees of positional 
noise affecting the camera parameters (σ = 0, 1, and 3 mm).

Moreover, we generated multiview images of 1,920 × 1,080 
pixels from virtual single-leaf models, including a lobed leaf, a 
leaf with serration, elongated leaves, and leaves with holes 
(datasets2). They were used to demonstrate the proposed method 
for complex leaf edges. The 3D models of a lobed leaf (“Maple 
Leaf ” by Ciminera) [56] and a leaf with serration (“Leaf test” 
by Ivanovs) [57] are used under CC BY 4.0. The 3D models of 
leaves with holes were created using Blender.

Actual data
Multiview images were obtained from 4 individual soy-
beans (Glycine max), including 4 cultivars (Enrei, Zairai 51-2, 
Aoakimame, and Saga zairai), to train the Mask R-CNN 
model and evaluate its performance (dataseta1). These indi-
viduals were captured at different growth stages: Enrei: 34 days 
after sowing (DAS); Zairai 51-2: 56 DAS, Aoakimame: 24 DAS; 
and Saga zairai: 48 DAS.

To demonstrate the applicability of the proposed method, 
multiview images of another cultivar, Fukuyutaka, at different 
growth stages of 21, 28, and 42 DAS, were obtained (dataseta2). 
Each set of multiview images included 264 images, and approxi-
mately 130 images were subsampled.

These 5 soybean cultivars, which were included in the 
Japanese soybean mini-core collection [58], were obtained 
from the Genebank Project, NARO (National Agriculture and 
Food Research Organization).

To explore the potential applicability of the method to plants 
other than soybeans, multiview images of an individual of house 
plant (Aglaonema ‘Maria’) were captured, and each leaf was 
manually annotated (dataseta3). Using dataseta3, we attempted 
to reconstruct the 3D leaf edges based on the proposed method, 
excluding instance segmentation by Mask R-CNN.

We used a simple fixed photogrammetry system consisting 
of digital cameras (EOS Kiss X7; Canon, Tokyo, Japan), a turn-
table (MT320RL40; ComXim, Shenzhen, China), and a camera 
control application (CaptureGRID4; Kuvacode, Kerava, Finland) 
(Fig. S2) to obtain multiview images of 5,184 × 3,456 pixels.

Testing the method to reconstruct 3D leaf edges
Accuracy of 3D leaf edge reconstruction
We evaluated the accuracy of the 3D leaf edge reconstruction 
method for different leaf areas, image numbers, occlusion lev-
els, and noise levels on the datasets1. This evaluation was per-
formed on the simulated multiple-leaf data using the Fréchet 
distance [59] divided by the square root of the leaf area, here-
inafter referred to as the standardized Fréchet distance (SFD). 
The SFD was calculated for 3 individual plants with 8 different-
sized leaves (312 mm2 ≤ A ≤ 3,366 mm2) in several simulation 
scenarios, including different levels of occlusion (no, thin, and 
thick pillars), different numbers of multiview images (32, 64, 
and 128 images), and different degrees of positional noise affect-
ing the camera parameters (σ = 0, 1, and 3 mm). The Mann–
Whitney U test [60] with Bonferroni correction [61] was 
performed to investigate the differences in SFD among the dif-
ferent leaf area, positional error, and the number of images.

Optimization of the support thresholds
To obtain accurate 3D leaf edges, the support threshold (τt) 
should be set appropriately to balance the trade-off between 
the number and precision of the reconstructed 3D curve frag-
ments. We attempted to propose optimal support thresholds 
against occlusion indices (OIs) based on simulated virtual 
leaves by evaluating the precision-recall curve of the recon-
structed 3D edges on the datasets1. In this study, the OI of a 
target leaf was defined based on the sparse point cloud data of 
the target, as follows:

where m is the number of images; n is the number of points of 
a target instance; ni is the number of points of a target instance 
reprojected onto the i-th image; and OI is the occlusion index, 
where OI = 0 indicates no occlusion, and OI = 1 indicates 
complete occlusion.

For τt, the precision-recall curves in the ground-truth mesh 
and the reconstructed curve fragment were calculated in the 
simulation data. The optimal support threshold is the highest τt, 
with the highest recall when the precision h exceeded 0.99; the 
precision is the percentage of ground truths for which the recon-
structed curved fragments are within 30 mm, and the recall is 
the percentage of curved fragments for which the ground truths 
are within 30 mm. The simulation data were comprehensively 
tested for different precision and recall values with respect to the 
support threshold, which is defined as the ratio of image num-
bers to the total (from 0.125 to 1). If the precision did not reach 
one, the minimum value was used as the optimal support thresh-
old. The Mann–Whitney U test [60] with Bonferroni correction 
[61] was subsequently performed to investigate the differences 
in the optimal support threshold among the different leaf area, 
positional error, and the number of images.

Confirmation of the proposed method on actual  
soybean data
Regarding the instance segmentation of the leaves using Mask 
R-CNN, the model performance was evaluated on dataseta1. To 
calculate the accuracy of instance segmentation using Mask 
R-CNN, we performed group 4-fold cross-validation, in which 
each group corresponds to multiview images of each individual. 

(2)OI =
1

m

∑m

i=1

(
1 −

ni
n

)
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In each iteration, the model was trained on multiview image 
data of 3 individuals, split into training data (80%) and valida-
tion data (20%).

We demonstrated the performance of the proposed 3D leaf 
edge reconstruction method by applying it to individual soy-
beans (Fukuyutaka) at 3 growth stages (dataseta2). The 3D leaf 
edges were reconstructed using the support threshold proposed 
in the guidelines (Guidelines for setting support thresholds in 
3D edge reconstruction).

Applicability of the proposed method for more  
diverse leaves
Using the proposed method, we attempted to reconstruct com-
plex 3D leaf edges, which were challenging using point-based 
3D reconstruction. To demonstrate this, we applied the proposed 
method to virtual leaves of datasets2 (lobed leaf, leaf with serra-
tion, elongated leaves, and leaves with 1 to 6 holes) and actual 
leaves of dataseta3 (Aglaonema ‘Maria’). In the case of leaves with 
holes, DBSCAN was used to separate multiple holes and the leaf 
edge before the curve-based MVS reconstruction. Mask images 
corresponding to individual leaves in multiview images in data-
seta3 were manually created, and the 3D leaf edges were recon-
structed without the step of instance segmentation based on 
Mask R-CNN. In this study, the Mask R-CNN model was trained 
on dataseta1 consisting of only 4 soybean cultivars, and applying 
it to different plant species, crops, or cultivars requires training 
on a dataset tailored to them or a large dataset.

Results

Leaf edge reconstruction in 3D space on virtually 
generated leaf models
The proposed method was first demonstrated on virtual data 
generated from the models of single and multiple leaves under 
the ideal condition (i.e., specimens in datasets1 with no pillars 
and no camera positional errors).

On single virtual leaves, true mask images and camera param-
eters are known. Based on this assumption, 3D leaf edges were 
reconstructed by extracting the 2D leaf edges from true mask 
images and adopting a curve-based MVS reconstruction (Fig. 
4, upper row); the reconstructed leaf edges appeared along 
the edges. Notably, the support threshold τt strongly affected 
the performance of curve-based reconstruction; low τt values 
resulted in highly inaccurate 3D curve fragments, and high 
values resulted in 3D curve fragments that did not completely 
cover the leaf edges (Fig. S3). Details regarding τt adjustment 
are discussed later (see Generation of mask images from actual 
multiview images using Mask R-CNN).

Regarding the 3D edges of multiple virtual leaves of a single 
plant, they were reconstructed after identifying the correspon-
dences between individual leaves across the mask images, 
resembling reconstruction in the single-leaf case in all aspects 
except for considering the influence of occlusion (Fig. S4A). 
However, the correspondence of leaves among mask images is 
nontrivial in actual multiview images because the mask image 
is estimated for each individual image. Thus, we precisely esti-
mated the 3D leaf edges of multiple leaves in a single scene by 
incorporating a leaf correspondence identification step that 
prevented the generation of pair hypotheses between noncor-
responding leaves across views (Fig. 4, lower row, and Movie 
S1). In the absence of leaf correspondence identification, the 

number of reconstructed curve fragments decreased, and the 
vertical reconstruction error increased (Fig. S4B).

Accuracy of 3D leaf edge reconstruction under 
different conditions
We evaluated the accuracy of the 3D leaf edge reconstruction 
method for different leaf areas, image numbers, occlusion lev-
els, and noise levels, using datasets1 (Fig. 5 and Fig. S5). The 
SFD decreased with the increase in leaf area; the small leaves 
were more challenging to reconstruct than the larger leaves 
were (Fig. 5B). Small leaves had larger curvatures even if they 
had the same shapes, making it difficult for the curve-based 
MVS approach to reconstruct the correct curve fragments 
because 2D curve fragments had been frequently generated 
through splitting by a tangential epipolar line (see Curve-based 
3D reconstruction for details). The SFD increased with increases 
in the degree of noise at the camera positions. Although a less 
accurate camera extrinsic parameter estimation would increase 
the SFD, the effect might be limited under low noise (Fig. 5C). 
However, the SFD was less sensitive to the number of images 
and level of occlusion (Fig. 5D and E), considering that even if 
a leaf edge was obscured in an image, it could be complemented 
if it had appeared in other images [62].

Guidelines for setting support thresholds in  
3D edge reconstruction
The optimal support threshold increased for less occluded leaves 
(OI < 0.75), which had appeared in many images, because they 
had achieved both high precision and recall values by filter-
ing inaccurate 3D curve fragments (Fig. 6A). Highly occluded 
leaves (OI > 0.75) tended to have lower optimal support thresh-
olds at increased OI values, with the optimal values exhibiting 
large variations, which were attributed to differences in leaf 
areas, with larger leaves showing steeper trends. Furthermore, 
the optimal support thresholds decreased when the degree of 
camera positional error increased (i.e., low positional accuracies 
prevented precise filtering) (Fig. 6B) and increased slightly when 
there were more cameras (Fig. 6C). These trends were observed 
clearly in leaves with low to intermediate levels of occlusions 
(0.75 to 0.80) (Fig. S6).

Herein, we propose a guideline for determining the support 
threshold based on simulated data. We conducted Bayesian 
ridge regression on the optimal support thresholds against the 
OI based on the simulated data of 128 images with no camera 
positional noise (Fig. 6D). Moreover, we have provided the 
following qualitative guidelines: the slope of the linear regres-
sion models should be made a downward revision for large 
leaves (i.e., the trend becomes steeper when the leaf area 
becomes larger) (Fig. 6A); the camera positional error should 
be suppressed under a certain value (Fig. 6B); and the number 
of images should not be increased unnecessarily because 
improvements in estimation precision reduce when there are 
more images (Fig. 6C).

Generation of mask images from actual multiview 
images using Mask R-CNN
To generate a mask image for each leaf from multiview images 
of actual plants, we used Mask R-CNN [48], which is a DNN 
model used for instance segmentation. The performance of the 
model was evaluated on dataseta1 (the Confirmation of the pro-
posed method on actual soybean data). The model weights were 
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adopted at epoch 8,000, because the validation loss did not 
improve thereafter on the learning curve until epoch 10,000 
(Fig. S7). Individual leaf masks were generated using the trained 

model (Fig. 7A). The average precision (AP) values of the test 
data are listed in Table. Regarding the values, AP was 49.8, and 
AP large (APl) was 76.9, indicating that inference had been 

Fig. 5. Simulations for evaluating the accuracy of 3D reconstruction. (A) Three levels of occlusions are assumed: no pillars (left), thin pillars (middle), and thick pillars (right). 
Box plots of SFD for leaf area (B), positional noise (C), and the number of images (D). Asterisks indicate significant differences between groups (pairwise Mann–Whitney U 
tests, ns: P ≥ 0.05, *: P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (E) Scatter diagram of SFD against OI. The predictive distribution was estimated using Bayesian 
ridge regression (black line: mean, light gray region: mean ± SD) on the simulated data (blue dots).
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successful in a large region, resembling the trend in a previous 
study on generic object recognition [48]. On the other hand, 
AP middle (APm) and AP small (APs) were smaller than APl, 
suggesting that generating masks for small leaves had been 
challenging.

After evaluating the performance of the instance segmenta-
tion model, the model was trained on all images of the 4 indi-
viduals until epoch 8,000 (Fig. 7B). We adopted the trained 
model for the analysis of actual soybean data (Application of 
proposed method to actual soybean data).

Application of proposed method to  
actual soybean data
We demonstrated the performance of the proposed method 
on the actual multiview images by applying it to dataseta2, 

including individual soybeans at 3 growth stages (Fig. 8 and 
Movies S2 to S4). At the support threshold following the 
guidelines, inaccurate reconstructions were suppressed, but 
some leaves disappeared (Fig. 8, mean). At the lower support 
threshold than the proposed values, there was inaccurate 
reconstruction and the occurrence of artifacts, but almost all 
the leaves had been reconstructed (Fig. 8, mean − 0.5 SD). It 
was more challenging to reconstruct all the leaves at a later 
growth stage because of higher occlusions caused by increas-
ing the number of leaves. Several types of failure cases were 
observed: (a) single leaves were reconstructed as multiple 
leaves because point cloud segmentation had failed in the leaf 
correspondence step (Fig. 9A); (b) leaves were not recon-
structed because the small leaves had disappeared at the mask 
generation step (Fig. 9B); and (c) reconstructed leaf edges 
differed markedly from their original shapes owing to B-spline 

Fig. 6. Optimal support thresholds proposed based on the simulated leaf data. (A) Scatter diagram of optimal support thresholds against the OI. Each point corresponds 
to the optimal support threshold that achieves the largest recall when the precision is greater than 0.99. The colors of the markers indicate the leaf area. Box plots 
of optimal support thresholds for (B) camera positional noise and (C) multiview images. Asterisks indicate significant differences between groups (pairwise Mann–
Whitney U tests, ns: P ≥ 0.05, *: P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (D) Line plot of the mean (black line), the mean − 0.25 SD (orange dashed 
line), and the mean − 0.5 SD (green dashed line) of the predictive distribution of Bayesian ridge regression on the optimal support thresholds against the OI. The 
predictive distribution was estimated on the simulated data of 128 images with no camera positional noise (blue dots). The light gray region corresponds to the 
range of the mean ± SD.
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fitting in the cases where they had not been covered by 3D 
curve fragments (Fig. 9C).

Applicability and limitations of the proposed method 
to different types of leaves
To describe the generalizability of the proposed method, 
it was applied to datasets2, which featured complex leaf 
morphologies.

The 3D leaf edge of the lobed leaf was reconstructed using 
the proposed method, except for the deepest parts of the inden-
tation (Fig. 10A). Most of the 3D curve fragments were accu-
rately reconstructed along the leaf 's edge, including the most 
pronounced indentations; it was observed that the unsuccessful 
parts were attributable to the inadequate placement of knots in 
the B-spline curve fitting.

However, although the overall outline of serrated leaves was 
captured, the proposed method did not achieve the detailed 
reconstruction of each tooth in the serration (Fig. 10B). This 

was due to the generation of short curve pairs that were not 
adequately filtered out, resulting in an averaged reconstruction 
that lacked the serration details.

For elongated leaves, the edges were reconstructed, exclud-
ing the apex (Fig. 10C). Near the apex, there was a reduction 
in the number of reconstructed curve fragments, leading to the 
fitting of the B-spline curve predominantly in regions further 
from the apex. This problem became worse with an increase in 
the aspect ratio of the leaves, which correspondingly led to 
reduced accuracy in the reconstruction of the apex (Fig. 10D).

For leaves with 3 or fewer holes, the edges and holes were 
well reconstructed using the proposed method (Fig. 10E). 
However, as the number of holes increased, the precision of 
the reconstruction diminished. Especially for leaves with 5 
and 6 holes, the holes appeared perpendicular owing to 
decreased accuracy of the 3D curve fragment reconstruction 
(Fig. 10F).

All 3D leaf edges of Aglaonema ‘Maria’ were reconstructed 
using manually created mask images (Fig. 10G). Similar to 
other cases, the leaf apex exhibited slight chipping but was suc-
cessfully reconstructed, capturing the 3D undulation of the leaf 
edges.

Discussion
The proposed phenotyping approach, which includes instance 
segmentation of 2D images and curve-based 3D reconstruction 
that integrates the information into a 3D space, successfully 
reconstructed 3D leaf edges from multiview images of both 
virtual and actual plants (Figs. 4 and 8). The proposed method 
was available to reconstruct 3D leaf edges with complex shapes, 
achieving a degree of success in reconstructing features such 
as the lobed leaf (Fig. 10A) and leaf holes (Fig. 10C). Thus, we 
will be able to address the morphological characteristics of 3D 
leaf edges, which have been difficult to evaluate quantitatively. 

Fig. 7. Mask image generation using Mask R-CNN. (A) Example of predicted masks of leaves. (B) Line plot representing the losses of Mask R-CNN. The validation loss became 
constant after ca. 7,000 epochs.

Table. AP values of Mask R-CNN. Evaluated AP, AP50, AP75, APs, 
APm, and APl values on 4 individuals (Enrei, Zairai 51-2, Aoakimame, 
Saga zairai) as the test dataset.

AP AP50 AP75 APs APm APl

Enrei 30.8 42.3 33.0 0.7 8.1 65.2

Zairai 51-2 57.2 71.7 61.5 0.2 33.1 83.9

Aoakimame 45.1 58.9 48.2 1.0 30.6 78.3

Saga zairai 66.1 81.7 71.4 2.2 27.7 80.2

Average 49.8 63.6 53.5 1.0 24.9 76.9

D
ow

nloaded from
 https://spj.science.org on N

ovem
ber 10, 2024

https://doi.org/10.34133/plantphenomics.0181


Murata and Noshita 2024 | https://doi.org/10.34133/plantphenomics.0181 10

However, it was still challenging when dealing with morpholo-
gies exhibiting highly local variations, like serrations (Fig. 10B) 
and leaf tips (especially in elongated leaves; Fig. 10C and D). 
Owing to the inclusion of the leaf correspondence identification 
step, our approach is applicable not only to a single leaf but also 
to multiple leaves in the same scene (Fig. 4). The direct 3D 
reconstruction of leaf edges does not require the removal of 
artifacts from the background and allows the robust estimation 
of leaf edges in a 1-dimensional closed curve in 3D space. The 
simulation results showed that as long as the camera positional 
errors were not too large (~1 mm), the precision in estimating 
the leaf edges could be maintained (Fig. 5), even when the 
number of cameras had been reduced or the degree of occlusion 
had been changed. Considering these results, although the pro-
posed method works for individual plants with multiple leaves, 
further developments are required to apply it to major crops in 
dense canopies, which tend to have high occlusion and under 
field conditions where it is challenging to reduce camera posi-
tional errors (e.g., [32–35]). Moreover, the proposed method 
paves the way for solving the problem of point-based 3D recon-
struction methods such as SfM/MVS, which are struggling to 

distinguish real holes from artifacts (e.g., [47]). The proposed 
method correctly performs 3D reconstruction only for the 
holes in leaves recognized in 2D images instead of incorrectly 
recognizing these holes as the “negative” of the point cloud 
data. In our simulation, the holes were reconstructed well when 
the number of holes was less than 4 (Fig. 10E). Although the 
estimation was poor when the number of holes was greater 
than 4, the results would be improved by recognizing each hole 
as an individual instance in the instance segmentation step, 
similar to the approach in leaf correspondence identification 
(Fig. S4).

To improve the accuracy of 3D edge reconstruction, the 
following points should be considered: (a) tuning the hyper-
parameters, (b) improving the camera parameter estimation, 
and (c) improving the instance segmentation model. These 
points are elaborated as follows: (a) The hyperparameters used 
in the proposed method were tuned. We provided the guide-
lines for setting the support thresholds (τt) against the target 
leaf area (A), OI, the degree of positional error (σ), and the 
number of images (Fig. 6); however, other parameters also 
played crucial roles in 3D edge reconstruction. For example, 

Fig. 8. Reconstructed 3D leaf edges of actual soybean plants. Each row corresponds to a different growth stage (21, 28, and 42 DAS). Examples of a part of the 2D image 
of the multiview images are shown in the left column. Results of 3D leaf edge reconstructions with different support thresholds are shown in the right 3 columns: the 
mean − 0.5 SD, the mean − 0.25 SD, and the mean of the predictive distribution of the optimal support threshold to the OI of each leaf. Several failed cases are observed 
(see Fig. 9 for details).
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the fragment length potentially played a primary role in 
improving the accuracy of small leaves. In this study, we 
used a fragmentation length appropriate for larger structures 
((lmin, lmax) = (40, 100) and (lmin, lmax) = (80,200) for the simu-
lation and actual data, respectively) in the 2D edge extraction, 
which reduced the number of 2D curve fragments for smaller 
structures. In postprocessing using B-spline curve fitting, the 
number of knots should be tuned to capture high-curvature 
leaf edges (e.g., [63]). This will be critically important in recon-
structing complex leaf edge shapes, such as lobed leaves (Fig. 
10A). (b) Accurate camera parameter estimation improved 
the accuracy of 3D reconstruction. We robustly estimated 
camera parameters in SfM using coded and noncoded mark-
ers. A curve-based bundle adjustment for camera param-
eter calibration by minimizing the curve-based reprojection 
error, used by Fabbri and Kimia [50], could lead to accuracy 
enhancements. (c) Improving the AP values of the instance 
segmentation model improved the perform ance of 3D recon-
struction (Fig. 9B). The Mask R-CNN model trained on our 
dataset showed that APs that had been considered to account 
for most of the mask generation accuracy of small leaves were 
smaller than APl and APm and were unsuitable for recon-
structing immature leaves (Table 1). Therefore, it is desirable 
to expand the dataset, especially for small leaves. The use of 
pretraining models with large datasets, such as the segment 
anything model [64], is also promising for generating high-
quality mask images for each instance, especially when apply-
ing to leaves exhibiting diverse morphologies and textures. 
Alternatively, a model capable of directly recognizing ana-
tomical structures of interest in plants may be useful (e.g., 
[65,66]).

In this study, we proposed guidelines for setting the support 
threshold when applying the proposed method to actual plants. 

These guidelines mainly depend on the level of occlusion and 
noise and the number of images (Fig. 7). We investigated the 
advantages of the curve-based approach, learning that a limited 
number of images were sufficient for estimating 3D leaf edges. 
Reconstruction was successfully performed following these 
guidelines and verified using actual individual soybean data 
(Fig. 9). The guidelines helped us determine the configuration 
of the experimental designs and data acquisition scenarios, 
including the hyperparameters.

The proposed method is an essential technique for assessing 
the 3D morphological properties of leaves, which are challeng-
ing to quantitatively evaluate. These properties play a central 
role in balancing the multiple functional demands of individual 
plants and canopies [5–7], with traditional evaluations mostly 
being performed using 2D approaches (e.g., [21,22]). The pro-
posed method obtained 3D leaf edges, including their 3D posi-
tions, orientations, and sizes, relative to the configurations of 
organs in individual plants in a nondestructive manner (Fig. 
9). It is a promising method to capture whole-plant architecture 
combined with a method for estimating branches [67,68], other 
plant organs [69,70], and leaf anatomical structures including 
leaf veins [71,72], textures, and holes. Furthermore, FSPMs, 
which couple the 3D morphologies of plants with their physi-
ological dynamics, can be improved and validated using mor-
phological data obtained using the proposed method and their 
morphometric features (e.g., 3D elliptic Fourier descriptors). 
For example, the optimal morphologies and movements (e.g., 
optimal canopy structure [37], diurnal leaf movement [73], and 
leaf phototropism [74]) predicted using FSPMs in previous 
studies were tested to determine how they fit the experimental 
data and vice versa. Our proposed method contributes to filling 
this gap by successfully integrating hierarchical morphological 
properties into 3D spaces.

Fig. 9. Three typical failed cases of 3D leaf edge reconstructions. (A) Single leaf reconstructed as multiple leaves. Although a single leaf in the 2D image (right) is observed, 
the point cloud data of the leaf has been segmented into multiple clusters (middle). Then, 2 edges are reconstructed based on the leaf (right; blue and beige edges). 
(B) Leaves have not been reconstructed. A pair of cotyledons are observed in the 2D image (left). They have not been reconstructed because Mask R-CNN has failed to 
predict them (right). (C) Leaf edge that has been reconstructed far from the actual position. When the 3D curve fragments are not covered over the leaf edge (pink lines: 3D 
curve fragments), the B-spline curve is overfitted to the boundaries (green line: estimated B-spline curve).
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