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The cell-type underpinnings of the human 
functional cortical connectome

Xi-Han Zhang    1  , Kevin M. Anderson1, Hao-Ming Dong    1, Sidhant Chopra    1, 
Elvisha Dhamala    2, Prashant S. Emani    3, Mark B. Gerstein3,4,5,6, 
Daniel Margulies7 & Avram J. Holmes    8 

The functional properties of the human brain arise, in part, from the vast 
assortment of cell types that pattern the cerebral cortex. The cortical sheet 
can be broadly divided into distinct networks, which are embedded into 
processing streams, or gradients, that extend from unimodal systems 
through higher-order association territories. Here using microarray data 
from the Allen Human Brain Atlas and single-nucleus RNA-sequencing 
data from multiple cortical territories, we demonstrate that cell-type 
distributions are spatially coupled to the functional organization of cortex, 
as estimated through functional magnetic resonance imaging. Differentially 
enriched cells follow the spatial topography of both functional gradients 
and associated large-scale networks. Distinct cellular fingerprints were 
evident across networks, and a classifier trained on postmortem cell-type 
distributions was able to predict the functional network allegiance of 
cortical tissue samples. These data indicate that the in vivo organization 
of the cortical sheet is reflected in the spatial variability of its cellular 
composition.

A core goal of research in the brain



 sciences is to understand the multi-

scale relationships that link molecular and cellular processes with the 
in vivo functional organization of the human cerebral cortex. Histori-
cally, the definition of borders and associated areal parcels along the 
cortical sheet were determined by invasive techniques including histol-
ogy, anatomical tract tracing, electrophysiology and lesion methods. 
Through these approaches, neuroscientists and histologists produced 
landmark maps that divide territories based on regional patterns of 
cytoarchitecture1–4, revealing the presence of both serial and parallel 
information processing hierarchies5,6. Recently, the development of 
dense spatial transcriptomic atlases has enabled the study of cellu-
lar correlates of brain function in humans, for instance, as estimated 
through functional magnetic resonance imaging (fMRI)7. Initial work 
established molecular correlates of large-scale network organization7–9, 

including genes encoding ion channels10 and those enriched in supra-
granular layers of cortex11, as well as associations between the spatial 
distribution of interneuron-linked genes and regional differences in 
fMRI signal variability12,13. However, the extent to which associated ex 
vivo cellular architectures mirror the hierarchical functional proper-
ties of the human cerebral cortex as measured by resting-state fMRI 
(rs-fMRI) has yet to be systematically investigated.
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From sensation through cognition 



and action, the human cortex 

is organized into a multiscale system composed of areal units situated 
along segregated processing streams6,14,15. These units, or parcels, 
are embedded within corresponding networks evident through ana-
tomical projections, task-evoked functioning and patterns of intrinsic 
activity16–18. Supporting this network architecture, converging evi-
dence indicates the presence of a broad division separating unimodal 
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independent postmortem brain tissue. These data help address a key 
challenge in neuroscience to understand how cell-type distributions 
may underlie the in vivo functional properties of the human brain, 
establishing spatial correspondence between regional cellular profiles 
and the hierarchical organization cortex.

Results
The large-scale functional organization of the human cortex
The multiscale and hierarchical organization of cortex was character-
ized through both gradients and large-scale networks (Fig. 1). Diffusion 
map embedding20,39,40 was applied to decompose vertex-level rs-fMRI FC 
into continuous gradients that capture the maximum variance in data 
from the Human Connectome Project (HCP, n = 820)41. To allow for func-
tional measures to be associated with cellular profiles, the vertex-level 
gradient values were parceled into the Schaefer 400 atlas32. Parcel-level 
network assignment was obtained as detailed in ref. 23 (Fig. 1a). Next, we 
use these complementary gradient- and network-based approaches as 
a foundation to establish the cellular associates of the in vivo functional 
organization of the cerebral cortex.





The current analyses focused on the first two primary gradients, 
reflecting the canonical information processing hierarchies in the 
human cortex6. Unlike linear methods that reduce geometric dimen-
sionality, diffusion map embedding allows topologically similar local 
and long-distance connections to be placed into common spaces with 
interpretable architectures20,40. The resulting gradients are unitless 
and reflect the position of vertices along an associated embedding 
axis that captures the primary differences in FC patterns. Consistent 
with previous work20,40, the architecture of the first gradient (gradi-
ent 1) spans from unimodal areas (including primary visual, auditory, 
somatosensory and motor cortex) through transmodal, or association 
(default network), territories (Fig. 1b). The peak values in the second 
gradient (gradient 2) were evident along the central and calcarine 
sulcus, differentiating the somato/motor cortex from the primary 
visual system (Fig. 1c). The first two gradients account for a substantial 
proportion of the variance in FC (gradient 1, 26%; gradient 2, 12%). As 
initially reported in ref. 20, large-scale networks23,32 are distributed 
across the cortical sheet and spatially ordered along these first two 
primary gradients (Fig. 1d), a property of cortical organization reflected 
in the repeating transitions between networks across cortical lobes. 
These data highlight complementary analytic frameworks that situate 
large-scale cortical networks and functions in separate domains along 
overlapping organizing axes.

Univariate cellular associates of cortical gradients
Areal parcellations derived from rs-fMRI have been shown to follow 
boundaries of select histologically and structurally defined architec-
tonic areas, for instance, within somato/motor territories and puta-
tive language areas23,32. However, the extent to which regional cellular 
profiles spatially covary with the hierarchical organization of cortex 
has yet to be fully established in vivo. To relate inferred spatial distri-
butions of ex vivo measured cell types to the two primary functional 
gradients, we estimated cell-type abundances using Allen Human 
Brain Atlas (AHBA) postmortem bulk gene expression samples via a 
previously validated method (Methods; Extended Data Fig. 1a)7. Tran-
scriptional signatures identifying cell class in the AHBA bulk samples 
were derived from cortical snRNA-seq data of eight cortical areas as 
reported in the study discussed in ref. 38 (Extended Data Figs. 1 and 2).  
The present analyses focused on 24 cellular classes with distinct lami-
nar specialization, developmental origins, morphology, spiking pat-
terns and broad projection targets42 (details in Extended Data Table 1). 
These cells include nine GABAergic inhibitory interneurons (PAX6, 
SNCG, VIP, LAMP5, LAMP5 LHX6, chandelier, PVALB, SST CHODL and 
SST), nine glutamatergic excitatory neurons (L2/L3 IT, L4 IT, L5 IT, 
L6 IT, layer 5 extratelencephalic-projecting (L5 ET), L5/L6 NP, layer 
6 corticothalamic-projecting excitatory neurons (L6 CT), L6b and 

Q10

somatosensory/motor (somato/motor) and visual territories from the 
heteromodal association areas that integrate long-distance projections 
across distributed brain systems5,19. This hierarchical organizational 
property is reflected in the presence of functional gradients that span 
the cortical sheet, situating distinct networks and corresponding 
areal parcels along a continuous spectrum20,21. These gradients reflect 
low-dimensional representations of functional connectivity (FC), with 
the first, or primary, gradient anchored at one end by unimodal regions 
supporting primary sensory or motor functions and at the other end 
by the association cortex22. The second gradient reflects a sensory 
organization anchored at each end by either visual or somato/motor 
cortex20,23. However, while recent evidence suggests a genetic basis 
for the macroscale organization of the cortex24–26, the extent to which 
diverse cellular profiles may underpin aspects of functional brain 
organization remains to be established.

The translational challenge of linking molecular and cellular pro-
cesses with properties of functional organization is addressable, in 
part, by integrating transcriptomic data from ex vivo tissue samples 
with estimates of in vivo brain function7. Classic neuroanatomical 
discoveries revealed the evolutionary processes and developmental 
mechanisms that constrain the layout of cortical areas, their corre-
sponding microstructure and anatomical connectivity22,27. 




Recent work 

supports the presence of broad axes of cortical organization22,28, for 
instance, as reflected in the spatial distribution of receptor densities29, 
intracortical myelination30 and regional estimates of transcriptomic 
distinctiveness31. Preliminary studies associating gene expression to 
functional networks have revealed shared enrichment of genes among 
anatomical regions that are functionally coupled8,10,11, perhaps reflect-
ing the network-preferential presence of particular cell types. In line 
with this conjecture, subsequent work indicates that spatial profiles of 
fMRI signal variability follow the relative distribution of parvalbumin 
(PVALB)-expressing and somatostatin (SST)-expressing inhibitory 
interneurons12, broadly separating unimodal and association cortices. 
Intriguingly, select areal boundaries derived from rs-fMRI have also 
been shown to correspond to histologically and structurally defined 
architectonic areas17,23,32,33. However, while these data suggest a link 
between the microscale (molecular and cellular) and macroscale (gra-
dients and networks) properties of brain organization, our understand-
ing of how the complex functional architecture of the cerebral cortex is 
supported by diverse cell types remains fragmentary. One possibility 
is that the relative preponderance of certain cell classes may spatially 
couple to gradually shifting gradient patterns across the cortical sheet. 
An alternative, but not mutually exclusive, hypothesis is that the spatial 
distribution of cortical cell types tracks the topographic organization 
of functionally connected but spatially distinct networks.

Cell types exhibit divergent properties, encompassing their mor-
phology, electrophysiology, cell–cell connectivity and molecular 
content. Although these multidimensional features do not neces-
sarily vary concurrently, recent developments in high-throughput 
single-nucleus RNA-sequencing (snRNA-seq) data have a key role in 
characterizing broad profiles of cellular gene expression34. From tech-
nologies characterizing multimodal features of single cells, such as 
patch-seq35, transcriptionally defined cell types demonstrate electro-
physiological and morphological distinction36,37. Here we examine the 
association between functional gradients, networks and the spatial 
distribution of cell types, inferred through single nuclei from eight 
cortical regions38 and patterns of gene transcription from bulk-tissue 
samples resected from donor tissue across cortex7. We demonstrate 
that imputed cell-type distributions spatially track the gradient organi-
zation of cortex, both at the level of individual cell types and multi-
variate cellular profiles. Suggesting the presence of a complementary 
network structure of cellular organization, distinct cellular enrichment 
patterns were also evident across large-scale networks. These cellular 
fingerprints can be used to predict the network allegiance of cortical 
parcels from their corresponding cell-type abundance measured in 

Q9

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01812-2

Car3-like layer 6 intratelencephalic-projecting excitatory neuron  
(L6 IT Car3)) and six non-neuronal cells (Astro, Endo, VLMC, Oligo, OPC 
and microglia/perivascular macrophage (micro/PVM)). The widely 
used snRNA-seq data provided in ref. 43 were compared with these cell 
types (Supplementary Fig. 3), as a technical replication of the observed 
cell-to-function relationships (Supplementary Information).




 The 

abundance of each cell type was estimated in available bulk samples, 
which were further aggregated into the 400 cortical parcels (Methods). 
The resulting distributions of parcel-level cell-type abundances were 
examined relative to the in vivo functional gradient organization of the 
cortex. Statistical significance was established using permuted spin 
tests accounting for the spatial autocorrelation44,45, FDR-corrected 
for 24 comparisons per gradient.

The associations between gradients and cell types are



 displayed in 

Fig. 2a (Lake dataset in Extended Data Fig. 4). Figure 2b,c shows univari-
ate cell-type associations, and the full results are displayed in Extended 
Data Figs. 5 and 6 (Lake dataset in Supplementary Figs. 1 and 2). The esti-
mated preponderances of imputed cell types are displayed across corti-
cal parcels (Fig. 2b), demonstrating that certain cell-type abundances 
gradually increase/decrease across the functional networks distributed 
along the gradients, with their relative enrichment or absence evident 
within certain networks (Fig. 2c). The value of cell-type fractions is 
always positive, and gradient values represent the parcels’ topological 
position relative to each other. Accordingly, both positive and negative 
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correlations indicate that the abundance distribution of a given cell 
type follows the corresponding gradient values. 




Gradient 1 (Fig. 2b), 

spanning the unimodal-transmodal axis, was positively associated 
with the imputed spatial distributions of SNCG-like interneuron (SNCG; 
ρ = 0.402, P < 0.001), the SST-expressing interneuron (SST; ρ = 0.308, 
P = 0.036) and layer 5 intratelencephalic-projecting excitatory neuron 
(L5 IT; ρ = 0.281, P < 0.001), indicating the three cell types are prefer-
entially enriched in the transmodal end of gradient 1. Suggesting the 
abundance in unimodal areas, layer four intratelencephalic-projecting 
excitatory neuron (L4 IT; ρ = −0.423, P < 0.001) was negatively associ-
ated with gradient 1, enriched at the somato/motor and visual end.

SNCG is densely distributed within the temporoparietal junction, 
temporal lobe, medial prefrontal cortex (mPFC) and superior prefrontal 
through inferior frontal gyrus. SNCG is localized in the most superficial 
layers of the cerebral cortex (mainly L1 and partially L2/L3)38, where 
the majority of GABAergic interneurons that regulate the deeper-layer 
excitatory neurons through local inhibition are situated46. Originating 
from the caudal ganglionic eminence47 (CGE) in the telencephalon, 
SNCG is matched with cholecystokinin-expressing layer 1 interneuron 
(CCK/In1 (ref. 43)) in the Lake dataset (Extended Data Fig. 3). In Lake 
dataset replication, In1 also displays the strongest positive correla-
tion with gradient 1 (Extended Data Fig. 4; ρ = 0.309, P = 0.011). SNCG’s 
homolog in rodents reflects the classic CCK basket interneuron36,48,49. 
SST interneurons peak around the mPFC, temporal pole and inferior 
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Fig. 1 | Large-scale functional networks are embedded along two principal 
gradients. a, 




Functionally coupled cortical parcels were grouped into large-

scale networks based on the ref. 23 seven-network solution averaged across the 
400-parcel functional atlas of ref. 32. b, The first principal gradient of intrinsic 
FC. Parcels are colored by their relative topological position spanning between 
the association cortex (bright yellow) and the unimodal cortex (dark blue). Scale 
bar reflects z-transformed principal gradient values derived from connectivity 

matrices using diffusion map embedding39. c, The second gradient of intrinsic FC 
is anchored within unimodal areas, including the primary visual cortex (bright 
yellow) at one end and the somatomotor/auditory cortex at the other (dark blue). 
d, Figure displays the spatial organization of the seven networks along the two 
primary gradients. The figure is adapted from ref. 20. VentAttn, salience/ventral 
attention network; DorsAttn, dorsal attention network; Som/motor, somato/
motor network.
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frontal gyrus and are densely distributed near the intraparietal sulcus. 
SST originates in the medial ganglionic eminence (MGE) and broadly 
corresponds to In8 (ref. 43) in Lake dataset (Extended Data Fig. 3b,c). 
SST is one of the biggest classes of interneurons38. The majority of these 
cells are localized in L2/L3 across the seen cortical areas, whereas spe-
cialized subtypes are mainly present in L4–L5 of primary visual cortex38. 
In humans, the L2/L3 SST (SST CALB1)50 cells have morphologically 
distinct forms that reflect (1) Martinotti cells with dendrites mostly 
targeting L1, (2) double bouquet cells with dendrites targeting L1–L5 
and (3) basket cells with mostly L3-targeting dendrites. These subtypes 
demonstrate diverse firing patterns ranging from fast to regular spiking.

Transmodal-associated L5 IT has a high abundance in the inferior 
parietal lobe, temporal lobe, dorsomedial prefrontal cortex and mid-
dle and anterior cingulate cortex. In humans, L5 IT has shorter basal 
dendrites (ends at L2/L3) and simple apical dendrites compared with 
ITs in upper layers51,52. Rodent L5 IT homologs demonstrate broad 
axonal projections to the lateral hemisphere of cortex and striatum36,53. 

On the contrary, the unimodal-associated L4 IT is densely distributed 
in the primary visual, auditory, motor and somatosensory cortex. 
Mostly enriched in L4, which receives the sensory information from the 
thalamus, L4 IT has more diverse subtypes that are highly adapted to 
the corresponding sensory input38. Our observation that L4 IT is abun-
dant in the primary motor cortex, which lacks a cell-packed granular 
L4, is well aligned with findings from rodent models36,54. While these 
analyses reveal isolated cell types that are preferentially distributed 
along functional gradients, in large part anchored at each gradient 
extrema, the large-scale organization of cortex is likely most appar-
ent when simultaneously considering the distribution of multiple cell 
types. We further examined the combinatorial alignment of cell types 
to gradients in the next section.

Multivariate cellular profiles track cortical gradients
Above, we established spatial relationships between cell types studied 
in isolation and the first two functional gradients of connectivity20. 
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Fig. 2 | Univariate cell-type distributions align with functional gradient 
topographies. a, Cell types are imputed from gene expression in AHBA bulk-
tissue samples. Single-cell signatures are constructed from independent tissue 
samples from eight cortical territories41. Resulting abundances of cell types 
were rank-ordered by spatial correlation to each principal functional gradient. 
Warm colors indicate a positive correlation, and numbers in each cell reflect the 
associated P value calculated from a two-sided spin test that controls for partial 
autocorrelation and was FDR-corrected for 24 comparisons. Correlations with 
P < 0.05 are denoted by black outlined boxes. 




Surviving from significance tests, 

the spatial pattern of gradient 1 was correlated with two interneuron subtypes 
(SNCG and SST), as well as two excitatory neuron subtypes (L5 IT and L4 IT).  
b, Imputed cell-type abundance distributed across the cortex suggests SNCG, 

SST and L5 IT are preferentially distributed around the transmodal end of 
gradient 1 (bright yellow), whereas L4 IT is preferentially distributed around the 
unimodal end (dark blue). Scale bars reflect estimated cell fractions. Parcels that 
are excluded from analyses and not covered by AHBA bulk samples are colored 
in gray. c, Scatter plots with each cortical parcel colored by the corresponding 
functional networks show that cell-type abundances gradually increase/decrease 
across the networks distributed along the gradients, with enrichment/absence 
evident within certain networks. Correlations were estimated by Spearman’s ρ  
(as reflected in the scale bar in a), but for visual reference, the fitted linear 
regression lines with a 95% CI predicting cellular abundance from gradient values 
are also displayed. CI, confidence interval.
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However, the extent to which the macroscale organization of cortex 
may be reflected in the spatial distribution of multiple cell types remains 
to be established. To examine the presence of these multivariate cel-
lular profiles, we used permutational canonical correlation analysis 
(PermCCA)55, which seeks the linear combination of cell-type distribu-
tions that are maximally correlated to each gradient. Inference on the 
resulting canonical variates was performed using spin-test permuta-
tions44 to account for spatial autocorrelation.

Here the resulting cell-type composite scores reflect the linear 
combination of spatial distributions across all cell types that are maxi-
mally correlated to each functional gradient. As displayed in Fig. 3 (Lake 
dataset in Extended Data Fig. 7 and Supplementary Fig. 3), cell-type 
composite scores were correlated with both the first and second gra-
dients across the three technical replications (Fig. 3a,d, Extended Data 
Fig. 7a,d and Supplementary Fig. 3a,d). In Fig. 3b,e (Lake dataset in 
Extended Data Fig. 7b,e and Supplementary Fig. 3b,e), we display the 
strength of involvement of each cell-type composite score associated 
with the first and second functional gradient projected to the cortical 
surface. At the univariate level, as reported above, a common spatial 
distribution for these gradient-associated cell types emerged where 
the profile of enrichment is anchored at one end of the gradient (Fig. 2). 
Consistent with this pattern, as reflected in our PermCCA cell-type 
loadings, gradient 1 (r = 0.615, P = 0.004) is most positively correlated 
with SNCG, SST and L5 IT and most negatively correlated with L4 IT. 
Here the order of the cells mirrors the order in their univariate correla-
tion strength with gradient 1 (Fig. 2a). Gradient 2 (r = 0.528, P = 0.026) 
is most positively correlated with L4 IT that is matched up with Ex4 in 
Lake dataset (Extended Data Fig. 3). Ex4 is also the dominant contribu-
tor to the cellular multivariate correlation with gradient 2 (Extended 
Data Fig. 7 and Supplementary Fig. 3).

Although the cell types associated with gradients in isolation were 
also preferentially linked in the multivariate analyses, the variance 
explained by using a composite score now increases to 37.8% (gradient 1)  
and 27.8% (gradient 2; Fig. 3a,d) from 17.9% (gradient 1; Fig. 2c) in the 

univariate analyses (Fig. 2d). Accordingly, rather than being specific 
to isolated classes of cells, the observed topographic similarities may 
be most apparent when considering the combined spatial profiles 
of multiple cell types across cortex. To test this idea, we repeated 
the PermCCA iteratively, excluding different combinations of cells 
that reflect the major contributors for gradients 1 and 2 (Supplemen-
tary Tables 1 and 3). Critically, when simultaneously removing all the 
significant gradient-associated cell types revealed in the univariate 
analysis (gradient 1: SNCG, SST, L5 IT and L4 IT), the PermCCA results 
held for gradient 1 (r = 0.503, PFDR = 0.002). Therefore, while certain 
cell types may preferentially follow the gradient architecture of cortex, 
the observed spatial relationships are robust and broadly conserved 
across a host of cell types (see cell-type abundance correlation matrix 
in Supplementary Figs. 4 and 5).

The cellular composition of large-scale functional networks
Certain cell types may possess a preferential relationship with specific 
functional networks, hinting at the presence of computation modules 
supporting a given network’s specialized properties. To assess these 
network–cell relationships, we calculated an enrichment score for 
each cell type (Methods) across seven canonical functional networks23. 
For ease of interpretation, networks sharing similar enrichment pro-
files across cells and cell types with similar enrichment profiles across 
networks were grouped via hierarchical clustering47 (Fig. 4a and Lake 
dataset in Extended Data Fig. 8). The primary divergence in cell-type 
hierarchical clusters followed the cell types that are associated with 
gradient 1 (Figs. 2a and 3c). Most interneurons and supporting cells are 
broadly abundant across networks at either unimodal or transmodal 
ends, as captured by clusters 1, 2, 6 and 8. Among them, SNCG, chan-
delier PVALB-expressing interneuron (chandelier), oligodendrocytes 
(Oligo) and micro/PVM are significantly enriched in the limbic network.

The excitatory neurons displayed relatively specific network 
enrichment patterns (clusters 3, 4, 5 and 7), hinting at potential cel-
lular motifs that may underpin associated network functions. For 
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Fig. 3 | Multivariate cellular profiles follow the macroscale organization 
of cortex. a, The scatter plot displays the results of PermCCA, where the first 
functional gradient was positively associated with a composite score of cell-type 
abundances (95% CI). b, Cell-type composite score associated with the first 
functional gradient projected to the cortical surface. c, Canonical loadings of 
each cell type to the composite score implicate SNCG, SST, L5 IT, Oligo, layer 6b 
excitatory neuron (L6b), astrocyte (Astro), layer 5/6 near-projecting excitatory 
neuron (L5/L6 NP), L4 IT and Endo (red, positive associations; blue, negative 

associations). d, The second functional gradient was positively associated 
with a cell-type composite score of cell-type abundance (95% CI). e, Cell-type 
composite score associated with the second functional gradient mapped to the 
cortical surface. f, Canonical loadings of each cell type to the composite score 
significantly implicated L4 IT, L5 ET, vasoactive intestinal peptide-expressing 
inhibitory interneuron (VIP) and L6 CT. P values in a and d are calculated from 
two-sided spin tests after correcting the two comparisons. Endo, endothelial 
cells.
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example, L5 IT and L2/L3 IT in cluster 4 are preferentially distributed 
in the dorsal attention and frontoparietal networks involved in top–
down attentional orienting and executive processes56. Dendrites of 
L5 IT terminate at the layer of L2/L3 IT51,52, the axons of which reversely 
target layers 5 and 6 (refs. 54,57). In cluster 5, vasoactive intestinal 
polypeptide-expressing interneuron (VIP),




 L6 IT and L6 CT tend to be 

co-abundant in somato/motor and ventral attention networks involved 
in bottom–up sensory-driven attention/response58. L6 CT is innervated 
mostly by IT from higher-order cortical areas and partially by local and 
thalamic projections57, whereas L6 IT tends to reciprocally connect with 
local neurons in layer 6 (refs. 54,57). In cluster 2, chandelier, LAMP5- and 
LHX6-expressing interneuron (LAMP5 LHX6) and L6 IT Car3 are (mar-
ginally) enriched in ventral attention and limbic networks. Unlike the 
fast-spiking PVALB that targets the perisomatic domain of pyramidal 
cells and broadly contributes to excitation–inhibition balance53,59, the 
regular-spiking chandelier preferentially innervates the initial axon 
segment, strengthening output control60,61. Although chandelier can 
exist across layers 2–6, LAMP5 LHX6 is more specialized in the same 
layer38 as L6 IT Car3.

The columns in Fig. 4a show enrichment profiles across cell types 
for each large-scale functional network. Consistent with their func-
tional topography and/or spatial adjacency (Fig. 1a,d), somato/motor, 
visual and dorsal attention networks are grouped in cluster A, and 
default and frontoparietal networks are grouped in cluster B. Func-
tionally and spatially distinct, ventral attention and limbic networks 
were grouped into cluster C. Of note, a hybrid cellular composition 
was evident in the ventral attention network, where properties of both 
unimodal and association territories were evident. While the ventral 
attention network primarily followed the cellular profile of the limbic 
system, it displayed L6 IT, VIP and L6 CT cells in a manner broadly 
consistent with the somato/motor network.

In addition to the gradient of cellular abundances from unimodal 
through association territories, as reflected in the polar plots in Fig. 4b, 
visually distinct network-level enrichment profiles are also apparent. 
Situated at distinct ends of the first functional gradient of connectivity 
(Fig. 1b), both the unimodal somato/motor and the limbic networks 
exhibit the most contrast between heightened or reduced enrich-
ment profiles across cell types, with the ventral attention network also 
exhibiting pronounced variability in cellular enrichment. Broadly, the 
presence of distinct cellular fingerprints across functional networks 
suggests that cellular profiles derived from postmortem tissue samples 
may reflect, and be predictive of, the functional allegiance of a given 
cortical parcel.

Predicting network allegiances in postmortem tissue
Our findings raise an important question—can cellular profiles imputed 
from bulk-tissue samples be used to directly infer in vivo properties of 
brain organization? The above-mentioned analyses identify individual 
cell classes that preferentially follow cortical network topographies, 
suggesting the presence of network-specific cellular fingerprints. We 
use these results as a foundation to directly test the extent to which 

Q17

parcel-level cellular profiles can be used to predict their corresponding 
functional network assignments, as derived through fMRI. Support 
vector machines (SVMs) were trained to predict the network allegiance 
of postmortem tissue samples from parcel-level cellular abundances 
(Methods). The performance of models trained from empirical data 
was compared to a comprehensive set of increasingly stringent null 
models—(1) theoretical chance of predicting correctly given that the 
parcel is from the certain network (1/7, Pchance), (2) randomly permuted 
network labels (Pperm) or (3) shuffled labels while controlling for spatial 
autocorrelation (Pspin). Here we focus our interpretation on the most 
stringent significance null model (Pspin; see Fig. 5 for alternate signifi-
cance thresholds and Lake dataset in Extended Data Fig. 9).

The SVM model successfully decoded parcel-level network assign-
ments across cortex (empirical F1median = 0.377, null F1median = 0.231, 
Pspin = 0.001; see distribution plots in Supplementary Fig. 6), indi-
cating that inferred cellular abundance from resected postmortem 
tissue reflects functionally relevant properties of brain organization. 
When considering individual networks, the SVM models trained 
on parcel-level imputed cell densities successfully predicted 
somato/motor (Pspin = 0.023), visual (Pspin = 0.036), ventral attention 
(Pspin = 0.026) and limbic (Pspin = 0.038) networks (all other Pspin > 0.084; 
Fig. 5a). When projecting parcel-level accuracies to the cortical surface 
(Fig. 5b), within-network variability was evident, indicating spatial 
heterogeneity of the cellular composition and associated network-level 
assignment accuracies (Supplementary Table 4). The confusion table, 
presented in Fig. 5c, highlights the assignment stability of the somato/
motor, visual, ventral attention and limbic networks. Of note, while 
assignment accuracy is reduced in the three remaining networks, where 
misassignment occurs in parcels from frontoparietal, dorsal attention 
and default networks, they are likely to be assigned to other adjacent 
networks. For example, the dorsal attention network interdigitated 
between somato/motor and frontoparietal networks is more likely to 
be misassigned as the two. The SVM results emerging from the technical 
replication datasets and varying data exclusion criteria are displayed in 
Supplementary Figs. 6–12. Together, these data confirm the presence 
of distinct cellular fingerprints within some functional systems and 
support the need for additional research into the cytoarchitectonic 
determinants of network topography.

Discussion
Based on the 




first observation in ref. 2 regarding regional variations 

in the histological structure of gray matter across the cerebral cortex, 
the resection of postmortem tissue samples has revealed core insights 
into the cellular composition of the central nervous system. Recently, 
methodological advances have made it possible to map the macroscale 
organization of brain functions in vivo, providing the potential for deep 
biological insight into the genetic, molecular and cellular bases of corti-
cal organization. Here integrating transcriptional and neuroimaging 
data, we demonstrate that imputed cell-type distributions follow the 
hierarchical functional architecture of the cortical sheet. Select cell 
types were found to spatially couple with aspects of cortical gradient 
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Fig. 4 | Large-scale functional networks demonstrate distinct cellular 
profiles. a, The table displays the relative cell-type enrichment, or absence, 
within each canonical functional network. For visualization, networks sharing 
similar enrichment profiles across cells and cell types with similar enrichment 
profiles across networks were grouped via hierarchical clustering. Letters  
(A, B and C) and numbers (1–8) denote network and cell-type clusters, 
respectively. Cell-type names are color-coded by broad class, with interneurons 
in pink, non-neuronal cells in orange and excitatory neurons in green. Empirical 
abundance for each cell type was aggregated within each of the seven large-scale 
functional networks. Corresponding null distributions were constructed from 
the parcel-level spin test, which accounts for spatial autocorrelation. Table fill 
colors reflect z scores, derived via subtracting the mean of the null from the 
observed empirical abundance and then dividing the difference by the s.d. of 

null distribution. Here z scores index empirical enrichment relative to the null. 
Warm colors indicate positive values (relatively enriched), and cold colors 
indicate negative values (relatively absent). Numbers in each cell represent 
the associated P value calculated from two-sided spin tests that control for 
spatial autocorrelation and were corrected for 24 comparisons. Reflecting the 
presence of a cell-type enrichment gradient spanning between somato/motor 
and limbic networks, each network shows a unique cell-type profile. Marked 
boxes reflect significant enrichment (P < 0.05). b, Polar plots of z score across 
24 cell types for each network suggest the potential of cellular profiles that may 
serve as fingerprints that can distinguish each functional network. 




Score >0 lines 

(dashed) indicates when a cell type is enriched within a given network relative 
to the overall distribution across cortical parcels, whereas score <0 reflects the 
relative absence of a cell type.
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and network organization, which was most evident in a distinction 
between higher-order association and unimodal territories. Suggest-
ing that regional variation in cellular profiles may reflect the layered 
aspects of cortical organization, multivariate cellular fingerprints 
captured a substantial portion of the spatial variability in both func-
tional gradient topographies and parcel-level network assignments. 
Finally, imputed cell-type densities, derived from postmortem tissue, 
could be used to accurately predict parcel-level network assignments, 
demonstrating the presence of cellular markers of network-level brain 
functions as assessed through rs-fMRI. Together, these results indicate 
a close link between the functional organization of cortex and spatial 
variability of cell-type distributions, with important implications for the 
study of the cellular basis of brain functions across health and disease.

Select cell gene markers may spatially couple to regional dif-
ferences in fMRI signal variability. Single-marker and polygenic cell 
deconvolution have established a spatially dependent relationship 
between heritable variance in in vivo fMRI signal amplitude and the 
topography of PVALB expression in postmortem brain tissue12. Extend-
ing upon this work, we demonstrate the presence of spatial alignment 
between regional cell densities and the functional gradient architecture 
of cortex. Most inhibitory interneurons broadly follow this macroscale 
architecture. SNCG (CCK/In1 in Lake dataset) and SST preferentially 
align with the transmodal end of the principal gradient (gradient 1), 
whereas PVALB cells are generally abundant around unimodal and 
adjacent areas. The presence of a dichotomous relationship between 

these groups of interneurons, embedded within a hierarchical somato/
motor-association gradient, echoes their positioning during early 
embryonic development. Interneuron-destined cell types originate 
from distinct embryonic progenitor zones in the ventral telencephalon. 
Neural progenitor cells in CGE give rise to SNCG (CCK)38, whereas the 
dorsal and ventral MGE progenitors generate SST and PVALB along anti-
correlated spatial gradients38,62,63. After neurogenesis, these broad cell 
classes are governed by separate transcriptional cascades62,64 that direct 
their tangential migration, layer-specific positioning and maturation65,66 
with distinct morpho-electrical properties67. The distinct computational 
properties of unimodal and heteromodal association territories are 
theorized to reflect the relative preponderance of associated cell types 
and their specialized roles in sensation and cognition68.

SNCG, SST and PVALB differ across a host of morphological and 
firing properties, forming distinct local circuits that differentially bias 
network oscillations69. As a fast-spiking basket cell, PVALB has multipo-
lar dendrites and radially arrayed axons50 that broadly synapse on the 
perisomatic region of cortical projection neurons to regulate output70. 
Computational models in rodents suggest that a relative increase 
in PVALB, relative to SST, may result in stronger feedback inhibition 
on excitatory neurons within a given patch of cortex. This profile of 
excitability is thought to allow for short activation timescales that 
may be optimally suited for processing rapid-changing sensorimotor 
stimuli12,68,71. Conversely, SNCG cells encompass CCK interneurons that 
display a broad range of spiking patterns, varying from synchronous 
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Fig. 5 | Large-scale functional network assignment can be predicted by cell-
type abundance in postmortem tissue. a, Histograms display the SVM recall or 
the probability of correctly classifying a parcel to the associated network. These 
data suggest that the classifiers were able to predict somato/motor, ventral 
attention and limbic networks significantly above chance. Distributions in darker 
colors were constructed from 1,000 classifiers trained on real network labels, 
and the lighter-colored distribution represents classifiers trained on network 
labels shuffled by a spin test that controls for spatial autocorrelation. The solid 
lines indicate the median, and the dashed lines represent the quartiles of the 
distribution. P value of empirical recall was constructed from two-sided tests 
of increasing stringency—(1) theoretical chance (1/7, Pchance), (2) models trained 

from randomly permuted network labels (Pperm) or (3) labels shuffled by spin test 
(Pspin). b, Accuracy of network assignment across cortical parcels, calculated 
from all testing sets. c, Each row of the confusion matrix represents the fraction 
of parcels within the specific network that were predicted as belonging to each 
of the seven networks. The diagonal represents the percentage of correctly 
classified parcels within each network. Here the confusion matrix suggests 
a preferentially distinct cellular profile for somato/motor, visual and limbic 
networks. While classification accuracies were low for the remaining association 
cortex networks, dorsal attention, default and control networks display a higher 
rate of misclassifications among each other relative to unimodal networks.
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transmission, which may enhance precise inhibition timing, through 
asynchronous repetitive activations that are thought to modulate inhi-
bition strength and signal durations72–74. This wide spiking spectrum, 
well suited for the association cortex, enables them to integrate signals 
from various sources. Although future modeling work is warranted, 
these data suggest a link between the migration and maturation of 
local cellular circuits and the subsequent development and refinement 
of broader functional systems. Here we identify cell types that link to 
functional gradients in adults. Although these cell classes reach their 
cortical destinations in early life, the associated developmental and 
maturational trajectories extend through adolescence40. It remains 
to be determined how cell maturation, refinement and synaptic con-
nectivity link to cortical organization across the lifespan.

Embedded within the sweeping cellular and transcriptional gra-
dients that span cortex, select functional networks are co-enriched 
for distinct groups of excitatory and inhibitory neurons, which may 
reflect corresponding computational motifs. Enriched in unimodal 
sensory territories, especially the primary visual cortex, L4 IT cells 
are mainly distributed in layer 4 (or 3/5 if layer 4 is missing from the 
areal laminar structure)38, which is highly specialized for processing 
incoming sensory information. In rodents, the dendrites of L4 IT are 
simple, not tufted36 and suited to receive visual signals from thalamic 
ganglion cells that project at layer 4 (refs. 63,75). The local axons of 
L4 IT primarily project upwards to IT neurons in layer 2/3 (ref. 57) as 
part of the feedforward pathways, which ultimately project to layer 
5 in association areas36. Here L2/L3 IT and L5 IT are clustered into the 
same cell grouping due to their shared enrichment profiles across 
networks. This is particularly evident in the dorsal attention and fron-
toparietal networks involved in top–down attentional orienting and 
executive functioning56. Dendrites of L5 IT terminate at the layer of 
L2/L3 IT51,52, the axons of which reversely target layer 5 (refs. 54,57). 
While the cell–cell connectivity patterns between L5 IT and L2/L3 IT 
require further study, the observed co-enrichment profile suggests 
the potential presence of neural circuits supporting the top–down 
processes across association networks. Similarly, L6 IT, L6 CT and VIP 
are co-abundant in somato/motor and ventral attention networks that 
support bottom–up sensory-driven attention/response58. In contrast 
to ITs in upper layers, L6 IT lacks tuft dendrites terminating at layers 
1–4 (ref. 51), but possesses mutual connectivity with local neurons in 
layer 6 (refs. 51,57). Also situated in layer 6 (ref. 38), L6 CT cells receive 
signals from local and ‘higher-order’ cortical deep-layer ITs36,57 and 
send efferent projections to thalamus. Distributed in layers 2 and 3, 
the regular-spiking VIP has dendrites and axons widely extending to 
layers 1–6 (ref. 50). Mostly regulating other interneurons, VIP might 
indirectly contribute to these processes. The salience/ventral attention 
network is linked to the accelerated maturation of adult-like cortical 
organization76. Here the co-abundance of mid-to-deep-layer cell types 
in the attention network may hint at potential mechanisms for cortical 
development, as transcriptional programs are coordinated within cell 
classes across developmental phases77. Future work should directly test 
the manner through which specialized cognitive processes supported 
by cortical networks may emerge from spatially distinct cellular con-
nectivity motifs.

The large-scale network architecture of the cortex includes abrupt 
transitions that are embedded along continuous functional gradi-
ents20. Broadly, similar patterns are evident in cortical atlases defined 
through cell staining and morphological analysis, where homogene-
ous cell components are evident within local patches, while abrupt 
transitions can occur between some adjacent territories3. Emerging 
evidence suggests links between in vivo network parcellations of cortex 
and the presence of some cytoarchitectonic boundaries. Here func-
tional network-defined boundaries and parcels have been observed 
to adhere to select histologically defined areas, including Broca’s area 
(area 44) and aspects of the postcentral sulcus (areas 2 and 3)32. In the 
present analyses, using the imputed abundance across neuronal and 

non-neuronal cells in postmortem tissue, we demonstrate that the 
network allegiance across cortical parcels can be generally predicted. 
Although parcel-level prediction was broadly evident across cortex, 
substantial spatial heterogeneity was evident in the relations linking 
cellular profiles with network assignments. The somato/motor, visual, 
limbic and ventral attention networks exhibited the most distinct and 
predictable cellular profiles. This predictive profile emerges through the 
preferential enrichment or absence of cells in the somato/motor, visual 
and limbic networks relative to other networks, as well as the presence 
of a unique mixture of unimodal- and transmodal-associated cells in 
ventral attention-linked parcels. In contrast, control, dorsal attention 
and default networks displayed smoother and/or more homogeneous 
spatial transitions across cell types. This pattern may reflect the pres-
ence of smooth patterns of cellular composition near the boundaries 
between association networks, consistent with previous reports of 
transcriptional distinctiveness across cortex31. Highlighting the trans-
lational potential of multiscale neuroscience approaches, these data 
demonstrate predictive relationships connecting cellular profiles across 
the cortex with the in vivo functional organization of the human brain.

The present work should be interpreted in light of several limi-
tations. First, the reported cell-type abundances are imputed from 
the bulk-tissue microarray data based on the gene expression signa-
tures constructed from snRNA-seq. The microarray approach does 
not provide direct estimates of gene transcription; rather, we examine 
within-probe differences across samples. To obtain estimates robust 
across donors, bulk samples require aggregation into parcels, limit-
ing the spatial resolution. As parcellation and cell-type definitions 
improve, the pattern observed will likely unfold in more detail. Second, 
we include a technical replication of our cell imputation approach by 
using additional single-cell data. Associated correspondences between 
imputation approaches are reported in the supplement. Of note, a lack 
of spatial granularity in the available tissue samples may have resulted 
in an underestimation of the true relationships linking the topographic 
distributions of cell types and brain functions. In mice, interneuron cell 
types are broadly conserved across cortical regions, while pyramidal cell 
diversity shows higher spatial variability48, which is partially reflected in 
human data from ref. 38 across eight cortical areas. The imputed spatial 
distribution of cell types common in the available single-cell samples 
showed robust patterns, but it remains unclear how the cell-type diver-
sity varies across the human cortex. As single-cell samples covering 
more cortical regions are gradually developed, future work should 
incorporate these spatially variable profiles when considering cellular 
abundances. Finally, in the present work, cells are defined from tran-
scriptomics. Although initial efforts examining transcriptional profiles, 
morphology or firing patterns70 have demonstrated reliable mapping 
between multimodal features and broad transcriptional cell types (the 
24 cell classes)38,46,50,52, finer clusters within these broad classes demon-
strate nuanced morpho-electrical diversity35. Follow-up studies should 
consider how to best integrate the hierarchical structure of these diverse 
cell definitions in analyses while also examining alternate organizational 
models of in vivo brain functioning.

The present results demonstrate that the functional gradients 
and networks of the cerebral cortex are linked to spatial variability in 
cellular profiles. These data suggest that the imputed cell-type densi-
ties from postmortem tissue capture global patterns of FC as assessed 
through rs-fMRI, revealing the potential to bridge across in vivo and ex 
vivo methods in the study of human brain functions. Collectively, these 
discoveries highlight a connection between the functional organization 
of the cortex and its cellular underpinnings, with significant implica-
tions for understanding the cellular basis of brain functions across 
health and disease.
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Methods
FC gradient analysis
Gradients, or components with similar FC patterns, were derived in a 
manner consistent with ref. 20. Briefly, FC matrices averaged from 820 
participants in the HCP dataset41 coregistered via MSMAll were down-
loaded from ConnectomeDB78 (https://www.humanconnectome.org/
storage/app/media/documentation/s900/820_Group-average_rfMRI_
Connectivity_December2015.pdf). The 10,242 × 10,242 per hemisphere 
cortical FC matrices (represented in fsaverage5 surface space79) for 
each participant was calculated from 1-h rs-fMRI concatenated from 
four minimally preprocessed80–83, spatially normalized 15-min scans. 
From these group-averaged FC matrices, correlation coefficients were 
Fisher z-transformed via a hyperbolic tangent function to scale the 
value between −1 and 1. The top 10% connections of each vertex were 
preserved, and all other values were set to 0 to enforce sparsity. The 
cosine distance between any two rows of the FCz matrix was calculated 
and then subtracted from 1 to generate a symmetrical similarity matrix. 
Gradients were derived from the similarity matrix by diffusion map 
embedding, as validated and detailed in refs. 40,20 (https://neuro-
anatomyandconnectivity.github.io/gradient_analysis/). This approach 
nonlinearly projects high-dimensional FC into a low-dimensional space. 
Here a gradient reflects an axis of FC variance along which cortical ver-
tices fall in a spatially continuous order, with adjacent vertices sharing 
similar geographically short- and long-range correlations to the rest 
of the cortex. The two gradients explaining the highest variance were 
selected for subsequent analysis. Vertex-level gradients were averaged 
across the 400 cortical parcels in the Schaefer functional atlas32.

Functional parcellation analysis
To characterize the functional network structure of the cortical sheet, 
we used 400 roughly symmetric ROIs from seven specific brain net-
works33 in the left and right hemispheres as derived through the cortical 
parcellation of ref. 32 (https://github.com/ThomasYeoLab/CBIG). The 
functional networks used here were previously derived and validated 
using data from 1000 adults in the Genomics Superstruct Project32,33,84. 
In short, each network is a cluster of vertices that shares homogenous 
rs-fMRI FC with the rest of the cortex.

Brain gene expression data processing
Human microarray gene expression data obtained from bulk samples 
of six postmortem brains were downloaded from the AHBA dataset 
(http://human.brain-map.org/)7. Raw data were processed using the 
abagen toolbox (https://abagen.readthedocs.io/en/stable)85,86 at the 
sample level, following the practice recommended in ref. 87 and imple-
mented by other studies9. Probes were reannotated using data provided 
in ref. 85, and those without Entrez IDs were excluded. Probes that 
exceed background noise in 30% of all tissue samples were included, 
among which the probe with the highest differential stability for each 
gene was selected. In total, 16,383 genes were retained after the pro-
cessing. For each donor, tissue sample expression values were first 
z-scored across genes, and then these gene expression values were 
then z-scored across samples. Consistent with ref. 12, individual cortical 
tissue samples were mapped to each AHBA donor’s Freesurfer-derived 
cortical surfaces (FreeSurfer v6.0.0), downloaded from ref. 88. Native 
space mid-thickness surfaces were transformed to a common fsLR32k 
group space while maintaining the native cortical geometry of each 
individual donor. The native voxel coordinate of each tissue sample 
was mapped to the closest surface vertex using tools from the HCP 
workbench. Tissue samples were included if they were collected from 
less than 4 mm from the nearest surface vertex, resulting in 1,676 ana-
lyzable cortical samples.

Cell-type deconvolution
Cortical cell-type abundance distributions were inferred following the 
procedures detailed in ref. 12. In brief, single-nucleus droplet-based 

sequencing (snDrop-seq) data obtained from ref. 38 were down-
loaded from cellxgene-census (https://cellxgene.cziscience.com/
collections/d17249d2-0e6e-4500-abb8-e6c93fa1ac6f). Data from 
ref. 43 were downloaded from the Gene Expression Omnibus website 
(GSE97930; https://www.ncbi.nlm.nih.gov/geo). Count matrices 
derived from unique molecular identifiers (UMIs) were preprocessed 
via Seurat89, where outlier cells and minimally expressed genes were 
filtered, and then the data were log-normalized. Genes were referred 
to by Entrez IDs, among which only the IDs shared by both Jorstad/
Lake and AHBA datasets were included. The marker genes that were 
found reliable across all eight cortical areas by ref. 38 were used to 
further narrow down the gene sets to reduce computational load. The 
groupings across area subclasses defined in ref. 38 or superordinate 
cell identities defined in ref. 43 were applied for categorizing tran-
scriptionally similar cell types to reduce collinearity. After processing, 
the snDrop-seq data were de-log-transformed before feeding into 
CIBERSORTx (https://cibersortx.stanford.edu/)90 as a reference for 
cell-type abundance imputation on each AHBA bulk-tissue sample. 
For the Jorstad dataset, given that the marker genes were selected by 
robustness across the eight cortical areas, all the cortical samples were 
combined together to derive the gene signature matrices of the 24 cell 
types. In the Lake dataset, gene signature matrices for 18 cell types 
were derived from visual (Lake dataset VIS) and frontal (Lake dataset 
DFC) samples separately. Cell-type abundances were consequently 
imputed from across AHBA samples, taking each signature matrix as 
a reference per donor. Cell-type matchings between the Jorstad and 
Lake datasets were conducted via the label-transferring algorithms 
in Seurat v5 (https://satijalab.org/seurat/)91 based on the UMI count 
matrices (R v4.1.1), following procedures in ref. 92. Single cells from 
Jorstad dataset were transferred to the reference Lake dataset. The 
matching scores between cell types from the two datasets were esti-
mated as the percentage of cells from each Jorstad dataset cluster 
aligned with the specific Lake dataset cell cluster. The correlation 
between Lake dataset VIS- and Lake dataset DFC-derived gene signa-
tures was validated in ref. 12. To further minimize the effects of spatial 
heterogeneity of single-cell transcriptomic signatures, later analysis 
only used common cell types between Lake dataset DFC (excluding 
Ex2) and Lake dataset VIS (excluding In2), which resulted in 17 cell 
types in total. The cell-type abundances for each AHBA cortical sample 
were mapped to the cortical vertices represented in fsaverage6 surface 
space and then parceled into the Schaefer 400 atlas32. Here samples 
were first averaged at the individual donor level within parcels and 
then averaged across donors.

Identification of cell types spatially correlated to functional 
gradients
The spatial pattern of each of the 24/17 cell-type abundances parceled 
in the Schaefer atlas was correlated (Spearman’s ρ) with the primary 
and secondary functional gradients parceled using the same atlas. The 
statistical significance of the correlation was assessed through spin 
test44 (MATLAB R2021a), which permuted the gradient at the vertex 
level (represented in fsaverage5) 1,000 times while reserving the spatial 
autocorrelation (https://github.com/spin-test/spin-test). The per-
muted gradient and cell-type correlations were used to construct a null 
distribution of correlation values. The cell-type abundances inferred 
from each technical replication ( Jorstad and Lake datasets) were tested 
separately and were FDR-corrected for 24/34 multiple comparisons.

Examination of cell types’ combinational correlation to 
functional gradients
PermCCA was used to investigate the multivariate relationship between 
the spatial distribution of cell types and each gradient. CCA allows 
us to examine the linear combination of all the cell-type abundances 
that maximally correlate with each gradient. The statistical signifi-
cance of the canonical variates was tested via a permutation method 
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that controls for cortical spatial autocorrelation (https://github.com/
andersonwinkler/PermCCA)55, where the null distributions of gradients 
were generated from the spin test described in the previous section. 
Then FDR was applied to correct for multiple comparisons (two gra-
dients). The cell types’ linear combinational correlation to the first 
two gradients was measured by cell-type composite score. Each cell 
type’s contribution to this correlation was measured by loadings, the 
correlation between cell-type abundance distribution and gradient 
canonical variate.

PermCCA was repeated with the removal of different combinations 
of the cell types that were each univariately correlated with gradients 
1 and 2. Each group of PermCCA results was FDR-corrected for the 
number of removal combinations (12 for gradient 1 with Lake dataset 
DFC imputed cell types, 10 for gradient 1 with Lake dataset VIS imputed 
cell types; 3 for gradient 2 with Lake dataset DFC imputed cell types,  
1 for gradient 2 with Lake dataset VIS imputed cell types).

Cell-type enrichment in functional networks
Each one of the 400 cortical parcels 




was assigned to a functional net-

work in a validated seven-network solution derived in ref. 23. Across 
each cell type, the empirical abundances were averaged across parcels 
within a given functional network. The empirical abundances were then 
permuted across the cortex 1,000 times, controlling for spatial auto-
correlation, yielding 1,000 null models for each cell type. Given that the 
cell-type abundances were aggregated at the parcel level, the Cornblath 
version of spin test93 was used as recommended by a study discussed in 
ref. 94, which projects parcel abundances to vertices, rotates and takes 
the mean of vertices in each parcel. The same within-network cell-type 
abundance averaging process was repeated on these null models, 
generating a null distribution of mean abundance for each cell type 
within each network. For each type of cell, the enrichment score of a 
network was calculated by taking the difference between the empirical 
abundance and the mean of the null abundance distribution and then 
dividing by the s.d. of the null abundance distribution. P values were 
first calculated from two-tailed tests and then FDR-corrected for 119 
multiple corrections (17 cell types × 7 networks).

Cell types predicting functional networks
SVMs (https://scikit-learn.org/stable/modules/svm.html#svm- 
classification) were trained to predict the functional network each cor-
tical parcel belongs to based on abundances of 24/17 cell types within 
that parcel (Python v3.8.8). Because two of the six donors in AHBA had 
samples from the right hemisphere, models were trained on parcels 
from only the left hemisphere and from both hemispheres as two paral-
lel groups. For the Lake dataset, within each group, three subgroups 
of models were trained separately, based on the cell-type abundance 
imputed from independent single-cell samples, Lake dataset DFC and 
Lake dataset VIS, as two replicates. Two subgroups were trained from 
the two replicates, respectively, and one subgroup ensembled the 
information from the two replicates. The Jorstad dataset only has one 
group that has encompassed samples from all eight cortical areas at the 
gene marker level, as detailed in the previous section. For each model, 
parcels were randomly shuffled and split into 1,000 distinct train (70%) 
and test (30%) sets without replacement. Given that the number of 
parcels within each functional network is not balanced, the train-test 
split was stratified within each network category. Nested threefold 
cross-validation was implemented to select and validate the hyper-
parameters in the training set. Kernels and regularization parameters 
were first selected and tuned in the inner twofold cross-validation; 
the models’ performance was then evaluated in the outer threefold 
cross-validation, and the final model was the parameter combination 
with the highest score. The regularization parameter was set to adjust 
weights inversely proportional to class frequencies in the training data 
to control for the unbalanced class size within each split. The F1 score 
was used to evaluate the models’ overall performance. Recall, which 
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indexes the probability of correctly classifying a parcel given it is from 
a certain class, was used to evaluate the predicted performance within 
each class.




 Accuracy for each parcel was calculated by the total number 

of times it was correctly classified over the total number of times it 
was included in the test set. These metrics were evaluated from the 
1,000 test sets.

The predictive metrics for every model were evaluated against 
models fitted from permuted network labels95,96. A Hungarian version 
of the spin test was applied, which uniquely reassigns each parcel’s net-
work label for every rotation that controls spatial autocorrelation94,97. 
Each permutation was used to train and test a null model using a ran-
domly selected hyperparameter combination from the set of 1,000 
optimal hyperparameter combinations for the original model98. Pre-
diction performance metrics from each of the original model’s 1,000 
train-test splits were then compared to the median prediction accuracy 
from the null distribution. Consistent with previous works95,96, the  
P value for each metric’s significance is defined as the proportion of 
1,000 original models with a performance score less than or equal to 
the median performance of the null model. Performance metrics were 
considered to be significant if they performed better than the median 
null performance for more than 950 of the 1,000 original models.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
A summary of data availability for each dataset used in this study 
is described below. FC matrices averaged from 820 participants in 
HCP dataset coregistered via MSMAll were downloaded from Con-
nectomeDB (https://www.humanconnectome.org/storage/app/
media/documentation/s900/820_Group-average_rfMRI_Connectiv-
ity_December2015.pdf). Schaefer parcellation was downloaded from 
CBIG GitHub (https://github.com/ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). Human 
microarray gene expression data obtained from bulk samples of six post-
mortem brains were downloaded from the AHBA dataset (http://human. 
brain-map.org/). snDrop-seq data obtained from refs. 38,43 were 
downloaded




 from cellxgene-census (https://cellxgene.cziscience.

com/collections/d17249d2-0e6e-4500-abb8-e6c93fa1ac6f) and Gene 
Expression Omnibus website (GSE97930, https://www.ncbi.nlm.nih.
gov/geo), respectively.

Code availability
Code is accessible via GitHub—(1) analysis-ready cell-type abundance 
maps and cell-type analysis code (https://github.com/XihanZhang/
human-cellular-func-con), (2) FC gradient analysis (https://neuro-
anatomyandconnectivity.github.io/gradient_analysis/), (3) spin test 
(https://github.com/spin-test/spin-test), (4) PermCCA (https://github.
com/andersonwinkler/PermCCA) and (5) abagen toolbox for AHBA 
preprocessing (https://abagen.readthedocs.io/en/stable).
Brain visualization tools were as follows: neuromaps v0.0.5  
(https://pypi.org/project/neuromaps/), surfplot (https://surfplot.
readthedocs.io/), brainspace v0.1.10 (https://brainspace.readthedocs.
io/), enigma toolbox (https://enigma-toolbox.readthedocs.io/) and 
netneurotools v0.2.4 (https://netneurotools.readthedocs.io/).
Cell-type imputation from mixtures via CIBERSORTx (https://ciber-
sortx.stanford.edu/).
Cell types mapping between single-cell datasets via Seurat v5  
(https://satijalab.org/seurat/).
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Extended Data Fig. 1 | Workflow for the analysis pipeline. a, Procedures of 
cell-type deconvolution via CIBERSORTx. References 38,42,43 are used as two 
technical replications for the main analyses. Within each dataset, transcriptomes 
of single nuclei with labeled cell types were compared to select genes that 
were differentially expressed across the cell types to constitute an expression 
signature matrix. Then the signature matrix was used to impute fractions of each 
cell type within the total transcriptions of each AHBA bulk sample estimated 
by microarray. b, The univariate relationship between cell-type abundance and 
functional architectures was calculated separately for gradients and networks. 
(1) The imputed fractions for each cell type are compared with the two gradients 
across cortical parcels. The resulting empirical correlation is compared against 
the correlations between cell-type fractions and null gradients permuted by spin 

test to construct the p-values that control for spatial autocorrelation.  
(2) The imputed cell-type fractions were averaged within each functional 
network to calculate the empirical network-level fractions for each cell type. 
Cell-type fractions were permuted via spin test and then averaged within the 
same functional atlas for each network to constitute the null distributions. 
Cell-type enrichment was calculated from the comparisons between empirical 
cell-type fractions and the nulls. c, (1) Multivariate relationships between cell 
types and gradients were examined through CCA where the null distribution was 
constructed from the spin test described in b. (2) The fractions of all cell types 
within each parcel were used to predict its corresponding functional network  
via SVM.
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Extended Data Fig. 2 | Jorstad snDrop-seq sample distribution. a, Locations 
of the 44 Jorstad snRNA samples from 8 cortical areas: primary visual cortex (V1), 
primary auditory cortex (A1), primary motor cortex (M1), primary sensory cortex 
(S1), middle temporal gyrus (MTG), angular gyrus (AnG), dorsolateral prefrontal 

cortex (DFC). b, Counts of samples falling within each parcel from the 400-parcel 
functional atlas of ref. 32. Parcels that are not covered by snRNA samples are 
colored in gray.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell-type comparisons between Jorstad and Lake 
snDrop-seq datasets. a, The cell fractions imputed from Lake and Jorstad 
samples are compared across cortical parcels. Left, comparison between Jorstad 
24 cell types derived from 8 cortical regions and Lake 18 cell types derived from 
prefrontal cortex (DFC). Right, comparison between Jorstad cell types and Lake 
18 cell types derived from the visual cortex (VIS). b and c are the transcriptional 
identity comparisons between Jorstad and Lake cell types. Dot plots showing the 
proportion of each Jorstad nuclei cluster (cell-type) that matches Lake clusters 
based on the gene marker unique molecular identifier (UMI) counts for each 
nucleus. Lake clusters from DFC are on the left and VIS are on the right. Within 
each matrix, GABAergic inhibitory interneurons are in warm colors in the bottom 
left corner. glutamatergic excitatory neurons are in cold colors in the top right 
corner. Non-neuronal cells in the middle are colored in green. b, The sub-clusters 

of the same cluster in Lake data were combined into one (for example, In1a-c is 
combined as In1, In6a-b are combined as PVALB and In7-8 are combined as SST). 
The majority of the Lake interneuron clusters can be broken down into two to 
three clusters in Jorstad. Most non-neuronal clusters between the two datasets 
have one-to-one mapping. L6 IT Car3 and Ex8 are the only one-to-one matched 
excitatory pairs between Jorstad and Lake. Deeper-layer excitatory clusters 
(Ex5 and Ex6) in Lake can be broken down into multiple deeper-layer clusters 
in Jorstad (L5 IT–L6b). Shallower layer excitatory neuron clusters between the 
two datasets have many-to-many mapping. c, When considering sub-clusters in 
Lake, additional one-to-one mapping in the GABAergic clusters was evident: In1a 
and PAX6, In1b and SNCG, In6a and chandelier, In6b and PVALB. An additional 
glutamatergic one-to-one pair is Ex6a and L5/L6 NP.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Univariate cell-type distributions (imputed from 
Lake snRNA-seq) align with functional gradient topographies. a, Cell types 
are imputed from gene expression in AHBA bulk-tissue samples. Single-cell 
signatures are constructed from independent tissue samples in the frontal 
(Lake DFC) and visual (Lake VIS) lobes, allowing for a technical replication of 
the cell-type imputation scheme. Resulting abundance of cell types was rank-
ordered by spatial correlation to each principal functional gradient. Warm colors 
indicate positive correlation, and numbers in each cell reflect associated p-value 
calculated from a two-sided spin test that controls for partial autocorrelation 
and were FDR-corrected for 17 comparisons. Correlations with p < 0.05 are 
denoted by black outlined boxes. Surviving from significance tests in both 
Lake DFC and Lake VIS, the spatial pattern of gradient 1 was correlated with two 
interneuron subtypes: In1 and PVALB, as well as one excitatory neuron subtype: 
Ex1. Gradient 2 was significantly correlated to Ex4 excitatory neurons. b, Imputed 
cell-type abundance distributed across cortex suggests Ex1 and In1 are preferably 

distributed around the transmodal end of gradient 1 (bright yellow), whereas 
PVALB is preferably distributed around the unimodal end (dark blue). Scale bars 
reflect estimated cell abundances. A difference score between Ex1 and PVALB 
distributions generates a pattern spatially consistent with the first functional 
gradient. c, Ex4 follows a spatial pattern aligning to the second gradient, peaking 
in visual pole (bright yellow) then gradually decreasing as it approaches the 
somato/motor and auditory cortices (dark blue). Parcels that are excluded  
from analyses, and not covered by AHBA bulk samples, are colored in gray.  
d, Scatter plots with each cortical parcel colored by the corresponding functional 
networks show that cell-type abundance gradually increases/decreases across 
the networks distributed along the gradients, with enrichment/absence evident 
within certain networks. Correlations were estimated by Spearman’s rho  
(as reflected in the scale bar in a), but for visual reference, the fitted linear 
regression lines (95% CI) predicting cellular abundance from gradient values are 
also displayed.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01812-2

Extended Data Fig. 5 | Spatial distribution of cell types (imputed from Jorstad 
snDrop-seq) preferentially distributed in association cortex. The imputed 
cell-type abundances across cortex in both hemispheres are aggregated in 400 
Schaffer parcels. The scatter plot on the left shows the correlation between cell 
abundance and the first principle gradient (gradient 1) across cortical parcels, 
and the correlation with the second gradient (gradient 2) is displayed on the 
right. Correlations were estimated by Spearman’s rho, but for visual reference, 
the fitted linear regression lines (95% CI) predicting cellular abundance from 

gradient values are also displayed. P-values were constructed from two-sided 
spin tests that control spatial autocorrelation. Dots are color-coded by the 
functional network allegiance of each parcel. A positive correlation with gradient 
1 indicates the cell is preferentially spaced on the transmodal association cortex. 
Such distribution preference reflected on the scatter plot of gradient 2 is a peak 
near 0. Although only SNCG, SST and L5 IT survived the multiple corrections, the 
patterns are visually identifiable in the rest of the top five cells (Oligo, L6b).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 6 | Spatial distribution of cell types (imputed from Jorstad 
snRNA-seq) preferentially distributed in unimodal areas. The imputed 
cell-type abundances across cortex in both hemispheres are aggregated in 400 
Schaffer parcels. The scatter plot on the left shows the correlation between cell 
abundance and the first principle gradient (gradient 1) across cortical parcels, 
and the correlation with the second gradient (gradient 2) is displayed on the 
right. Correlations were estimated by Spearman’s rho, but for visual reference, 
the fitted linear regression lines (95% CI) predicting cellular abundance from 
gradient values are also displayed. P-values were constructed from two-sided 

spin tests that control spatial autocorrelation. Dots are color-coded by the 
functional network allegiance of each parcel. A negative correlation with 
gradient 1 indicates the cell is preferentially spaced on the unimodal areas. 
Although only L4 IT survived the multiple corrections, the patterns are visually 
identifiable in Endo and PVALB. Their matched cell types in Lake are End and 
PVALB/In6b, both of which survived multiple corrections for the negative 
correlation with gradient 1 (Supplementary Fig. 4; end in Lake DFC: rho = −0.288, 
pFDR < 0.001; PVALB in Lake DFC: rho = −0.367, pFDR = 0.009; PVALB in Lake VIS: 
rho = −0.325, pFDR = 0.009).
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Extended Data Fig. 7 | Multivariate cellular (imputed from Lake DFC) profiles 
follow the macroscale organization of cortex. a, The scatter plot displays 
results of PermCCA where the first functional gradient was positively associated 
with a composite score of cell-type abundance (95% CI). b, Cell-type composite 
score associated with the first functional gradient projected to the cortical 
surface. c, Canonical loadings of each cell type to the composite score implicate 
In1, Ex1, PVALB and the SST interneurons and endothelial cells (End; red indicates 
positive associations; blue, negative associations). d, The second functional 

gradient was positively associated with a cell-type composite score of cell-type 
abundance (95% CI). e, Cell-type composite score associated with the second 
functional gradient mapped to the cortical surface. f, Canonical loadings of 
each cell type to the composite score significantly implicated Ex4, Ex3 (marked 
by gene NEFM) and Ex8 (MCTP2, NR4A2) excitatory neurons, and In3 (TSHZ2, 
SHISA8) interneuron and End. P-values in a and d are calculated from two-sided 
spin tests after correcting the two comparisons.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Large-scale functional networks demonstrate distinct 
cellular profiles (imputed from Lake snRNA-seq). a, The table displays the 
relative cell-type enrichment, or absence, within each canonical functional 
network. Networks are ordered as their estimated position along the first 
principal gradient. Empirical abundance for each cell type was aggregated 
within each of the 7 large-scale functional networks. Corresponding null 
distributions were constructed from parcel-level spin test, which accounts for 
spatial autocorrelation. Table fill colors reflect z-scores, derived via subtracting 
the mean of the null from the observed empirical abundance and then dividing 
the difference by the standard deviation of the null distribution. Here z-scores 
index empirical enrichment relative to the null. Warm colors indicate positive 
values (relatively enriched), and cold colors indicate negative values (relatively 

absent). Numbers in each cell represent the associated p-value calculated from 
two-sided spin tests that control for spatial autocorrelation and were corrected 
for 17 comparisons. Reflecting the presence of a cell-type enrichment gradient 
spanning between somato/motor and limbic networks, each network shows a 
unique cell-type profile. Marked boxes reflect significant enrichment (p < 0.05). 
b, Polar plots of z-score across 17 cell types for each network suggest the 
potential of cellular profiles that may serve as fingerprints that can distinguish 
each functional network. Score above zero lines (dashed) indicates when a cell 
type is enriched within a given network relative to the overall distribution across 
cortical parcels, whereas score below zero reflects the relative absence of a cell 
type. Polar plot corresponds to imputed cell densities from Lake DFC and Lake 
VIS stacked together, with the overlapping area in darker color.
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Extended Data Fig. 9 | Large-scale functional network assignment can 
be predicted by cell-type abundance (imputed from Lake snRNA-seq) in 
post-mortem tissue. a, Histograms display the SVM recall or the probability of 
correctly classifying a parcel to the associated network. These data suggest that 
the classifiers were able to predict somato/motor, visual, ventral attention and 
limbic networks significantly above chance. Distributions in darker color were 
constructed from 1000 classifiers trained on real network labels, and the lighter-
colored distribution represents classifiers trained on network labels shuffled 
by spin test that controls for spatial autocorrelation. The solid lines indicate 
median, and the dashed lines represent quartiles of the distribution. P-value of 
empirical recall was constructed from two-sided tests of increasing stringency: 

(1) theoretical chance (1/7, pchance); (2) models trained from randomly permuted 
network labels (pperm); or (3) labels shuffled by spin test (pspin). b, Accuracy of 
network assignment across cortical parcels, calculated from all testing sets.  
c, Each row of the confusion matrix represents the fraction of parcels within the 
specific network that were predicted as belonging to each of the 7 networks. The 
diagonal represents the percentage of correctly classified parcels within each 
network. Here the confusion matrix suggests a preferentially distinct cellular 
profile for somato/motor, visual and limbic networks. While classification 
accuracies were low for the remaining association cortex networks, dorsal 
attention, default and control networks display a higher rate of misclassifications 
among each other relative to unimodal networks.
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Extended Data Table 1 | Cell-type annotations from the Jorstad dataset

Transcriptional taxonomy of nuclei revealed hierarchical structures, where ‘class’ refers to three higher level branches as follows: GABAergic inhibitory interneurons, glutamatergic 
excitatory neurons and non-neuronal cells. Within GABAergic class, the interneuron clusters were grouped into two major ‘neighborhoods’ that reflect the development origins—caudal 
ganglionic eminence (CGE) and medial ganglionic eminence (MGE). The two major neighborhoods in glutamatergic excitatory neurons demonstrated different projection targets—
intratelencephalic-projecting (IT) vs non-IT. The 24 clusters grouped into these neighborhoods are the cell types considered in the present study. Broadly, GABAergic cell types reflect the 
signature genes that typically play key roles in cell maturation and migration during development. The glutamatergic cell types mainly reflect the layer-specificity and projection targets. The 
non-neuronal cell types capture the major glial cells and others supporting distinct functions. These annotations were originally produced from the patch-seq35 and many other multimodal 
characterization techniques for single cells collected together with the snRNA-seq in mice and then mapped to human samples based on transcriptional homology and validated through the 
multimodal cellular characterization36.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software were used for data collection

Data analysis Custom code for our analysis is accessible via GitHub (https://github.com/XihanZhang/human-cellular-func-con) 

 

MATLAB R2021a scripts were used for the following major analysis: 

Functional gradient calculation code downloaded from Margulies et al., 2016 (https://neuroanatomyandconnectivity.github.io/

gradient_analysis/) 

Spin-test permutating gradients via code downloaded from Alexander-Bloch et al., 2018 (https://github.com/spin-test/spin-test) 

Permutational canonical correlation analysis via code downloaded from Winkler et al., 2020 (https://github.com/andersonwinkler/PermCCA) 

Vertex-parcel convertion via ENIGMA-1.1.3 (https://github.com/MICA-MNI/ENIGMA) 

 

Python v3.8.8 scripts were used for the following major analysis: 

AHBA sample preprocessing via abagen v0.1.3 (https://abagen.readthedocs.io/en/stable) 

MNI to vertex mapping for the AHBA samples via FreeSurfer v6.0.0 (https://surfer.nmr.mgh.harvard.edu/) 

Cortical parcellation via code downloaded from Schaefer et al., 2018 (https://github.com/ThomasYeoLab/CBIG) 

Brain visualization via neuromaps v0.0.5 (https://pypi.org/project/neuromaps/), surfplot (https://surfplot.readthedocs.io/), brainspace v0.1.10 

(https://brainspace.readthedocs.io/), enigma toolbox (https://enigma-toolbox.readthedocs.io/), netneurotools v0.2.4 (https://

netneurotools.readthedocs.io/) 

SVM classification via sklearn (https://scikit-learn.org/stable/modules/svm.html#svm-classification) 

 

Cell type matching between Lake and Jorstad datasets via Seurat v5 (https://satijalab.org/seurat/) in R v4.1.1 
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Cell type imputation from mixtures via CIBERSORTx (https://cibersortx.stanford.edu/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Functional connectivity matrices averaged from 820 subjects in HCP dataset coregistered via MSMAll were downloaded from ConnectomeDB (https://

www.humanconnectome.org/storage/app/media/documentation/s900/820_Group-average_rfMRI_Connectivity_December2015.pdf).  

Schaefer parcellation were downloaded from CBIG github (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/

Schaefer2018_LocalGlobal).  

Human microarray gene expression data obtained from bulk samples of 6 postmortem brains were downloaded from AHBA dataset (http://human.brain-map.org/).  

Single-nucleus droplet-based sequencing (snDrop-seq) data obtained by Jorstad et al. were downloaded from cellxgene-census (https://cellxgene.cziscience.com/

collections/d17249d2-0e6e-4500-abb8-e6c93fa1ac6f) 

snDrop-seq data from Lake et al. were downloaded from Gene Expression Omnibus website (“GSE97930” [https://www.ncbi.nlm.nih.gov/geo]).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender AHBA include 6 donors, 5 were male and 1 was female (in sex). 

snRNA-seq data from Jorstad et al. has 4 males and 2 females. 

HCP 820R include 366 male and 454 female (in gender).

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Grouping was not relevant to our analyses because they were always conducted on the full set of available data.

Population characteristics AHBA mean age 42.5 years, range 24-57 years. 

snRNA-seq from Jorstad et al. mean age 45.7, range 29-60 

HCP 820R mean age 28.8 years, range 22-37 years.

Recruitment Anonymized open access data were used for the present analysis.  

Recruitment details of AHBA donors can be seen at: 

Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, 

A., Riley, Z.L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–

399. 10.1038/nature11405. 

For snRNA-seq provided by Jorstad et al.: 

Jorstad, N. L., Close, J., Johansen, N., Yanny, A. M., Barkan, E. R., Travaglini, K. J., ... & Lein, E. S. (2023). Transcriptomic 

cytoarchitecture reveals principles of human neocortex organization. Science, 382(6667), eadf6812. 

For HCP 820R: 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., and Ugurbil, K. (2013). The WU-Minn Human 

Connectome Project: An overview. NeuroImage 80, 62–79. 10.1016/j.neuroimage.2013.05.041.

Ethics oversight Not applicable to the current study, where anonymized open access data were used. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our analyses utilized open-access genetic and neuroimaging consortia data, so no sample size calculations were performed. Rather, we used 

all the data provided (all the 6 donors from AHBA and rest-state functional connectivity matrices of all the 820 subjects from HCP 820R).
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Data exclusions No participants were excluded from the present analysis

Replication The main analysis was perform based on the cell types imputed from Jorstad dataset and replicated with the cell types imputed from Lake 

dataset in the current study. Though the cell clusters defining the cell types from the two datasets were not perfectly one-on-one mapping, 

the major cell classes, such as PVALB, SST, IN1 in Lake and SNCG in Jorstad etc (as discussed with more details in maintext) shared similar 

univariate alignment with functional gradients. The effect size and robustness of multivariate relationship between cell types and gradients 

are comparable between the two datasets. The cell types enrichment across seven functional networks between the two datasets shared 

greater taxonomy class. The predicting accuracy on functional networks were similar between the cell types imputed from the two datasets.

Randomization Randomization was not relevant to our analyses because they were always conducted on the full set of available data and did not include 

"case/control" experimental design.

Blinding Blinding was not relevant since analyses were conducted on publicly available archival data and did not use an experimental/control group 

design.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type resting state functional magnetic resonance imaging

Design specifications Four 15-minute rest-run per subject

Behavioral performance measures We analyzed resting-state imaging data, which does not have an associated behavioral metric.
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Acquisition

Imaging type(s) resting state functional magnetic resonance imaging

Field strength 3T

Sequence & imaging parameters TR=720ms,TE=33.1ms, spatial resolution=2*2*2mm^3, more details can be found in the S900 release manual available 

at db.humanconnectome.org

Area of acquisition whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Functional connectivity matrices averaged from 820 subjects in HCP dataset coregistered via MSMAll were downloaded from 

ConnectomeDB (https://www.humanconnectome.org/storage/app/media/documentation/s900/820_Group-

average_rfMRI_Connectivity_December2015.pdf). 

Gradients, or components with similar functional connectivity patterns, were derived by the published code (https://

neuroanatomyandconnectivity.github.io/gradient_analysis/)

Normalization Functional connectivity matrices averaged from 820 subjects in HCP dataset coregistered via MSMAll were downloaded from 

ConnectomeDB (https://www.humanconnectome.org/storage/app/media/documentation/s900/820_Group-

average_rfMRI_Connectivity_December2015.pdf).

Normalization template Standard HCP pre-processed data were downloaded for the current analysis.

Noise and artifact removal Standard HCP pre-processed data were downloaded for the current analysis.

Volume censoring Standard HCP pre-processed data were downloaded for the current analysis.

Statistical modeling & inference

Model type and settings spin-test, permutation-based canonical correlation analysis, support vector machines

Effect(s) tested we tested whether cell type spatial distributions correlated with functional gradients and network topographies.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

ROIs were defined using the Schaefer 400 cortical functional atlas.  

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., Eickhoff, S.B., and Yeo, B.T.T. 

(2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity 

MRI. Cereb. Cortex 28, 3095–3114.

Statistic type for inference

(See Eklund et al. 2016)

analysis were conducted at network and individual parcel level

Correction where relevant, statistical tests were tested for multiple comparisons.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Spearman's Rho between cell type abundance and functional gradient value across ROIs parceled in Schaefer 

400.

Multivariate modeling and predictive analysis Permutational based canonical correlation analysis was used to calculate the maximum correlation between 

each functional gradient and 17 cell type abundances. Support vector machines were trained to predict the 

functional network each cortical parcel belongs to based on abundances of 17 cell types within that parcel. 

SVMs were trained from 70% parcels and tested on the left-out 30% parcels. Nested three-fold cross-

validation was implemented to select and validate the hyperparameters in the training set. Kernels and 

regularization parameters were first selected and tuned in the inner 2-fold cross-validation, the models' 

performance were then evaluated in the outer 3-fold cross-validation, the final model was the parameter 

combination with the highest score
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