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Bessel beam optical coherence microscopy enables
multiscale assessment of cerebrovascular network
morphology and function
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Mohamad El Amki 4, Rainer Leitgeb 5, Bjoern Menze3 and Daniel Razansky 1,2✉

Abstract
Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain
health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-
resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical
coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over
1000 × 1000 × 360 μm3

field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised
deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable
examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical
coherence tomography, our method enables the computation of both axial and transverse blood velocity
components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional
characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular
connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for
in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular
function and neurovascular pathologies.

Introduction
Cerebral vasculature, extending from large pial vessels

to the capillary bed, constitutes a complex network fun-
damental to supplying blood to the cortex1. Blood circu-
lation facilitates crucial brain functions via oxygen and
glucose delivery, whilst its failure plays a crucial role in
brain pathologies such as Alzheimer’s or stroke2,3. Ample
blood supply to all tissue regions is governed by the
complex interplay of the vascular network structure and
blood flow4,5. It is thus imperative to comprehensively
investigate vessel morphology and function across mul-
tiple vascular scales, from the microscopic capillary

dimensions to the network relationships on a macro-
scopic scale. Due to extensive interconnectivity of the
vasculature, many pathologies result in long- and short-
term blood flow velocity alterations. For example, Alz-
heimer’s has been linked with long-term cortical hypo-
perfusion, affecting vessel diameters as well as blood flow
velocities6,7. In stroke, a sudden local hypoperfusion is
caused by obstruction of a major vessel, but blood flow
may even increase in the surrounding regions in an
attempt to compensate through the remaining vascular
network8. Quantifying these functional regulations is
critical for a better understanding and treating neuro-
vascular pathologies, which can be greatly facilitated by
joint evaluation of morphological and functional flow
repercussions in vivo.
Intravital imaging techniques, such as laser speckle

contrast imaging (LSCI) and two-photon microscopy
(2PM), are widely employed in pre-clinical neurovascular
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research. However, these techniques fall short of captur-
ing the complexity of vascular networks and their variable
flow dynamics across multiple scales. Recently, ultra high-
speed 2PM approaches have been developed9, yet no
large-scale velocimetry assessments were reported.
Extended-focus 2PM systems, often employing Bessel
beams, increase the number of resolved vessels to the
detriment of depth resolution10. The dynamic light scat-
tering imaging technique11 can improve upon the spatial
resolution limitations of LSCI while addressing its other
drawbacks, such as overestimation of blood perfusion
reduction due to stroke. But the approach remains
inherently two-dimensional and lacks capillary resolution.
Other imaging techniques have also been successfully
used for functional brain studies in health and disease.
Optoacoustic tomography can resolve vascular morphol-
ogy and oxygenation in the whole mouse brain at high
frame rates, but its spatial resolution is only suitable for
rendering large brain vessels. Its high-resolution optoa-
coustic microscopy counterpart sacrifices imaging speed
and/or field-of-view (FOV) to attain capillary level reso-
lution in the lateral plane, yet it provides poor axial
resolution that hinders accurate depiction of three-
dimensional microvascular networks12,13. Recently,
localization-based approaches, such as ultrasound locali-
zation microscopy (ULM)14, localization optoacoustic
tomography (LOT)15, and widefield fluorescence locali-
zation microscopy (WFLM)16 are gaining interest due to
their high spatial resolution as well as intrinsic velocity
measurements across large FOVs. However, ULM and
LOT are not yet able to resolve the capillary bed whilst
WFLM is only suitable for superficial investigations fur-
ther lacking depth resolution. All in all, none of the cur-
rently available approaches can simultaneously provide
vessel morphology and blood velocity measurements at
isotropic capillary-level 3D resolution across a large
(millimeter-scale) FOV.
Optical coherence tomography (OCT) is a powerful

technique for rapid, label-free, three-dimensional imaging
of vascular morphology and function. When studying
cortical vasculature in mice, optical coherence tomo-
graphy angiography (OCTA) provides ample resolution to
resolve even the smallest capillaries while covering larger
volumes at faster scanning times in comparison to 2PM17.
However, OCTA is plagued by image artifacts that often
prohibit accurate volumetric blood vessel segmentation18.
Nevertheless, recent deep learning segmentation approa-
ches can adequately deal with OCTA artifacts and extract
vascular networks, allowing vessel-wise quantitative ana-
lysis7. Yet, these approaches are currently unable to fully
capture the cortical vasculature’s network characteristics,
encompassing the blood flow from pial arteries into diving
arterioles through the capillary bed and back through the
venous tree. This is largely due to the hard compromises

for the achievable FOV and depth-of-field (DOF) at the
given capillary resolution levels. While depth scanning
can be feasible, it prolongs imaging times thus diminish-
ing OCTA’s advantages in comparison to 2PM.
Additionally, Doppler optical coherence tomography

(DOCT) is capable of probing in vivo hemodynamics
across the entire imaged volume. However, DOCT pre-
dominantly provides axial flow velocity information,
whilst its performance is usually compromised in slow-
flowing capillaries19,20. Recent efforts have successfully
focused on extending the Doppler signal detection range
towards capillary level flows, as well as estimating trans-
verse flow velocities in larger vessels21,22. Transverse
blood flow velocity has also been estimated from OCTA
decorrelation times that, however, may saturate in larger
vessels and require carefully acquired calibration curves23.
Alternatively, a direct detection of RBC passages in
capillaries from the OCT signal constitutes an elegant way
to deal with the discrete nature of blood flow thus ren-
dering RBC flux akin to 2PM. But this approach is like-
wise limited to slow flows and smaller vessels17.
To overcome these limitations, we propose an inte-

grated acquisition and analysis pipeline that yields com-
prehensive metrics for both blood flow velocities as well
as morphological characteristics of the vascular network,
all across vessel scales and with minimal manual inter-
vention. To this end, two separate acquisition protocols
are employed. Namely, OCTA for high-resolution struc-
tural imaging and DOCT for sensitive blood flow velocity
measurements. Our approach capitalizes on the extended-
focus optical coherence microscopy (OCM) concept,
allowing to accurately capture vascular network con-
nectivity without depth-scanning. The method enables a
simultaneous, multiscale precision assessment of mor-
phology and function, a crucial need in understanding and
developing treatments for complex neurovascular condi-
tions such as stroke or Alzheimer’s. Taking advantage of
deep neural networks for segmenting OCTA volumes, the
automatic pipeline facilitates quantitative analysis of large
datasets that would otherwise be unfeasible. DOCT with
unprecedented capillary flow sensitivity further provides
axial and transverse blood flow velocities as well as flow
direction. Finally, we present a microvascular network
analysis, quantifying cerebral blood flow along its trans-
port route from pial arteries, through the capillary bed
and out via the pial vein structure.

Results
Extended depth-of-field enables single snapshot
visualization of vascular network parameters
Increasing the available FOV without sacrificing reso-

lution is a highly sought-after feature in any microscope
design. A typical approach to overcome the correspond-
ing trade-offs is depth scanning. This helps maintaining
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high lateral resolution while preserving high resolving
capacity in the axial dimension but comes at the cost of
substantially extended measurement time. In contrast,
OCM inherently provides axial sectioning along the
simultaneously recorded axial (depth) dimension, leading
to hard trade-offs between the lateral resolution and
confocally gated imaging depth. As a result, standard
OCM systems typically lack the distinct advantage of high
imaging speed as several depth-resolved yet confocally
gated axial scans need to be stitched at multiple axial
positions, which often renders other techniques like 2PM
better suited for high-resolution imaging of microvascular
networks.
We alleviate this challenge by employing an extended-

focus approach. Our extended-focus infrared OCM (xf-
irOCM) system (Fig. 1a) is devised as a Mach-Zehnder
interferometer and uses an axicon in the sample arm for
Bessel beam synthesis24. In contrast to common Gaussian
beams, Bessel beams provide a significantly expanded

DOF for microscopy designs10,25. This becomes particu-
larly attractive when paired with OCM, which does not
rely on optical sectioning to render high axial resolution.
Specifically, we use a decoupled technique with Bessel
illumination and Gaussian detection realized by a pierced
mirror. This approach has previously been shown to
provide an extended DOF as compared to pure Gaussian
beam systems as well as adequately deal with unsustain-
able losses of optical power due to a double passing of the
axicon in pure Bessel beam OCM24–26. Additionally, this
approach yields a dark-field contrast that further rejects
specular reflections25,27. In contrast to the previously
reported designs, a more powerful light source and opti-
mized beam-splitter ratios result in an over three-times
increased light power at the sample while still providing
ample reference arm power. This provides sufficient
signal-to-noise ratio for Doppler imaging along the entire
DOF. Because the optics remain unaltered from the pre-
viously reported implementation24, the system maintains
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high lateral resolution of approximately 3 μm, which only
slightly differs from 2.5 μm nominal width of the Bessel
beam.
Figure 1b showcases a volumetric angiogram recorded

with our xf-irOCM. The green box represents the in-focus
volume measuring 1000 × 1000 × 360 μm3. Capillaries are
clearly resolved throughout the volume. In contrast, the
blue box describes the DOF of a simulated OCM system
that employs a traditional Gaussian beam and is otherwise
identical to our system, achieving the same lateral reso-
lution of 3 μm in tissue. Its DOF is limited to roughly
50 μm in the ideal simulation case. Hence, when com-
pared to a standard confocal implementation, our xf-
irOCM achieves a minimum 7-fold increase in the
acquired volume of image data within the same acquisi-
tion time. To further quantify the advantage of the xf-
irOCM when analyzing microvascular networks, we
highlight its ability to accurately capture large-scale net-
work characteristics. In this context, we use a previously
published dataset that provides high-quality vascular
network segmentation maps in graph format acquired
using ex vivo imaging techiques1,28. From these segmen-
tation maps we extract the average node degree (Fig. 1c),
where each node represents a blood vessel bifurcation or
high curvature point, over increasing depth range. The
resulting curve emphasizes that narrow axial FOVs sever
many vascular network interconnections with the average
node degree approaching an almost constant value of
approximately 2.57 for increased axial FOV. In compar-
ison, the Gaussian system DOF (blue line) majorly
underestimates the average node degree to be 1.31, which
is equivalent to 49.2% of the steady-state value of 2.57,
because many capillary connections are severed by the
limited axial FOV. In contrast, the axial extent that is
equivalent to the xf-irOCM’s DOF (green line) captures
vessel connections with a much smaller 6.7% error per-
centage by estimating the average node degree to be 2.39.
Therefore, no axial scanning is necessary to obtain
accurate vascular network connectivity when imaging
with the xf-irOCM.

Volumetric total flow velocity measurements across vessel
scales using highly sensitive Doppler OCT and extended-
focus OCM
An overview of the integrated processing pipeline is

presented in Fig. 1d. OCTA imaging is required for
obtaining a detailed segmentation map of the cerebral
microvascular network, while DOCT provides blood flow
velocity and flow direction information. The OCTA
acquisition is fast and provides exceptional visibility of the
capillaries but does not offer a high enough spatial sam-
pling rate for Doppler measurements across a broad range
of the expected blood flow velocities. In contrast, the
highly sensitive DOCT acquisition yields quantitative flow

velocities but is slow due to temporal oversampling and
has no contrast for flows perpendicular to the probe
beam. In both regards, the xf-irOCM is uniquely suited
since the high NA provides capillary resolution as well as
sensitive flow measurements that, when done in a stan-
dard OCM configuration, would severely limit the axial
FOV. Additionally, an intralipid bolus is injected via the
tail vein prior to imaging to increase scattering in blood
vessels29,30. This yields increased visibility of capillaries in
OCTA, especially those oriented axially31, and aids
accurate DOCT in capillaries with discrete RBC flow
behavior29. Angiograms and Doppler datasets are
acquired sequentially but without idle time. Voxel-wise
Doppler spectra are obtained using the joint spectral and
time domain OCT (jSTdOCT) framework32. Additionally,
two crucial steps have been added. First, high spatio-
temporal oversampling of 250 A-scans at each position
enables detection of slow-flowing capillaries by yielding a
highly resolved Doppler spectrum and narrow constant
signal peak at zero frequency, referred to as DC peak in
the following. Second, high-pass filtering along the time
domain allows suppression of the DC peak in the Doppler
spectra, arising from mixed signals within voxels. Without
the filter, the signal from slow-flowing capillaries is
strongly overshadowed by the DC peak. The Doppler
power spectra (DPS) are then obtained by Fourier-
transforming all A-scans at each lateral position along
the time domain. Then, a modified Gaussian function is
fitted to the resulting DPS. Subsequently, the velocity’s
axial magnitude and direction are calculated from the
DPS’s mean Doppler shift. In contrast, only the transverse
velocity magnitudes can be obtained from the DPS’s
standard deviation, as previously derived for Bessel beam
OCM systems33. Total flow velocity magnitudes are
computed as the Euclidean norm of the axial and trans-
verse components. However, the lack of any transverse
flow direction components has so far prevented estab-
lishing precise blood flow directions with OCT. Taken
from an exemplary high-resolution angiogram (Fig. 2a),
the depth slice in Fig. 2b serves as an example for flow
velocity measurements across vessel scales. The Doppler
shift and Doppler standard deviation maps from the same
slice are presented in Fig. 2c & d, respectively. The red
arrow in the angiogram labels the cross-section of an
artery. Its DPS (Fig. 2e) shows a Doppler shift μ of
2119 Hz that is obtained by fitting a modified Gaussian to
the orange signal, solely depending on the axial velocity
component. This is equivalent to the Doppler shift that is
commonly calculated in DOCT20. However, in contrast to
the standard autocorrelation approach, the fit allows cal-
culating the DPS’s standard deviation σ that widens with
increased transverse flow velocities thus allowing their
estimation22,33,34. For the artery, σ is calculated to be
3817Hz, resulting in transverse flow velocity of 12.2mm/s,
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which is higher than the vein’s transverse flow velocity
of 8.5 mm/s (blue arrow in Fig. 2b, spectrum Fig. 2f).
Furthermore, our method is sensible enough to extract
the parabolic flow profile expected in large vessels with
approximately laminar flow (Fig. S1, Suppl. Results and
Disc. 1).
For the case of comparatively wide arteries and veins,

differences between the high-pass filtered signal (orange)
and unfiltered signal (blue) are minimal and do not sig-
nificantly affect the fit. A different perspective emerges
when examining the DPS (Fig. 2g) from thin and slow-
flowing capillaries (green arrow in Fig. 2b) that make up
the bulk of the cerebral vasculature. As capillary dia-
meters approach the voxel size, a blending of static and
dynamic components occurs35,36. In this scenario, the DC
peak of the unfiltered DPS dwarfs the capillary signal of
interest, as illustrated in a zoomed-in view (Fig. 2h).
Nevertheless, after high-pass filtering, a good fit can be
achieved with the axial and transverse flow velocities
accurately extracted from the capillary. Below large pial
vessels, this is currently only possible for penetrating
arterioles and venules and not capillaries due to multiple
scattering effects that broaden the distribution around the
zero frequency (Suppl. Results & Disc. 2). The additional
flow phantom experiments reaffirmed accuracy of the
flow velocity estimations (Figs. S2 and S3).

Deep learning-based vessel segmentation facilitates
network-wide mapping of blood flow velocity and
direction
Analyzing vascular networks across scales can be

accomplished by transforming the information from the
image domain into a graph-based representation1. How-
ever, such transformation necessitates accurate segmen-
tation of the imaged vasculature. Although OCTA can
accurately resolve capillaries, the data is often afflicted
with tail artifacts, locally varying SNR, and signal intensity
loss with vessel orientation, making the segmentation and
accurate delineation of the axial blood vessel extent dif-
ficult when using traditional methods such as threshold-
ing. Numerous strategies aimed at alleviating tail artifacts,
such as shape filtering37 and g1-autocorrelation38, have
not yielded satisfactory performance and fast acquisitions
without suppressing some capillary structures. While tail
artifacts are less pronounced in Bessel beam OCM due to
self-healing beam properties26,39, the existing threshold-
ing approaches remain inadequate40.
Instead, we utilize a supervised deep learning-based

approach that allows for accurate segmentation of vas-
culature across all scales in the murine cortex, from large
pial vessels to capillaries. Specifically, we finetune a pre-
trained 3D U-Net41–43 on a 350 × 350 × 350 µm3 manually
annotated volume. Pre-training was performed on
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simulated 3D data40, relying on synthetic vessel trees
constructed from physiological principles44. Exemplary
segmentation maps inferred by the trained 3D U-Net are
depicted in Fig. 3a, b. Analysis of the predicted segmen-
tation maps from multiple mice leads to the conclusion
that we manage to successfully eliminate tail artifacts
while capillaries are accurately and robustly segmented
even at the smallest scale, throughout the entire FOV and
across different animals.
The predicted segmentation map is subsequently pre-

processed by employing morphological closing for
smoothing (gray, Fig. 3c). By leveraging a skeletonization
algorithm optimized for vasculature45, smooth vessel
centerlines are obtained (red, Fig. 3c). From this, a vas-
cular network graph is derived in which vessel bifurcation
points and their connecting vessel segments are

respectively represented as nodes and edges. Next, flow
velocities are extracted for each vessel segment. Because
Doppler and angiogram acquisitions are performed
sequentially at the same position, axial and total blood
flow velocities can be extracted along each vessel segment
through local averaging after registering the datasets to
correct for the differing scanning protocols and upscaling
them to the same spatial resolution level. Finally, the
mean total flow velocity for each blood vessel is obtained
by averaging along the vessel length.
Blood flow velocities are defined not only by their

magnitude but also by their direction. DOCT can measure
the axial component of the flow, including its direction
relative to the probe beam. However, calculating trans-
verse velocities from the DPS standard deviation only
yields the velocity magnitude. For a comprehensive
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analysis, it is essential to also consider the lateral and
resulting total flow direction. In this context, the principal
flow direction within a blood vessel can only assume one
of two possible directions. Our study demonstrates that
combining the spatial constraints of 3D vessel segmen-
tation maps with the extracted axial flow component
allows the determination of blood flow direction in all
vessels exhibiting detectable axial flow (Fig. 3d). By arbi-
trarily defining a direction along the vessel centerline
(blue arrows) and comparing the local axial orientation of
the vessel segment skeleton with the Doppler flow
direction (red) at each position, the respective blood flow
direction for each vessel can be accurately determined.
Because tortuous capillaries can be partially or fully
oriented perpendicular to the imaging direction, few
vessels may have no Doppler signal. In these slow-flowing
vessels, even the lateral velocity is unobtainable if their
DPS is fully contained within the DC peak. In such cases,
we take advantage of the determined flow velocities and
directions in the directly interconnected surrounding
vessels. By enforcing zero net flow at each bifurcation
point, the missing flow velocity and direction can be
recovered if a vessel is connected to a bifurcation point
with otherwise known blood flow velocities and flow
directions (Fig. S4). Typically, <8% of vessel segments
cannot be assigned a velocity. After correction, this
number drops below 2%.

Known flow directions enable artery/vein classification of
pial vasculature and determination of the network-wide
branching order
The resulting microvascular network and total blood

flow velocities are depicted in Fig. 4a. The vessel diameter
distribution (Fig. 4b) agrees well with previously reported
data28,46. Furthermore, the imaged microvasculature
exhibits a total flow velocity distribution that peaks
between 1–3mm/s with >85% of vessel having flow
velocities below 5mm/s (Fig. 4c). These are almost
exclusively found in the capillary bed having vessel dia-
meters below 8 μm. Higher velocities are predominantly
manifested in larger vessels, as also evident from the
volumetric renderings (Fig. 4a). These vessel segments
exhibit longer lengths between branching points, resulting
in lower histogram counts for high velocities. To account
for these effects, we furthermore examined total flow
velocities independently for each vessel type, namely, the
arteries, veins, and capillaries, and relative to their per-
fused volume (Fig. 4d). Pial arteries exhibit the highest
flow velocities, reaching up to 30mm/s, while accounting
for 21% of the total blood volume. In comparison, pial
veins show reduced blood flow velocities but a larger
perfused blood volume of 33%.
In order to validate the proposed method in vivo, we

sequentially performed imaging with 2PM and OCM. We

chose 20 vessels and measured their respective RBC flow
using 2PM. Afterwards, the same vessels were manually
identified in the OCTA volume. Four vessels had to be
excluded from comparison since strong tail artifacts from
large pial vessels above hindered a successful segmenta-
tion. Higher blood flow velocities could not be compared
due to the scanning speed limitations of the 2PM system.
We find good agreement between the velocity measure-
ments (Fig. 4e). Remaining differences are likely attributed
to physiological changes over time, differing anesthesia
depth or imperfect fits of the extracted Doppler spectra.
Accurate vessel classification into arteries and veins

solely based on morphology is a challenging and time-
consuming task that requires expert domain knowledge. It
is further complicated when considering microscopes
featuring capillary-level resolution where the FOV is
usually limited with larger vessels not easily traceable back
to known landmarks that could aid their classification.
However, in the pial vasculature, the blood flow direction
provides a clear indication of the vessel type. In arteries,
the flow is directed towards smaller branches, distributing
oxygen rich blood to the brain via diving arterioles. In
contrast, the flow in veins is in the direction of larger
branches, collecting de-oxygenated blood from ascending
venules into larger veins. We further exploited the
directional flow information in conjunction with vascular
connectivity and morphology to facilitate efficient manual
labeling of the pial vasculature. By projecting vessel-wise
flow directions onto an angiogram maximum-intensity-
projection (MIP) (Fig. S5), manual artery/vein classifica-
tion for a 1000 × 1000 μm2 lateral FOV can be accom-
plished in <10 min.
From the labeled pial vasculature, the remaining vessel

segments in the network are assigned via label propaga-
tion until reaching pre-capillaries, which are identified as
having a median diameter below 12 μm. Furthermore,
each vessel segment is assigned an arterial and a venous
branching order by tracing the shortest path to the closest
segment belonging to the respective pial vasculature trees
(Fig. 4f). Figure 4g displays a zoomed-in MIP view of an
angiogram from Fig. 4f, in which the arrows indicate flow
direction, and their colors correspond to the branching
order. Branches of a pial artery can be identified by
observing the flow moving from the upper left corner
toward the central part of the image. The branches of a
vein are predominantly oriented horizontally. The green-
framed side-view MIP accentuates the variations in the
flow direction and vessel branching orders across the
entire imaging depth. It also illustrates how the diving
arterioles and ascending venules supply/collect blood to/
from the deeper capillary bed.
Finally, we investigated how the flow velocities change

throughout the microvascular network of multiple mice
when moving from arteries to veins. For each vessel
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each vessel type. e Velocity validation with respect to 2PM. The same animal was imaged sequentially with 2PM and OCM. 20 vessels were selected in the
2PM measurement and RBC flow velocity measured using line-scanning. The blue line indicates the linear fit (R2= 0.84) and the shaded blue area the 95%
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order or equivalently path length of all paths used in (h), before path length normalization. Error bars depict standard error of the mean (SE)
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segment not classified as artery or vein, the shortest paths
to the closest artery and vein are computed. Subsequently,
the flow velocities along the combined path from the
artery to the vein are gathered. In order to reject falsely
allocated direct connections between arteries and veins,
only paths that include at least three capillary segments
are considered. All paths in the network are normalized to
unit length to allow for a direct comparison. The median
total flow velocity of the capillary bed reaches its peak in
proximity to diving arterioles, then dropping below 3mm/s
toward the center of the capillary bed (Fig. 4h). The
velocities rise again towards ascending venules but remain
well below the arterial velocities. The comparatively ele-
vated median total flow velocities in the capillary bed can
be ascribed to the path length normalization, which may
weight short connections between arteries and veins with
higher velocities against connecting paths that traverse
deeply through the capillary bed and display slow flow
velocities. In order to account for the path length nor-
malization, Fig. 4i shows a histogram of all path lengths
before normalization. It is constructed from the mean
height across the three individual histograms with the
error bars indicating the resulting standard error of the
mean (SE). The capillary bed is characterized by an
increasing number of vessels at higher branching orders
until a branching order of approximately 15, forming an
intricate network. The branching order distribution fol-
lows an approximately Gaussian shape until a branching
order of 30. Lastly, the data acquisition and processing
have been proven highly robust and reproducible. All four
animals included in the current study were only imaged
once and we never had to reject a dataset due to its poor
quality or unexpected outcome.

Discussion
In this study, we introduce an advanced OCM approach

that employs Bessel beam illumination for extended focus
alongside a dedicated data-processing pipeline. The newly
introduced framework is shown capable of analyzing
morphological and functional parameters of the vascular
network across multiple scales and particularized vessel
types, enabling comprehensive examination of both
network-wide effects and the intricate contributions of
individual vessels, all the way from pial arteries and veins
to the finest capillaries. The system’s extended focus offers
an expansive field-of-view (1000 × 1000 × 360 μm3),
allowing for snapshot acquisitions capturing the char-
acteristics of large vascular networks comprehensively. To
address the challenge of analyzing complex, information-
dense datasets, we implemented automatic tools, includ-
ing a deep learning-based 3D vessel segmentation net-
work paired with highly sensitive DOCT for extraction of
total flow velocity and direction. This approach not only
highlights the importance of data-driven research in

advancing our understanding of vascular networks but
also demonstrates unprecedented sensitivity to flow
dynamics, facilitating novel insights that cannot be carried
out using a manual analysis.
Thus far, in vivo studies of the microvascular network’s

morphology and function have often been performed with
a combination of LSCI and 2PM3,47. Our method provides
the high level of detail approaching that of 2PM while
offering morphological information and total flow velocity
measurements across all imaged vessels. Notably, a recent
OCM study has looked into longitudinal vascular network
alterations during the onset of Alzheimer’s disease7.
However, conventional OCM approaches are plagued by
hard compromises between the spatial resolution, depth
of field and imaging speed, which limits their ability to
extract and quantify vascular network characteristics
across scales. A multi-modality approach has also been
introduced, exploiting the superior resolution and SNR of
2PM combined with traditional DOCT to probe into flow
velocities48. In contrast, OCTA volumes are directly seg-
mented with our method, thus circumventing the higher
system and registration complexity of the multi-modality
system. Furthermore, our approach does not rely on angle
estimation, which is inherently noisy when it comes to
laterally branching vessels commonly found in the capil-
lary bed. The same applies to the primarily laterally
oriented pial vasculature for which even small angle
estimation errors may lead to severely over- or under-
estimated total flow velocities.
Blood flow velocity alterations due to the cardiac cycle

do not influence local flow variations because the dwell
time at each recorded position effectively averages the
flow over approximately 2.5 periods of the cardiac cycle49.
While this scanning protocol currently prohibits probing
of short-term flow dynamics, such as the cardiac cycle or
neurovascular coupling, it provides reliable flow velocity
measurements that are comparable across the entire
image volume. Future studies may adjust this trade-off,
depending on the time scale of interest and desired sen-
sitivity to slow velocities.
In summary, the introduced comprehensive, data-

driven xf-irOCM pipeline represents a significant leap
forward in in vivo quantification of morpho-functional
parameters of cerebral vasculature across scales. Our
approach offers new perspective on the microvascular
connectome of the living brain, thus extending the fron-
tiers of research into cerebrovascular function and neu-
rovascular pathologies.

Materials and methods
xf-irOCM system
The imaging setup is devised according to the general

concept of extended-focus OCM design24,25. Several
adjustments have been made in order to facilitate optimal
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velocity estimation. Briefly, at the system’s core is a Mach-
Zehnder interferometer that allows splitting the illumi-
nation and detection modes. The xf-irOCM employs a
broad-bandwidth SLED source (EBS300040-02, Exalos
AG, Switzerland), centered at 1315 nm. The light source
has a 3 dB optical bandwidth of 120 nm and an output
power of 30 mW. The light is split by a 90:10 beamsplitter
and subsequently guided into the imaged sample and
reference arms, respectively, optimizing the available
power on the sample with respect to the previous
iteration.
The light in the sample arm is similarly coupled into

free space and then guided through a 178-degree axicon
(Asphericon, Germany) to synthesize a Bessel beam. The
beam is spatially filtered using a custom mask, rejecting
stray light from the center of the annular beam. A pierced
mirror decouples the illumination and detection light
paths. Beam scanning is performed using two galvan-
ometer scanners. A 10x IR-optimized objective
(LMPLN10XIR, Olympus, Germany) focuses the light on
the sample. The back-scattered light is collected via
Gaussian mode detection as originally proposed by Leit-
geb et al.25. Critically, the collected light’s path crosses the
pierced mirror through the central hole and is then
coupled into a single-mode fiber to be injected into a
custom-built spectrometer for detection by a line scan
camera (SU1024LDH2, Sensors Unlimited, USA).

OCM data acquisition
In this work, two different acquisition protocols are

used for OCTA and DOCT. After anesthesia and prior to
imaging, a 100 μl bolus injection of 20% Intralipid is
administered. The scanned FOV is kept constant at 1 mm
× 1mm in both cases. For the OCTA acquisition, an
A-scan rate of 46 kHz is used. Along the fast axis,
8 repeated B-scans with 512 pixels are recorded at each
position. This is repeated for each of the 512 positions
along the slow axis, resulting in an isotropic lateral pixel
size of ~2 μm. The DOCT acquisition protocol uses an
A-scan rate of 23 kHz and M-mode scanning, acquiring
250 A-scans at each lateral position, before moving to the
next one. Here, the scanning grid consists of 256 pixels
along both lateral dimensions, yielding a pixel size of
4 μm. The total acquisition time for one DOCT volume is
approximately 12 min. In this work, three DOCT volumes
are acquired for averaging.

Image registration
The Doppler volume is registered to the angiogram

volume from the same acquisition. This step is neces-
sary due to the different scanning regimes. Instead of
using the Doppler velocity volume directly, we use a
volume in which each voxel corresponds to the
maximum value of its respective Doppler spectrum

(Doppler amplitude Dmax), as depicted in Fig. S6a. The
result (Fig. S6b, left) resembles an angiogram (right)
much better than the quantitative Doppler frequency
(middle). First, we fit a 3D affine transform, followed by
a 3D deformable transform with 6 × 6 × 6 anchor
points. Fig. S6c compares how the angiogram and
Doppler datasets overlap before and after registration.

High-sensitivity velocity estimation from Doppler OCT
We use the joint spectral-time domain OCT (jSTdOCT)

framework to facilitate Doppler signal detection with high
sensitivity32. Briefly, at each spatial location the 250
reconstructed A-scans are treated as a timeseries. First, a
high-pass filter with a cut-off frequency of 270 Hz is
employed along the time dimension. Afterwards, a Fourier
transform, zero padded to 4096 values, is applied along
the time dimension. This, following the jSTdOCT
approach, yields interpolated Doppler spectra for each
voxel. Subsequently, a modified Gaussian is independently
fit to each Doppler spectrum as described previously by
Bouwens et al.33. Due to the large number of necessary
fits, we take advantage of the Gpufit library to provide fast
fitting performance at large scale50. Additionally, the
resulting fit parameters and goodness of fit (R2) are used
to filter out badly fitted spectra and static tissue voxels. An
additional step further rejects remaining static tissue
voxels by adaptive thresholding of the Doppler spectrum
intensity volume. Finally, axial and transverse velocity
components are calculated for the remaining Doppler
spectra, using mean and standard deviation, respec-
tively33. The axial (vz)and transverse (vtransv.) flow velocity
components are then combined using the Euclidean norm
to compute the total velocity (vtot):

vtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2transv: þ v2z

q

Blood vessel segmentation and noise reduction
To accurately segment blood vessels at all scales in

OCTA volumes, we employ the U-Net architecture42,
which has been shown to achieve high-quality segmen-
tation maps in various 2D and 3D biomedical imaging
scenarios43. The detailed architecture of our 3D U-Net
variant highlighting our design choices is depicted in
Fig. S7.
To mitigate the need for large-scale manual annota-

tions, we first pre-train our U-Net for 300 epochs on
synthetic data provided by Wittmann et al.40. In this
context, the synthetic images and their corresponding
ground truth labels originate from physiologically plau-
sible vascular trees that have been constructed based on a
simplified angiogenesis model44. While vascular trees
transformed to 3D volumetric data represent ground
truth labels, synthetic images rely on a synthesis pipeline,
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simulating and matching the most dominant 3D OCTA
artifacts to OCTA images at hand. The resolution of the
synthetic data has been adjusted so that small, simulated
vessel segments match the size of capillaries in our OCTA
images.
Subsequently, we finetune the U-Net for 100 epochs on

manually annotated data. The annotation process was
conducted and validated by two trained experts, who
manually labeled a volume of 160 × 160 × 160 voxels
(350 × 350 × 350 µm3). During the annotation process,
special care was given to exclude tail artifacts and account
for blood-flow-dependent variations of vessel signal
intensities31. The training volume contains an equal
portion of large pial vessels and capillary bed and can,
therefore, be seen as highly representative of the char-
acteristics of OCTA volumes analyzed in this work. We
find finetuning on manually annotated data to be a crucial
step to adequately cope with OCTA-specific artifacts38,51.
Given that we find variations between OCTA images
minimal, we opted to train on a single large volume, as
opposed to multiple small volumes, to extract the highest
possible number of random patches from the training
volume and thus maximize the diversity of the data used
to train our model.
During model development, we tuned hyperparameters

on a separate manually annotated validation volume and
finally evaluated the model’s performance on a held-back
manually annotated test volume. Both the validation and
test volume are of the shape 160 × 64 × 160 and originate
from different experiments involving different mice.
Quantitative results on the validation/test volume (model
pre-trained on synthetic data & finetuned on training
volume: 0.8033/0.7891 Dice; model trained solely on
training volume: 0.7748/0.7737 Dice; model trained solely
on synthetic data: 0.6110/0.5637 Dice) indicate that fine-
tuning on manually annotated data is a crucial step to
adequately cope with OCTA-specific artifacts38,51 while
pre-training on synthetic data results in an additional
performance boost of +0.0285/0.0154 Dice. More detailed
quantitative results are provided in Table S1. Qualitative
results depicted in Fig. S8 reveal that pre-training on
synthetic data enables the model to capture small capil-
laries more accurately. To facilitate future research and
reproducibility, we open-source our segmentation pipe-
line at https://github.com/bwittmann/octa-unet, as well
as trained models and annotated volumes at https://
huggingface.co/bwittmann/octa-unet.
We trained our 3D U-Net variant on a single NVIDIA

V100 GPU (16 GB) using the AdamW optimizer with a
learning rate of 1e-5, optimizing the average Dice loss
function52, which is particularly suited for segmentation
tasks subject to class imbalance. During training, we feed
mini-batches of size 32, composed of image crops at
random locations of the shape of 64 × 64 × 64 voxels, to

the segmentation model. With a batch size of 32, each
epoch consists of 312 iterations. To increase the diversity
of our training data and hence tackle overfitting, we make
use of several data augmentation techniques. Specifically,
we apply a variety of intensity-based (random Gaussian
noise, random Gaussian smoothing, random transforma-
tions to the image’s intensity histogram) and spatial
(randomly flipping, random rotation, random zoom)
augmentations. Since our U-Net has been trained on
crops, we employ a sliding window inference scheme with
an overlap of 90% between crops.

Skeletonization and graph construction
Skeletonization and graph construction is performed

using Voreen45. It performs well on vessel datasets, ren-
dering subsequent skeleton cleaning unnecessary. Voreen
only requires the non-dimensional input bulge size which
we empirically optimize to 3. The graph representation
assigns nodes to all skeleton bifurcation- and endpoints
while edges represent the remaining skeleton. Each edge
is also assigned further information such as length, dia-
meter, tortuosity among others. Furthermore, for each
edge, one connected node is arbitrarily assigned to be the
start and the other to be the endpoint.

Vessel diameter fitting
We ensure accurate vessel diameters at capillary scale

through an additional cross-section fitting step. This is
performed along all vascular network skeleton voxels. At
each skeleton voxel, a 1D Gaussian function is fit to a line
profile obtained from the OCTA volume. The line profile
is orthogonal to the vessel direction to obtain more
accurate vessel diameters. Only fitted Gaussians with an
R2 > 0.8 are kept. Then, a moving average is used to obtain
the diameter profile along the vessel segment and an
average diameter for the entire vessel is calculated.

Velocity estimations in individual segments
Vessel segment-wise velocity data is obtained by com-

bining the registered total flow velocity Doppler volumes
and locally averaging spheres with diameters extracted
during the previous fitting step. For each skeleton voxel,
we gather all total as well as axial flow velocity values.
Then, the skeleton position is assigned total and axial
velocity values computed as the mean of the highest 30%
of respective velocity values within the local sphere (Fig.
S9). This empirically determined value yields the best
trade-off in terms of comparison with 2PM validation
experiments (Fig. 4e). Next, a moving average operation is
performed along each vessel segment’s skeleton voxels to
ensure smooth velocity variation along the vessel seg-
ment. Finally, we compute the total flow velocity for the
vessel segment as the median value of all skeleton
positions.
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Estimation of the missing velocities
In case of missing velocities, we estimate the segment’s

flow velocity from its connected vessel segments (Fig. S4).
At each of its two nodes, we enforce conservation of mass,
requiring equal inflow and outflow, that is equivalent to a
zero net flow at each node. Here, we take advantage of
known flow directions and assume that the local blood
density is constant. Using the flow information from the
other connected vessels and the known vessel diameter,
we estimate an average flow velocity as the average of the
computed value from its two nodes. If one node is an end
node or has multiple connected vessels with missing
velocity information, only the other fully described node is
considered. This algorithm is iteratively repeated until all
segments have been assigned a velocity or no more seg-
ments can be fixed.

Phantom experiments
We performed multiple phantom experiments to vali-

date our method for total blood flow velocity estimation.
All phantom experiments are conducted using 180 μm
inner diameter plastic tubing. We used 1.5% intralipid
solution as a blood substitute. A syringe pump was
employed to accurately control flow velocities. To evalu-
ate the accuracy of the flow velocities, the tubing is placed
at an 8-degree angle and the velocity is slowly increased in
steps with ample time in between to ensure steady-state
syringe pump performance (Fig. S2). In a second phantom
experiment, the syringe pump is set to a constant rate,
resulting in a flow velocity of 10 mm/s. Then, the phan-
tom is axially shifted through the focus to validate out-of-
focus performance (Fig. S3).

Animal handing
Experiments were performed on four female C57Bl6/J

mice (no.028, Charles River Laboratories, USA), 6 to
12 weeks of age, weighing 25–30 g. The mice were housed
under standard conditions, including free access to water
and food as well as an inverted 12-h light/dark cycle. For
headpost and cranial window implantation, animals were
injected intraperitoneally with a triple mixture of fentanyl
(0.05 mg/kg body weight; Sintenyl, Sintetica, Switzerland),
midazolam (5 mg/kg body weight; Dormicum, Roche,
Switzerland) and medetomidine (0.5 mg/kg body weight;
Domitor, Orion Pharmaceuticals, Switzerland). The face
mask delivers 100% oxygen at a rate of 300 mL/min. After
cranial window implantation, mice were allowed to
recover for two weeks prior to imaging. For OCT and
2PM imaging, mice received the same triple anesthesia
mixture intraperitoneally. During all procedures, the
animals’ core temperature was maintained at 37 °C using a
thermostatic blanket heating system (Harvard Apparatus,
USA). All animal experiments were performed in accor-
dance with the Swiss Federal Act on Animal Protection

and approved by the Cantonal Veterinary Office Zurich
(license number ZH030_2023).

Two-photon microscopy reference experiments
Two-photon microscopy (2PM) was performed to

obtain reference velocity measurements in vivo. After
anesthesia, Cascade blue Dextran (5% w/v, 10,000
kDamw, 100 μl, D-1976, Life Technologies, USA) was
injected intravenously 10min before imaging and excited
at 820 nm to visualize the vasculature. Next, we acquired a
300 μm depth-stack of 400 × 400 μm2 images of the cor-
tical vasculature. From the 3D image stack, we chose 20
vessels and measured their respective RBC velocities using
repeated line scanning and the Radon algorithm53. Sub-
sequently, we acquired an OCM dataset at the same
position using the method described in this work. Finally,
we manually matched the 20 vessels between the two
datasets. Four of the vessels could not be matched because
they were obscured by the tail artifacts of larger vessels in
the OCM dataset.

Software and statistical analysis
The processing pipeline was developed using Matlab

(R2021b, MathWork, USA). Additionally, we used some
functions from the open-source code provided by Stefan
et al.46. Registration was done using SimpleITK (v2.3,
simpleITK.org). The deep learning pipeline builds upon
PyTorch (pytorch.org) and MONAI (monai.io). The 2PM
was controlled by a customized version of ScanImage
(r3.8.1, Janelia Research Campus). Analysis of the ex vivo
vessels graphs from Blinder et al.1 was performed using
Python (Python 3.10). Volumetric renders as shown in
Figs. 1d and 4a were rendered using Amira (2020.3,
Thermo Fisher Scientific Inc., USA). Plots were created
using either Matlab (R2021b, MathWork, USA) or R
(v4.3, r-project.org) and the ggplot2 package (v3.4,
ggplot2.tidyverse.org).
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