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Besides the well-understood qualitative disease resistance, plants possess a more complex quantitative 
form of resistance: quantitative disease resistance (QDR). QDR is commonly defined as a partial but more 
durable form of resistance and, therefore, might display a valuable target for resistance breeding. The 
characterization of QDR phenotypes, especially of wild crop relatives, displays a bottleneck in deciphering 
QDR’s genomic and regulatory background. Moreover, the relationship between QDR parameters, such 
as infection frequency, lag-phase duration, and lesion growth rate, remains elusive. High hurdles for 
applying modern phenotyping technology, such as the low availability of phenotyping facilities or complex 
data analysis, further dampen progress in understanding QDR. Here, we applied a low-cost (<1.000 €) 
phenotyping system to measure lesion growth dynamics of wild tomato species (e.g., Solanum pennellii 
or Solanum pimpinellifolium). We provide insight into QDR diversity of wild populations and derive specific 
QDR mechanisms and their cross-talk. We show how temporally continuous observations are required 
to dissect end-point severity into functional resistance mechanisms. The results of our study show how 
QDR can be maintained by facilitating different defense mechanisms during host–parasite interaction and 
that the capacity of the QDR toolbox highly depends on the host’s genetic context. We anticipate that the 
present findings display a valuable resource for more targeted functional characterization of the processes 
involved in QDR. Moreover, we show how modest phenotyping technology can be leveraged to help answer 
highly relevant biological questions.

Introduction

Quantitative disease resistance in plants
Plant resistance is commonly divided into 2 concepts with 
fundamental differences: qualitative and quantitative resis-
tance [1,2]. While qualitative disease resistance provides a 
highly effective race-specific resistance, quantitative disease 
resistance (QDR) is a broad-range yet incomplete resistance 
[2,3]. Qualitative resistance is driven by major race-specific 
resistance genes (R-genes). They often lead to complete and 
easily observable resistance and were the dominant research 
focus for disease resistance breeding programs. However, 
reports of R-genes losing their efficacy against pathogens 
have increased recently, and major resistance genes have not 
been identified for many so-called necrotrophic plant patho-
gens, like Botrytis cinerea or Sclerotinia sclerotiorum [3–7]. 
Commonly, degrees of QDR cannot be divided into discrete 

classes. Quantitative resistance phenotypes are continuously 
distributed and can only be explained by highly integrated, 
polygenic regulatory mechanisms [8]. More over, QDR can 
manifest itself in several ways, ranging from differences in 
infection frequency (IF) on the leaf or delayed onset of infec-
tion to stalled lesion growth. Numerous studies documented 
wide distributions of QDR phenotypes against necrotrophic 
pathogens in both natural and domesticated plant popula-
tions, yet the relations of different QDR phenotypes have not 
yet been studied in detail [1–3,8–12]. Recent reports sum-
marized the diversity in functional QDR, arguing that QDR 
might be influenced by many independent components such 
as regulation as a pleiotropic side effect, weak R-genes, involve-
ment in defense signal transduction, or cis/trans-regulatory 
mechanisms [1,2]. Indeed, many QTLs that influence some 
degree of QDR have been identified [8,13,14]. Linkage of 
such QTLs or the underlying loci to exact resistance features, 
like the lag-phase duration, will be one of the future challenges 
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that would allow understanding and utilizing QDR in patho-
gen resistance breeding.

Phenotyping technology and approaches  
to quantify QDR
The functional characterization of QDR highly depends on 
precisely measured phenotypes [2,15]. However, the experi-
mental design required to assess QDR phenotypes over entire 
plant or pathogen populations quickly exceeds the limits of 
traditional, manual scoring methods and calls for more sophis-
ticated phenotyping technology. The increasing availability of 
sensor technology (e.g., RGB, multi- or hyperspectral sensors) 
and analytical methods (e.g., deep-learning or artificial intel-
ligence algorithms) recently have strengthened the attention to 
plant phenotyping [16]. Many studies have shown how imaging 
technology can be used not only to determine plant phenotypes 
like plant height, nutritional status, or water-use efficiency but 
also to assist breeder’s decisions [14,17,18]. Moreover, several 
reviews recently summarized the potential of modern sensor 
technology and related software in quantifying phenotypes of 
host–parasite interactions on multiple levels [19–24]. Even 
advanced applications, like in-field phenotyping or assess-
ing complex features in non-standardized conditions, are pos-
sible due to deep-learning models like “PLPNet” or “ResNet-9” 
[25–27]. However, large phenotyping platforms also have limita-
tions. High-end systems often collect a multitude of 3D scanning 
images or images in multiple spectral wavelengths. Analysis of 
these data is computationally intensive and often requires very 
specific knowledge. Thus, such technologies might over-
whelm (non-data-science) researchers with high amounts of 
complex datasets as substantial skills are required to derive 
easy-to-interpret insights relevant to answering biological 
research questions [28]. A second challenge lies in adapting 
an established phenotyping system for various pathosystems, 
i.e., different crops or pathogens [22,29]. Lastly, most high-end 
phenotyping systems have very high investment and running 
costs and thus are less available. Combined with the aforemen-
tioned low flexibility, this further limits their use and applica-
tion in the broad spectrum of plant pathology, where quick and 
easy screening of QDR in a large panel of plants is one of the 
main objectives. Recent developments, however, enable researchers 
to use the generally available consumer-level technology and 
build low-cost phenotyping platforms like the “Navautron” 
[30]. In this study, we show the usefulness of such systems in 
unraveling QDR dynamics in crop wild relatives.

Wild tomato populations as a reservoir of potential 
QDR loci against major pathogens
The domestic tomato (Solanum lycopersicum) is a major food 
crop of global importance [31]. However, plant pathogens, 
including the necrotroph S. sclerotiorum or species from the 
genus Alternaria, commonly threaten tomato production world-
wide [32–35]. Host resistance and fungicides are the standard 
tools to protect tomatoes against these pathogens. However, 
strong selection pressure caused by R-genes or fungicides and 
higher-than-expected pathogen diversity in the field result in 
losing fungicide efficacy or plant resistance against such species 
[36–40]. Therefore, highly diverse wild populations are an invalu-
able source of desirable alleles in breeding, as crosses between wild 
and domestic can lead to increased performance and stress 

tolerance [41]. Integrating phenotyping with screening of geneti-
cally highly diverse wild resources will help characterize novel 
alleles for QDR breeding [42].

Wild tomato species originated from several radiation events 
and can generally be classified into 4 groups within the so-called 
section Lycopersicon, containing a total of 15 species and 2 
species in the section Lycopersicoides [43]. All species have 
adapted to specific habitats ranging from the edge of the Atacama 
desert to the Andes, where they withstand diverse (a)biotic 
stresses. Evolutionary analyses show that different species 
and populations have evolved drought or salt stress tolerance, 
as well as adaptation to cold stress [44–48]. Previous studies 
have also shown substantial variation in susceptibility and resis-
tance of wild Solanum spp. against various pathogens but often 
relied on manual or single time-point disease assessments, thus 
lacking the temporal resolution and statistical power to describe 
QDR mechanisms confidently [38,49,50]. In light of the varia-
tion of QDR already shown, wild tomato species are perfectly 
suited for quantification of QDR mechanisms as proof of prin-
ciple. Moreover, defining whether specific QDR mechanisms 
play major roles in resistance will generate much-needed insights 
into the biology of QDR to help design future durable resistance 
breeding projects against major pathogens.

S. sclerotiorum is a necrotrophic pathogen that can infect 
hundreds of host species, including important crops such 
as rapeseed and tomato [30,51,52]. On vegetables, including 
tomatoes, infection with S. sclerotiorum can cause tremendous 
yield loss due to collapsing stems or damaged fruits [53,54]. 
Infection in the field can happen through air-dispersed asco-
spores or via myceliogenic germination of its overwintering 
structures in the soil, the so-called sclerotia [32,52]. In experi-
mental conditions, mycelial inoculation procedures are com-
monly used, as the preparation of ascospores can display a 
major challenge [55–59]. No complete form of resistance 
against the generalist S. sclerotiorum has been characterized; 
therefore, resistance breeding relies on QDR as the source of 
new alleles [32,52,55,57,60].

In the present work, we build on a low-budget image-
based phenotyping system [30] to derive high-resolution 
time-resolved disease phenotypes and dissect them into 3 
distinct QDR mechanisms. We show the potential of this 
system by characterizing the natural diversity of QDR phe-
notypes of wild Solanum species and, therefore, provide 
insights into the mechanisms underlying QDR against the 
generalist pathogen S. sclerotiorum. We use this system as a 
model to address whether QDR is always represented by a 
similar mechanism, i.e., IF or lag-phase duration, and show 
that the orchestration of different QDR mechanisms affects 
the overall QDR on a genotype-specific basis. Accordingly, 
we argue that the different host species have evolved specific 
mechanisms to maintain a defined degree of QDR.

Materials and Methods

Experimental design
We screened multiple accessions of 4 wild tomato species 
(S. pennellii, S. lycopersicoides, S. habrochaites, and S. lycopersicoides) 
with a detached-leaf assay. All accessions of the same species 
were tested as one batch for up to 5 independent repetitions. 
To facilitate comparability between batches, S. lycopersicum cv. C32 
was used as a control in every experiment. A schematic of the 
experimental procedures is displayed in Fig. 1.
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S. sclerotiorum inoculum preparation
For inoculation experiments, the S. sclerotiorum isolate 1980 or 
the OAH1:GFP (green fluorescent protein) isolate (for micro-
scopic analysis only, [61]) was used. The fungus was alternat-
ingly cultivated on potato dextrose agar (Sigma-Aldrich) 
and solid malic acid medium [62] at approximately 25 °C in the 
dark. Four 1-cm pieces of S. sclerotiorum inoculum were used 
to inoculate 100 ml of potato dextrose broth. After 4 days of 
incubation on a rotary shaker (24 °C, 120 rpm), a fungal myce-
lium suspension was generated: for this, the medium was 
mixed 2 times using a dispenser (IKA T25) for 10 s at 24,000 rpm. 
The mixture was then vacuum-filtrated through cheesecloth, 
and the remaining liquid was concentrated to an optical density 
(OD) of 1. For the negative control, fungal tissue was removed 
from the solution by centrifugation, and the supernatant was 
autoclaved. Tween 20 was used as a surfactant. Per leaf, one drop 
(10 μl) of inoculum was used.

Plant growing conditions
Wild tomato germplasm was obtained from the C. M. Rick 
Tomato Genetics Resource Center of the University of California, 
Davis (TGRC UC-Davis, http://tgrc.ucdavis.edu/) (see Table 
S5). The species were selected to include genetically diverse spe-
cies within the section Lycopersicon and a species from the 
section Lycopersicoides (Fig. 2). All plants were grown at the 
greenhouse facility of the Department of Phytopathology 
and Crop Protection, Institute of Phytopathology, Faculty 

of Agricultural and Nutritional Sciences, Christian Albrechts 
University, Kiel, Germany. Following seed surface sterilization 
using 2.75% hypochlorite (15 min incubation followed by 
washing twice with dH2O), seeds were sown in the substrate 
(STENDER C700, Germany) and cultivated in a growth chamber 
(21 °C, 65% rH, 16 h of 450 photosynthetically active radiation 
[PAR]). From the 3-leaf stage on, plants were cultivated in stan-
dard greenhouse conditions with supplement light (approxi-
mately 16 h/day, 15 to 25 °C at 50% to 70% rH). Plants were 
fertilized via the irrigation system (monthly, 1% Sagaphos Blue, 
Germany). Plants were propagated using cuttings (Chryzotop 
Grün 0.25%) and regularly screened for virus infection.

Detached leaf assay
Detached leaf assays were conducted to measure QDR of a 
diverse panel of wild Solanaceae plants. A custom phenotyping 
system was adapted [30]. A 50 cm × 70 cm PMMA tray was 
filled with 8 layers of blue tissue paper and flooded with 700 ml 
of sterile dH2O. Plant leaves were placed abaxial side up onto 

Plant cultivation
S. pennellii S. lycopersicoides

S. pimpinellifolium S. habrochaites

S. lycopersicum cv. C32

Sampling of leaves, 
inoculation 

Image acquisition

Image analysis 

Data analysis 

Fig.  1. Overview of the high-throughput phenotyping assay. We cultivated 36 accessions 
from 4 wild tomato species (S. pennellii, S. habrochaites, S, pimpinellifolium, and 
S. lycopersicoides) and the domestic tomato cultivar “C32” in a greenhouse for 
detached-leaf assays. We harvested single leaves, inoculated using a Sclerotinia 
sclerotiorum mycelial suspension and placed them in the phenotyping boxes. Every 
10 min, we captured images of the leaves for the duration of 1 week. We then manually 
defined regions of interest for each leaf and set thresholds for the feature classes 
“leaf”, “background”, and “lesion” in the HSV color scheme. Finally, we performed 
image analysis on all images, collected and filtered the data, and conducted further 
analytical steps to quantify the lesion development over time.

Colombia

Ecuador

Peru

EcuEEE

N

Species
S. habrochaites
S. lycopersicoides
S. pennellii
S. pimpinellifolium

Fig. 2. Sampling localities of wild tomato accessions used in this study. Seed material 
of all wild tomato accessions was provided from C. M. Rick Tomato Genetics Resource 
Center of the University of California, Davis (TGRC UC-Davis, http://tgrc.ucdavis.
edu/). Individual dots represent the geographical origin of each accession.
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the tissue and inoculated with 10 μl of mock/S. sclerotiorum 
suspension. Next, the tray is covered with a custom hood. The 
boxes were placed inside a growth chamber (24 °C) and incu-
bated for 7 days. The assay was independently repeated 5 times. 
We used a representative set of 3 experiments for all further 
analysis. We tested potential border effects on the resistance 
parameters and found no statistically significant impact of leaf 
position on the measured parameters. Consequently, the leaves 
were not spatially randomized on the tray.

Phenotyping platform
High-resolution images were acquired using RGB cameras 
(Yealink UVC30) mounted on the box. Cameras were controlled 
using Raspberry Pi microcomputers or desktop PCs running head-
less Ubuntu22. A cron daemon launched the image-acquisition 
script every 10 min. Plant lights also briefly (1 s) illuminate dur-
ing nighttime for image capture to enable images in the dark 
while maintaining circadian rhythm. This was achieved by using 
the “Shelly Plus Plug S” wifi plug (Fig. S1).

Image analysis
We adapted the “navautron” software package (https://github.
com/A02l01/Navautron). The image analysis involved manu-
ally defining regions of interest (ROIs) using ImageJ (ImageJ 
Version 1.530). Further, HSV thresholds were optimized indi-
vidually per box. For this, “assess_noChl.py” was used, and an 
overlay was generated in Gimp (Version 2.10). Once binary 
masks represented the respective feature classes (leaf_healthy, 
leaf_diseased, and background), the whole dataset was evalu-
ated using the “infest.py” script. Segmentation was iterated and 
classified pixel was counted. The analysis includes functions 
from the python3 (Version 3.11.4) libraries “numpy” (Version 
1.25.2), “opencv” (Version 4.8.1.78), “plantcv” (Version 4.0.1), 
and “scikit-image” (Version 0.22.0). The plantcv function 
“dilate” was used to remove leaf edges containing shadows with 
ksize = 9, i = 1 [63]. To improve thresholding accuracy (e.g., 
filling holes) on the lesion, an index filter was applied [ndimage.
generic_filter(mask, threshold, size = 3, mode = “constant”)] 
with a condition to overwrite pixels deviating from the value 
of the majority of the surrounding pixels. np.sum(mask) was 
used to quantify the number of pixels in each feature class 
(lesion and leaf). Code and scripts can be found at https://
github.com/seveein/QDR_Wild_Tomatoes.

Microscopy analysis
Plant leaves were harvested and inoculated under standard 
conditions as described before but with either a GFP-expressing 
S. sclerotiorum strain, the S. sclerotiorum wild-type 1980, or the 
mock suspension. The leaves were evaluated at 12-h intervals 
using a Zeiss Discovery V20 stereomicroscope under bright 
light and fluorescent illumination (Zeiss HXP120). Images were 
taken using an AxioCam MRc camera.

Statistical analysis
An interactive R-script (R-Version 4.3.2, R-Studio 2023.12.1+402) 
was utilized to extract lag-phase duration and lesion doubling 
time (LDT) to quantify resistance characteristics [30]. Each 
leaf ’s lesion size over time was fitted against a 4-degree poly-
nomial regression. The fit to the measured data point was 
reviewed for each sample. LDT and lag phase were determined 
based on a segmented regression analysis, expecting 2 linear 

phases: first, a linear phase during the lag period (no symp-
tom development), and second, a linear log growth (symp-
tom) during the exponential growth phase. The period prior 
to the lesion growth (LDT) is considered the lag phase, while 
the LDT represents the log(slope) of the linear growing curve 
in this area.

A 2-tier filtering pipeline was developed to increase accu-
racy and remove artifacts from the dataset. First, time points 
with leaf-size outliers were trimmed by removing 2.5% of the 
individual reads. Next, individual leaves with unexpectedly 
high variability in leaf area were excluded from the dataset. 
Therefore, samples with sd(leaf) > 10% of the mean(leaf) were 
removed from the dataset using a simple tidyverse (v. 2.0.0) 
pipeline.

As a measure of symptom development over time, the area 
under the disease progress curve (AUDPC) was calculated using 
the R-package agricolae (v. 1.3-6). General statistical analysis 
and visualization were conducted in RStudio (R-Version 4.3.2, 
R-Studio 2023.12.1+402 [64]) and the packages tidyverse [65], 
ggplot2 [66], ggpubr [67], and agricolae [68]. AUDPC is defined 
with i = time and yi = symptom severity at time = i as [68]:

For continuous variables (lag-phase duration, LDT, AUDPC, 
and tt100), a statistical model based on a generalized least 
squares model was defined [69]. In contrast, a generalized lin-
ear model was defined for binomial values (IF, 100%/f) [70]. 
These models included genotype and start date (without inter-
action effect).

The residuals corresponding to the continuous values were 
assumed to be approximately normally distributed and het-
eroscedastic concerning the different genotypes. These assump-
tions are based on a graphical residual analysis (Figs. S8 and 
S9). Based on these models, a pseudo R2 was calculated [71], 
and an analysis of variance (ANOVA) was conducted, followed 
by multiple contrast tests [72,73]. User-defined contrast matri-
ces were used (a) to compare the species’ means with each other 
and (b) to compare the population means within their specific 
species with the corresponding species’ mean. The individual 
leaf area was previously found to have no significant influence 
on lesion area; therefore, it was not included in our statistical 
model [74]. A linear mixed-effects model was used to deter-
mine the relationship between AUDPC and predictors such as 
genotype, lag-phase duration, and LDT. Random intercepts 
were specified per start date to account for experimental 
repetitions.

Based on this model, fixed-effect values were extracted and 
used to predict AUDPC per genotypei=1,2,3 in relation to varying 
lag and LDT values.

The associated R-codes can be found at https://github.com/
seveein/phenotyping_QDR_Wild_Tomatoes.

(1)AUDPC =

N
∑

i=1

(

yi + yi+1
)

× (i − 1)

2

(2)

AUDPCi= Intercepti+Coefficientlagi
× lag+

CoefficientLDTi ×LDT+

Coefficientlagi×LDTi
× lag×LDT
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Results

Wild tomato species carry different levels of 
quantitative resistance against S. sclerotiorum 
depending on defense parameters
We investigated the phenotypic diversity in QDR in 4 wild 
tomato species (S. habrochaites, S. lycopersicoides, S. pennellii, 
and S. pimpinellifolium) against the S. sclerotiorum isolate 1980 
[13]. We used the “Navautron” automated phenotyping system 
for continuous image acquisition and applied a threshold-based 
segmentation algorithm to extract phenotypic data (Fig. S1). 
Hence, we calculated different QDR parameters such as IF, 
lag-phase duration, LDT, or AUDPC to quantify temporal 
dynamics of infection (Fig. 3). High variability between experi-
mental runs with wild tomatoes has been described before 
[6,49,74]. To account for this, we applied a generalized least 
squares model (gls, continuous variables) and a generalized 
linear model (glm, discrete variables) for statistical analysis 
[69]. Overall, we discovered a great diversity of resistance phe-
notypes among the tested plant species. We found no 100% 
resist ant accessions (Fig. S4). We observed a significant dif-
ference in lag-phase duration among plant species, which we 
define as the time from infection until the first symptoms appear 
(see Fig. 3A, C, and D). For instance, S. pimpinellifolium showed 
the shortest time from inoculation until lesion development 
(adjusted mean = 36.2 h). In contrast, S. habrochaites and 
S. pennellii displayed a significantly prolonged lag phase 
(both approximately 59 h) (see Table S1). Using segmented 
regression analysis, we determined the speed of lesion growth 
on individual leaves of the panel. The fastest-growing lesions 
were found on the species S. pimpinellifolium and S. pennellii. 
Lesions on S. pennellii and S. pimpinellifolium leaves doubled 
in size within approximately 11 h [6.56 log(LDT) and 6.55 
log(LDT), respectively], while lesions on S. habrochaites and 
S. lycopersicoides spread significantly slower. Those lesions 
expanded with an average rate of approximately 7.7 log(LDT), 
corresponding to roughly 36 h (S. habrochaites) and 41 h 
(S. lycopersicoides) (see Table S2). Moreover, we observed that 
the success of disease establishment (IF) depends highly on 
the host species. We identified a significantly lower infection 
rate on S. habrochaites (corrected IF estimate 80 %), whereas 
S. lycopersicoides and S. pennellii displayed significantly higher 
IF (~93% and 95%, respectively) (Fig. 3B).

Individual QDR measures show different levels  
of intraspecific variation and conservation on  
S. pennellii and S. lycopersicoides accessions
To assess the within-species diversity of QDR phenotypes, we 
tested different accessions of each represented species. We col-
lected phenotypic data from 7 S. lycopersicoides and 9 S. pennellii 
populations (Fig. 4), as well as 8 populations of S. habrochaites 
and 10 populations of the species S. pimpinellifolium (Figs. S2 
and S3). In particular, the comparison of S. lycopersicoides and 
S. pennellii highlights that QDR diversity differs between spe-
cies. We observed that the (adjusted) mean duration of the lag 
phase on different S. pennellii accessions ranged from 1.59 days 
(38 h, LA1809) to 2.86 days (68 h, LA1303) (Fig. 4A and C). 
Using a generalized least squares model, we identified acces-
sions with a significantly shorter lag phase than the grand mean 
of the species (LA1809 and LA2657). In contrast, the accessions 
LA1656 and LA1303 displayed a significantly longer lag phase 

(2.75 days [66 h] and 2.86 days [68 h], respectively) (Fig. 4A 
and C). Next, we observed a significantly shorter overall lag-
phase duration of S. lycopersicoides accessions than S. pennellii. 
Accordingly, the first symptoms appeared after 1.3 days (31 h, 
LA2772) and the latest appeared at 1.83 days after inoculation 
(43 h, LA1966). The overall time till initial symptom develop-
ment was more conserved; only 2 S. lycopersicoides accessions 
deviated significantly from the grand mean, being more sus-
ceptible than the overall species level (LA2776 and LA2772) 
(Fig. 4B and D). Similarly, we found a lack of variation in 
lag-phase duration in the populations of S. pimpinellifolium. At 
the same time, S. habrochaites accessions displayed a wider vari-
ability of lag-phase phenotypes (Fig. S2 and Table S3).

Next, we analyzed the variability of the lesion growth rate 
between accessions of each species using the logarithmic LDT. 
We observed that all tested S. pennellii accessions displayed an aver-
age LDT ranging from 5.84 h (LA1303) to 13.07 h (LA2963). Five 
accessions (LA1809, LA1282, LA2719, LA2657, and LA1303) have 
a significantly faster lesion development than the grand mean 
(LDT < 11 h). The populations LA2963 and LA1941 displayed a 
significantly longer LDT (13.07 and 9.8 h, respectively) (Fig. 4E 
and G). Generally, we found that symptoms of S. lycopersicoides 
grew significantly slower (observed range: 14.9 h to 40 h). 
However, we still observed a significant within-species variability. 
For instance, symptoms on leaves of the accession LA2951 doubled 
within lsmean = 7.88 log(LDT) (approximately 44 h), while 
lesions of LA2777 expanded much faster at lsmean = 6.8 log(LDT) 
(15 h, Fig. 4F and H). We observed a high variability among the 
accessions for S. pennellii and S. lycopersicoides, mostly deviating 
from the species mean in LDT with high significance. Interestingly, 
the LDT on S. habrochaites and S. pimpinellifolium appeared much 
more conserved between the accessions, as only a few samples 
significantly differed from the grand mean (Fig. S3 and Table S4).

Disease resistance measures are not linked and 
characterize distinct components of QDR
To test whether fungal infection is directly linked to delayed 
lesion growth, we conducted microscopy assays using a GFP-
tagged S. sclerotiorum mutant of the S. sclerotiorum isolate 1980 
[75]. We selected 2 accessions from S. pennellii with signifi-
cantly altered lag-phase duration. At 72 h past inoculation 
(hpi), freshly developed mycelium was observed on leaves of 
the S. pennellii accession with the shortest lag-phase duration 
(LA1809). In contrast, on the less susceptible accession LA1303, 
the first fungal structures started growing at 96 hpi (Fig. S7). 
Fluorescent microscopy imaging showed that fungal mycelial 
structures were always accompanied by clear formation of 
necrotic lesions but cannot be observed prior to visual lesion 
development (Fig. 5C and Fig. S7). Thus, this shows that a 
longer lag phase does not represent any latent or biotrophic 
infection and that IF and lag-phase duration are likely uncou-
pled phenomena.

We performed a correlation analysis to consolidate the rela-
tionship between the QDR parameters further. First, we tested 
the overall relation of lsmean LDT and lsmean lag-phase dura-
tion by pooling all accessions of all species. We found that LDT 
and lag phase were independent (R = 0.14), with no significant 
relationship (P = 0.42) (Fig. S5). We also tested the correlation 
between QDR mechanisms at the species level. We found only 
minor linear relationships between LDT and lag phase for the 
4 tested species. However, we found a weak, significant negative 
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tested. Raw values are plotted. (F) Statistical analysis of pairwise differences between the tested wild tomato species regarding lesion doubling time. Values are displayed as 
log(LDT[h]). Levels of significance are displayed as ***P < 0.001, **P < 0.01. *P < 0.05, P < 0.1.

D
ow

nloaded from
 https://spj.science.org on N

ovem
ber 19, 2024

https://doi.org/10.34133/plantphenomics.0214


Einspanier et al. 2024 | https://doi.org/10.34133/plantphenomics.0214 7

2

165 157 161 205 199 72 98 215 148

4

6

LA
13

03

LA
16

56

LA
07

16

LA
12

82

LA
27

19

LA
29

63

LA
19

41

LA
26

57

LA
18

09

La
g 

ph
as

e 
[d

ay
s]

A

2

4

6

LA
29

51

LA
41

23

LA
19

64

LA
27

77

LA
41

30

LA
27

76

LA
27

72

B

Genotype

LA1809

lsmean

LA2657

SE

LA1941

Estimate comp.

LA2963

SE comp.

LA2719

LA1282

Signif.

LA0716

LA1656

LA1303

1.59

2.04

2.08

2.17

2.29

2.37

2.58

2.75

2.86

0.09

0.08

0.10

0.16

0.09

0.08

0.10

0.10

0.11

−0.71

−0.26

−0.23

−0.13

−0.01

 0.06

 0.27

 0.45

 0.56

0.07

0.06

0.07

0.14

0.06

0.06

0.08

0.08

0.08

<0.001

<0.001

0.071

1.000

1.000

1.000

0.011

<0.001

<0.001

***

***

.

ns

ns

ns

*

***

***

C

Genotype

LA2772

lsmean

LA2776

SE

LA4130

Estimate comp.

LA2777

SE comp.

LA1964

LA4123

Signif.

LA2951

1.30

1.38

1.51

1.67

1.80

1.81

1.83

0.09

0.08

0.09

0.09

0.09

0.09

0.11

−0.32

−0.23

−0.10

 0.06

 0.19

 0.19

 0.21

0.06

0.05

0.07

0.07

0.06

0.06

0.08

<0.001

<0.001

0.985

1.000

0.069

0.059

0.287

***

***

ns

ns

.

.

ns

D

3

9

18

36

72

144

720

LA
29

63

LA
19

41

LA
07

16

LA
27

19

LA
18

09

LA
12

82

LA
16

56

LA
26

57

LA
13

03

Le
si

on
 d

ou
bl

in
g 

tim
e 

LD
T 

[h
]

E

3

9

18

36

72

144

720

LA
29

51

LA
19

64

LA
27

72

LA
41

23

LA
27

76

LA
41

30

LA
27

77

F

Genotype

LA1303

lsmean

LA2657

SE

LA1656

Estimate comp.

LA1282

SE comp.

LA1809

LA2719

Signif.

LA0716

LA1941

LA2963

5.86

5.98

6.00

6.03

6.04

6.05

6.08

6.38

6.65

0.07

0.07

0.08

0.07

0.07

0.07

0.07

0.09

0.08

−0.26

−0.13

−0.12

−0.09

−0.08

−0.07

−0.04

 0.26

 0.53

0.03

0.02

0.04

0.02

0.03

0.03

0.03

0.05

0.04

<0.001

<0.001

0.0781

0.0034

0.1197

0.2412

0.9967

<0.001

<0.001

***

***

.

**

ns

ns

ns

***

***

G

Genotype

LA2777

lsmean

LA4130

SE

LA2776

Estimate comp.

LA4123

SE comp.

LA2772

LA1964

Signif.

LA2951

6.80

7.04

7.23

7.24

7.55

7.82

7.88

0.07

0.08

0.07

0.08

0.07

0.08

0.08

−0.56

−0.33

−0.13

−0.13

 0.19

 0.45

 0.52

0.03

0.05

0.03

0.05

0.03

0.04

0.05

<0.001

<0.001

<0.001

0.112

<0.001

<0.001

<0.001

***

***

***

ns

***

***

***

H

Adj. P value

Adj. P value

Adj. P value

Adj. P value

101 107 122 169 104 174 197

72 98 161 199 148 205 157 215 165 101 122 197 107 174 104 169
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of the lag-phase duration contrasting each accession with the grand mean per species [S. pennellii (C); S. lycopersicoides (D)]. Estimates are displayed in days after 
inoculation. (E and F) The lesion doubling time (in hours) of S. sclerotiorum infection on S. pennellii accessions is lower than on S. lycopersicoides. (G) Variation statistics of LDT 
on S. pennellii and (H) S. lycopersicoides. lsmean values and SE indicate the adjusted mean and SE per population. Estimate comp., SE comp, and P values describe pairwise 
statistics of each accession against the grand mean. The numbers on the x-axis in panels A, B, E, and F indicate the count of individual leaves tested. Levels of significance are 
displayed as ***P < 0.001, **P < 0.01. *P < 0.05, P < 0.1.

D
ow

nloaded from
 https://spj.science.org on N

ovem
ber 19, 2024

https://doi.org/10.34133/plantphenomics.0214


Einspanier et al. 2024 | https://doi.org/10.34133/plantphenomics.0214 8

correlation between IF and the duration of the lag phase (lsmean) 
in S. habrochaites (R = −0.64, p = 0.086) (Fig. 5A and B). For 
the remaining species, no significant correlation was found. We 
did not find a single host accession with high levels of resistance 
in both LDT and lag-phase duration.

Severity analysis reveals distinct resistance phenotypes 
against S. sclerotiorum within a single species
For an in-depth analysis of disease severity, we selected 3 S. pennellii 
accessions with similar leaf sizes: LA1282, LA1809, and LA1941 
(Fig. 6A). While symptoms developed on most of the leaves, the 
impact of infection is highly dependent on the respective acces-
sion (see Fig. 6B). Accession LA1941 shows a significantly lower 
IF (~51%) and a significantly lower rate of fully infected leaves 
than LA1809 (approximately 11% vs. approximately 41%) or 
LA1282 (approximately 33%, Fig. 6C).

We further found differences regarding the speed of lesion 
growth over time between the genotypes. While lesions on 
LA1282 and LA1941 reached 100% severity within 6.5 to 7 days, 
we observed that symptoms on LA1809 reached the point of 
saturation significantly faster (after approximately 5 days, Fig. 7). 
This is also reflected by significantly increased AUDPC values 
of LA1809 (AUDPC approximately 250). In LA1282, we mea-
sured not only a lower AUDPC compared to LA1809 (Fig. 6E), 
but also an insignificant difference in the rate of fully infected 
leaves (Fig. 6C). This could hint toward a delayed but explosive 
lesion growth on LA1282 (Fig. 7).

The moderation of QDR parameters  
is genotype-dependent
Next, we used a linear mixed-effect model (lme) to test which 
of the factors have the strongest effects on disease severity on 
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those accessions (S. pennellii LA1282, LA1809, and LA1941). 
Following the ANOVA, we found a significant influence of most 
tested variables (genotype, lag phase, and LDT) on the AUDPC 
(Table). Strikingly, we found that the genomic background of 
the tested plants is insufficient to explain the observed diversity 
in AUDPC. In other words, we observe a significant relation-
ship between lag, LDT, and their interaction with the genotype. 
Because of this, we extracted the fixed-effect estimates from 
the lme and generated predictor functions for the AUDPC of 
each genotype. Then, we modeled the AUDPC using high-
confidence lag and LDT values from previous observations (see 
Fig. 3C and D). We observed the highly variable influence of 
lag-phase duration, LDT, and their interaction on the AUDPC 

(Fig. 8). Strikingly, we found that variation of the LDT has almost 
no influence on the AUDPC of LA1809 besides the generally 
elevated severity level (Fig. 8). Further, we found that only a 
prolonged lag-phase duration might contribute to an increased 
potential for lower severity in LA1809 (Fig. 8). However, the 
influence of longer lag phase is reduced with increasing LDT. 
For leaves of the accessions LA1282 and LA1941, we found a 
stronger combined effect of lag-phase and LDT on the severity. 
More specifically, a prolonged lag phase might lead to a small 
reduction of the symptom severity on LA1282 while reducing 
the AUDPC on LA1941 more rapidly. Further, we observe that 
a prolonged LDT reduced symptom severity in both LA1282 
and LA1941.
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Fig. 6. S. pennellii accession LA1941 harbors a significantly elevated level of quantitative resistance against S. sclerotiorum. (A) Mean leaf area of S. pennellii accessions quantified 
during infection experiments. The data of 3 independent experiments are shown. HSD test was performed to identify cluster with similar leaf size. Selected plants with similar 
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(C) Statistical analysis of infection frequency (IF) and frequency of fully infected leaves at the end of experiment. “lsmean” represents the estimate as logits, while “estimate” 
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Discussion

QDR against S. sclerotiorum is highly diverse  
in Solanum spp.
Wild tomato species have been screened for quantitative resis-
tance phenotypes against many diseases, including Tomato 
brown rugose fruit virus, Phytophthora infestans, Alternaria 
solani, Fusarium spp., or B. cinerea [8,49,50,74,76–79]. However, 
high hurdles in characterizing QDR on a phenotypic level limit 
detailed insights into the functional role of QDR against necro-
trophic pathogens. This was mostly due to the lack of affordable 
high-throughput phenotyping facilities [1,2,5,8,80]. Here, we 
present a unique dataset of high-resolution QDR phenotypes 
against S. sclerotiorum on a diverse set of wild Solanum species 
derived from a low-budget phenotyping setup, using detached 
leaf infections. There are potential disadvantages to using detached 
leaf assays, i.e., the lack of feedback mechanisms between leaf 
and root/shoot, which could make plants more susceptible if 
this feedback plays a role in amplifying the defense signal, or 
more susceptible if this feedback provides susceptibility factors 
or nutrients for the pathogen. The immense gain in efficiency 
in both experimental setup and data analysis, together with the 
fact that detached leaf assays have been used successfully in 
tomato and with S. sclerotiorum and other necrotrophic leaf 
pathogens, justifies the decision to develop our methods for 
detached leaves [30,49,50,74,78]. In total, we tested almost 
7,000 leaves over the duration of 7 days with approximately 
1,000 measurements each, resulting in approximately 7 million 
data points. We used this unique dataset to characterize the 
lesion development of infected leaves and applied advanced 
statistical analysis methods to extract more specific descriptors 
for QDR, such as lag phase, LDT, or AUDPC [30]. Because of 
this system’s scale and temporal resolution, we generated novel 
insights into the phenomena contributing to QDR.

Interspecific QDR phenotypes follow  
a wide distribution
As expected, we observed a diverse range of disease phenotypes, 
as demonstrated in previous studies [6,49,78]. None of the tested 
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Fig. 7. Exemplary growth curve of 3 S. pennellii accessions with different resistance 
levels against S. sclerotiorum. Shown is the mean symptom severity of each accession 
as share of leaf area over the period of 7 days. The experiment was independently 
repeated 3 times. nLA1282 = 205, nLA1809 = 148, nLA941 = 98.

Table. Statistical analysis of the effects of genotype, lag-phase 
duration, LDT, and their interactions on disease severity (AUD-
PC) of the S. pennellii accessions LA1282, LA1809, and LA1941. 
Results of an analysis of variance (ANOVA) based on a linear 
mixed-effects model are shown.

numDF denDF F value P value

Intercept 1 437 136.8 <0.001

Genotype 2 437 211.34 <0.001

Lag 1 437 251.68 <0.001

LDT 1 437 90.41 <0.001

Genotype:Lag 2 437 8.54 <0.001

Genotype:LDT 2 437 2.32 0.099

Lag:LDT 1 437 21.91 <0.001

Genotype:Lag:LDT 2 437 3.3 0.038
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Fig. 8. The crosstalk of lag-phase duration and LDT is highly genotype-dependent and specifically determines the symptom severity. We used the S. pennellii accessions 
LA1282, LA1809, and LA1941 to test for the genotype-dependent relationship between lag and LDT. Therefore, we extracted the estimates for the factors LDT and lag per each 
genotype from an ANOVA based on a generalized least square model (Table 1). The per-genotype AUDPC was modeled using the extracted estimates over a range of values 
representing the plausible range of lag/LDT values. Crosses represent the observed mean AUDPC (Fig. 6E).
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accessions carried complete resistance against S. sclerotiorum, 
although we found a wide distribution of infection phenotypes. 
Also, no high “universal” level of partial resistance or tolerance 
among multiple QDR parameters was found, as none of the spe-
cies harbors significant advantages in multiple measures (IF, lag 
phase, or LDT). Complete resistance against S. sclerotiorum is 
rarely found in cultivated crops [32,52,60,81]. We provide evi-
dence that the time till the emergence of the first lesions (lag 
phase) is highly variable within and between host species, with 
only S. lycopersicoides showing a rather conserved lag-phase dura-
tion (Fig. 4B). Interestingly, Barbacci et al. [30] reported that in 
Arabidopsis thaliana, the lag-phase duration is mostly influenced 
by the S. sclerotiorum isolate rather than the host accession. The 
comparably low genetic diversity of the host may have influenced 
the observed range of QDRs. Standing genetic variation is con-
sidered much higher in (predominantly) outcrossing Solanum 
species than in inbreeding A. thaliana accessions [82]. Accordingly, 
we assume that the influence of genetic features on the lag-phase 
duration depends on the specific genomic background of the host 
plant species. However, fungal influences on pathogenesis cannot 
be ignored, as the concept of the “extended phenotype”, describing 
the interaction of both genomes, i.e., a genotype × genotype (G 
× G) interaction for host and pathogen, for one phenotype, is well 
established [37,83]. Furthermore, quantitative host resistance 
features have been described to interact with the pathogen’s geno-
type as described for camalexin-associated resistance [50,84].

QDR phenotypes also differ on the intraspecific level 
but at varying degrees
High variability of QDR phenotypes among genotypes of the 
same plant species has been reported on multiple hosts before 
[6,30,49,74,85,86]. We show that the degree of variability depends 
on the host species and the respective resistance parameter. 
Whereas LDT is rather stable among S. pimpinellifolium acces-
sions, it is highly variable on S. lycopersicoides accessions (see 
Fig. 4 and Fig. S3). The specific forms of QDR phenotypes might 
hint at independent regulatory mechanisms and different evo-
lutionary backgrounds with relatively recent developments, 
leading to genetic variation, rather than conserved QDR mecha-
nisms. Host adaptation to natural habitats and its influence on 
disease resistance has been studied before [87,88]. Adaptation 
might explain disease phenotypes as most S. lycopersicoides 
accessions show significantly prolonged LDT. The habitat of 
S. lycopersicoides faces much more rain than the other species, 
leading to higher chances of successful infection events than in 
relatively dry habitats, thus requiring mechanisms to fight estab-
lished infections. In contrast, drought-resistant S. pennellii has 
high capabilities in delaying infection events, while it lacks 
defense efficacy once an infection is established (Fig. 3), similar 
to the S. chilense desert population losing resistance against the 
fungus Passalora fulva [46,87,89]. However, to truly test these 
hypotheses, significantly higher sample sizes and infections 
under natural conditions would be required, possibly paired 
with screenings of the morphological properties of the species 
to assess the pleiotropic influence of habitat adaptation on QDR, 
e.g., via cuticle thickness or stomata density.

QDR and genotype × genotype × environment 
interactions
S. pennellii accession LA0716 was characterized as relatively 
resistant against B. cinerea, while this genotype is highly susceptible 

to S. sclerotiorum (Fig. S6) [6]. Also in S. chilense, QDR pheno-
types vary between the pathogen, suggesting the presence of 
pathogen-specific regulatory mechanisms [78]. However, the 
pathogen diversity tested in such studies might greatly affect 
the observed degree of resistance. A study with Phytophthora 
infestans on 85 S. chilense accessions showed that the relative 
differences in resistance phenotypes between individuals were 
mainly determined by the plant genotype, with modest effects 
of pathogen isolate used [49]. In contrast, large-scale screenings 
of infections with different B. cinerea isolates showed a clear 
genotype × genotype (G × G) effect both on panels of wild and 
domesticated tomatoes and on A. thaliana [37,50,74,90,91]. In 
addition, we have shown in S. chilense that QDR phenotypes, 
like the IF, can be correlated with the phytohormone ethylene 
[92]. Knowing that such phytohormonal regulation is also 
affected by abiotic, environmental (E) factors like temperature, 
humidity, and light availability, we propose that QDR polymor-
phism is implemented in a complex signaling network affected 
by G × G × E interactions [1,5,93,94].

QDR is determined by the interplay of QDR 
mechanisms
QDR is commonly defined as a highly interconnected regula-
tory network with an integrated, pleiotropic role in general 
plant metabolism [1]. Therefore, the linkage of different defense 
mechanisms, like IF and lag-phase duration, could be a good 
perspective for resistance breeding. However, we did not observe 
strong correlations between QDR parameters and did not find 
a species or accession with a universal high resistance level for 
all tested parameters. Disconnected QDR parameters have been 
reported before: Xanthomonas axanopodis mutants showed 
increased IF but a reduced lesion growth rate on cassava and 
B. cinerea showed unconnected IF and lesion expansion rates 
on wild tomatoes [6,95]. We used the presented phenotyping 
platform to show that the moderation or cross-talk between 
defense mechanisms is genotype-specific and differs even 
between accessions of the same species (Fig. 8). Based on these 
findings, we propose a model for QDR against necrotrophic 
pathogens involving 3 genetically distinct mechanisms: (a) 
prohibition of initial infection, (b) retardation of disease out-
breaks, and (c) deceleration of ongoing infections.

Disease severity is specifically determined 
by genotype-dependent moderation of QDR 
mechanisms
We used 3 differently severely infected S. pennellii genotypes to 
describe the influence of 2 of the QDR mechanisms (retardation 
and deceleration of symptom development) on overall symptom 
severity. Interestingly, the different accessions possess diverse 
capabilities in moderating the QDR mechanisms, as our model-
based approach indicates contrasting roles of LDT and lag-phase 
duration. In A. thaliana, it was shown that lesion traits, like lesion 
size or shape, are also controlled by genetically distinct mechanisms 
[90]. Previous work showed that defense-associated hormone 
responses greatly differ between different wild tomato accessions 
and even within the same population. In S. chilense, ethylene 
responses could only be linked to IF in one population but not 
in others [92]. Therefore, we argue that the orchestration of QDR 
measures highly depends on the specific genetic background, 
and future studies should determine the complex interplay between 
various QDR-regulating mechanisms [94].
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In this study, we used a new phenotyping platform to derive 
different QDR-related phenotypes. The low cost and high flexibil-
ity of the system allowed us to screen a big set of diverse plants 
relatively fast, and therefore, we identified new genotypes with 
distinct QDR properties. Accordingly, we characterized accessions 
and species with beneficial properties as significantly longer 
lag-phase duration (S. pennellii, LA1303 and LA1656) or pro-
longed LDT (S. lycopersicoides, LA2951 and LA1964). Accordingly, 
we suggest that S. pennellii accessions are specialized in delaying 
lesion development, whereas S. lycopersicoides accessions are 
more capable of slowing down the spread of established lesions. 
Follow-up research is needed to identify the genes underlying 
these differences. Moreover, the influence of increasing lack of 
nutrition during the time of the experiment must be critically 
evaluated to exclude starvation-induced loss of resistance. The 
resolution of the present dataset will enhance the ability to predict 
distinct defense phases, facilitating more targeted sampling mech-
anisms for transcriptomic or metabolomic analysis. This can help 
breed durable resistance in tomato crops with delayed and less 
severe symptoms without inducing strong evolutionary pressure. 
The sustainability of major R-gene-mediated resistance (including 
pyramiding of such) has regularly been questioned [4,96]. 
Facilitating the concept of QDR is proposed to thwart the arms 
race between plant hosts and pathogens. QDR phenotypes spe-
cifically tolerate disease to a certain extent without applying a 
strong bottleneck onto the pathogen population [14]. Our find-
ings provide major insights into the architecture of QDR mecha-
nisms and will help in the targeted functional characterization of 
QDR. By disentangling end-point QDR phenotypes into discrete 
resistance mechanisms, the functional characterization of genetic 
features controlling QDR will become much more targeted. Based 
on this study, the factors influencing the level of QDR can be 
explained in much more detail.
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