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Rice leaf diseases have an important impact on modern farming, threatening crop health and yield. 
Accurate semantic segmentation techniques are crucial for segmenting diseased leaf parts and assisting 
farmers in disease identification. However, the diversity of rice growing environments and the complexity 
of leaf diseases pose challenges. To address these issues, this study introduces an innovative semantic 
segmentation algorithm for rice leaf pests and diseases based on the Transformer architecture AISOA-
SSformer. First, it features the sparse global-update perceptron for real-time parameter updating, 
enhancing model stability and accuracy in learning irregular leaf features. Second, the salient feature 
attention mechanism is introduced to separate and reorganize features using the spatial reconstruction 
module (SRM) and channel reconstruction module (CRM), focusing on salient feature extraction and 
reducing background interference. Additionally, the annealing-integrated sparrow optimization algorithm 
fine-tunes the sparrow algorithm, gradually reducing the stochastic search amplitude to minimize loss. 
This enhances the model’s adaptability and robustness, particularly against fuzzy edge features. The 
experimental results show that AISOA-SSformer achieves an 83.1% MIoU, an 80.3% Dice coefficient, and 
a 76.5% recall on a homemade dataset, with a model size of only 14.71 million parameters. Compared with 
other popular algorithms, it demonstrates greater accuracy in rice leaf disease segmentation. This method 
effectively improves segmentation, providing valuable insights for modern plantation management. 
The data and code used in this study will be open sourced at https://github.com/ZhouGuoXiong/
Rice-Leaf-Disease-Segmentation-Dataset-Code.

Introduction

Rice is one of the most important food crops in the world [1–3], 
but its production is affected by various leaf diseases. Rice leaf 
diseases cover a wide range of symptoms caused by pathogens 
such as fungi, bacteria, and viruses, which include spots or 
blotches of different shapes, colors, and sizes on rice leaves. 
These diseases pose a potential threat to rice health and yield 
[4]. Therefore, it is crucial to accurately segment and identify 
leaf disease species and take timely control measures. However, 
traditional manual methods suffer from the disadvantages of 
a high workload, low efficiency, and susceptibility to fatigue. 
With the development of computer technology, the practical 
application of semantic segmentation technology has become 
a development trend in modern rice cultivation.

Rice leaf pest and disease segmentation is the core technol-
ogy for automatic disease detection and identification and pro-
vides a reliable basis for rice leaf detection systems by accurately 

dividing diseased leaf images [5]. In recent years, image segmen-
tation technology based on deep learning [6], which can accurately 
identify and localize affected areas [7–9], has become key in this 
field, helping farmers take timely control measures and effectively 
curb the spread of disease. This not only provides strong technical 
support for accurate and efficient disease management but also 
brings new vitality to agricultural production.

In general, deep learning-based semantic segmentation net-
works can be categorized into 2 types: unsupervised learning, 
represented by clustering-based networks (SegSort; [10]) and 
generative model-based networks (GANs; [11]), and supervised 
learning, represented by encoder–decoder structures (UNet; 
[12]) and Transformer [13]. Unsupervised learning [14] does 
not require labeled data and allows the model to autonomously 
learn the structure, patterns, and relationships of the data for 
segmentation tasks. However, unsupervised learning lacks a 
clear goal and is sensitive to initial conditions and hyperpa-
rameters, thus leading to less stable segmentation results. For 

Citation: Dai W, Zhu W, Zhou G, Liu G, 
Xu J, Zhou H, Hu Y, Liu Z, Li J, Li L. 
AISOA-SSformer: An Effective Image 
Segmentation Method for Rice Leaf 
Disease Based on the Transformer 
Architecture. Plant Phenomics 
2024;6:Article 0218. https://doi.
org/10.34133/plantphenomics.0218

Submitted 24 March 2024  
Accepted 21 June 2024  
Published 5 August 2024

Copyright © 2024 Weisi Dai et al.   
Exclusive licensee Nanjing 
Agricultural University. No claim 
to original U.S. Government Works. 
Distributed under a Creative 
Commons Attribution License 4.0 
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org on N

ovem
ber 24, 2024

https://doi.org/10.34133/plantphenomics.0218
mailto:zhougx01@163.com
mailto:genhualiu@csuft.edu.cn
https://github.com/ZhouGuoXiong/Rice-Leaf-Disease-Segmentation-Dataset-Code
https://github.com/ZhouGuoXiong/Rice-Leaf-Disease-Segmentation-Dataset-Code
https://doi.org/10.34133/plantphenomics.0218
https://doi.org/10.34133/plantphenomics.0218
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fplantphenomics.0218&domain=pdf&date_stamp=2024-08-05


Dai et al. 2024 | https://doi.org/10.34133/plantphenomics.0218 2

diseased rice leaf segmentation, unsupervised learning cannot 
guarantee that the segmented region has agricultural signifi-
cance, nor can it effectively address the occlusion, overlap, and 
deformation of rice, thus making it difficult to meet the needs 
of precision agriculture. Unlike unsupervised learning, super-
vised learning requires a large amount of manually labeled data 
with clear task objectives and usually achieves high prediction 
performances because the models can learn effective feature 
relationships from labeled data.

In recent years, supervised learning methods have been 
increasingly applied to the detection and segmentation of rice 
leaf diseases [15–17], providing references for our research, and 
the relevant literature is shown in Table 1. Of the 3 previous stud-
ies listed in Table 1, each method has certain shortcomings, 
including a lack of flexibility in dealing with irregular and diverse 
disease features due to the fixed weight parameter settings of the 
Squeeze-and-Excitation (SE) module, limitations in dealing with 
complex backgrounds due to the use of simple scale transforma-
tions, and the need for a large number of iterations in the param-
eter space, which leads to poor performance in fuzzy boundary 
segmentation. Given these weaknesses, it is reasonable to select 
Segformer [18], which is based on the Transformer architecture, 
as the baseline network for experimentation. Segformer has a 
strong global modeling capability and can capture long-distance 
dependencies, making it especially suitable for handling complex 
disease features. However, Segformer also has certain limitations, 
including difficulties in capturing irregular rice leaf diseases due 
to the single linear layer in the multilayer perceptron (MLP). 
Moreover, although the Segformer architecture excels in captur-
ing global dependencies, it requires the design of attention 
components that can better consider spatial relationships to 

effectively distinguish between rice leaf disease areas and com-
plex backgrounds, and the optimizer can be improved to 
enhance the model’s ability to recognize features of fuzzy 
boundaries. By improving Segformer, we aim to achieve more 
precise segmentation in the task of rice leaf disease segmentation 
while further exploring the interaction between disease features 
and module structures, thus improving the model’s effectiveness 
in segmenting rice leaf diseases.

As shown in Fig. 1, there are 3 main challenges in the current 
rice leaf disease segmentation process: (a) Irregularly speckled 
diseased leaves in rice leaf disease images often have complex 
textures and shapes. This complexity makes accurate recogni-
tion and separation challenging for segmentation models, 
thereby affecting their accuracy. (b) Cluttered background ele-
ments, such as other plants, soil, or weeds, can interfere with 
the model’s judgment. This interference may lead to misiden-
tification of background noise or irrelevant elements as diseased 
regions, causing false segmentations. (c) The edge blurring prob-
lem in diseased images significantly impacts the performance 
of the segmentation network. Sometimes, this issue can result 
in errors in the segmentation results, such as incorrectly label-
ing healthy leaf regions as diseased.

To solve the problem of irregular speckled leaves in plant 
diseases, Lu et al. [19] proposed the Transformer model (GeT) 
combined with phantom convolution, which generates feature 
maps through a convolutional backbone network and learns 
semantic features in depth with the Transformer encoder to 
achieve accurate segmentations. However, its fixed parameter 
update strategy easily leads to poor model generalizability.

To solve the problem of complex backgrounds in plant 
disease photos, Li et al. [20], on the other hand, used an 

Table 1. Documentation for research to identify plant leaf diseases

Research Methodology Fields Advantages Drawbacks

Chen et al. [51] BLSNet Rice leaf disease The integrated multiscale 
extraction function improves the 
accuracy of lesion segmentation.

The SE module lacks flexibility for 
highly irregular and diverse leaf 
diseases. Additionally, the dataset 
only includes 109 cases of rice 
bacterial leaf streak, resulting in 
weak model generalization.

Feng et al. [52] DFFANet Rice leaf disease DCABlock and FFM can extract the 
deep and shallow features of rice 
as much as possible.

It uses a continuous 3 × 3 convolu-
tion for feature extraction, which 
ignores complex spatial relationships 
and lacks flexibility. In addition, the 
simple scale transformation has 
difficulty dealing with the complex 
background of rice diseased leaf 
photos.

Putra et al. [53] UNet with 
incorporated 

randomized search

Rice leaf disease Stochastic search can be explored 
over a wide range of parameter 
spaces, which would enhance the 
accuracy and efficiency of the 
model in identifying and segment-
ing rice leaf diseases.

Random search may be inefficient in 
large parameter spaces with many 
optimized parameters, potentially 
missing combinations that better 
handle fuzzy regions.
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FWDGAN-based approach to identify tomato leaf diseases 
coupled with a depth-separable convolutional discriminator 
network (DSC-Discriminator), which combines deep and global 
features and improves image quality through depth-separable 
convolutions. However, this network mainly analyzes the dis-
ease image in its overall dimension and is prone to lack flexibil-
ity when faced with multiple interfering factors.

To solve the problem of blurred edges in disease images, 
Liu et al. [21] proposed a self-supervised pretraining method 
based on Transformer so that the former model has more obvi-
ous discriminative feature representations of plant diseases 
and thus achieves accurate filtering of the background interfer-
ence elements of the disease and pest images. However, con-
ventional optimization algorithms tend to trap model training 
in local optimums, resulting in the inability to adapt to or rec-
ognize new disease data patterns and anomalies. These studies 
provide valuable insights and directions for our rice leaf pest 
and disease segmentation model, and through more in-depth 
innovation and research, we expect to achieve greater break-
throughs and progress in the field of rice leaf pest and disease 
segmentation.

The contributions of this paper are as follows:
1. For the semantic segmentation network to obtain rich 

features of rice leaf diseases, we constructed an accurately 
labeled dataset containing Tungro and Brown Spot diseases. 
All the disease regions in the dataset were labeled with Labelme 
software, and labeled maps were generated.

2. To address the above issues, we propose a new model called 
AISOA-SSformer that integrates 3 innovative improvement points 
to enhance the performance and stability of the model. First, the 
model introduces a linear embedding layer called sparse global-
update perceptron (SGUP), which combines the exponential mov-
ing average (EMA) and weighted moving average (WMA) methods 
to dynamically adjust the weights and update the parameters using 
a fixed sliding window to respond more efficiently to critical 
changes and to ensure model stability when recognizing and iden-
tifying irregular disease characteristics. Second, we developed a 
novel attention salient feature attention mechanism (SFAM) to 
improve the quality of feature maps through the spatial recon-
struction module (SRM) and the channel reconstruction mod-
ule (CRM). SRM is mainly used to filter important features and 
reduce background noise, whereas the CRM optimizes channel 

information and continuously focuses on key features so that the 
model can more effectively distinguish rice leaf disease regions from 
complex backgrounds. Finally, we introduce a new optimization 
algorithm, the annealing-integrated sparrow optimization algo-
rithm (AISOA), which combines the stochastic exploration prop-
erty of the sparrow algorithm and the stepwise constraints of the 
annealing mechanism to help the model avoid falling into local 
optima while enhancing the recognition of fuzzy boundary features 
and maintaining the stability of the training process and the robust-
ness of the model. The combination of these 3 techniques provides 
strong support for enhancing the performance of the model in 
complex application scenarios.

3. The Segformer-based AISOA-SSformer proposed in this 
paper achieved an 83.1% mean intersection over union (MIoU) 
and an 80.3% Dice coefficient on the self-constructed dataset. 
This method can be used to effectively extract rice leaf disease 
features with complex backgrounds and irregular shapes. Rice 
leaf diseases with fuzzy edges can be distinguished and seg-
mented effectively. Overall, the method is able to accurately 
detect rice leaf diseases and provides a reference for disease 
control in mass rice production.

Datasets and Methodology

Data acquisition
Rice pest and disease segmentation datasets are the basis of this 
research. We chose 2 typical rice leaf spot types, brown spot and 
rice Tungro, to detect spots at different disease stages to avoid the 
segmentation effects being weak because of insufficient study of 
each disease stage. Brown spot disease results in the formation of 
round or ovoid spots on rice leaves approximately 2 to 5 mm in 
diameter with reddish brown margins and yellowish brown cen-
ters, sometimes with black dots in the middle. The brown spots 
are usually distributed in the upper part of rice leaves, and the 
middle and lower parts of the leaves are less infested. After infec-
tion with the Tungro virus, rice plants exhibit symptoms such as 
dwarfing, leaf curling, leaf coloration, and orange or reddish col-
oration of the leaf tips. We selected the rice leaf spot dataset from 
PlantVillage in a natural environment containing 2 rice leaf pest 
datasets, which provided enough training data for the semantic 
segmentation algorithm. We selected the images with obvious leaf 
spot characteristics for the next step in the collected images, which 

A Irregular spotted blade C Edge-blurred bladeB Background clutter

Fig. 1. Three problems in rice segmentation.
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totaled 2,005 images, including a total of 1,005 images for Tungro 
disease and 1,000 images for brown spot disease. To facilitate train-
ing, we used Labelme as the data annotation software. With the 
help of a team of agricultural experts, we labeled the lesions in all 
the images into categories and accurately selected all the pixels in 
the lesion area. In the process of labeling the 2 diseases, we uni-
formly named the label mask “label,” used Labelme to label and 
obtain the corresponding JSON file, and obtained a total of 4,794 
labels for 1,000 sheets of brown spot disease and a total of 4,350 
labels for 1,005 sheets of Tungro disease through a statistical analy-
sis. Finally, the images were cropped to a uniform size of 256 × 
256 pixels. Figure 2 shows the annotation process (Fig. 2A) and 
an example of the original and annotated images used for training 
on 2 rice leaf diseases (Fig. 2B).

Data preprocessing
Since the training of deep neural network models requires 
diverse images to extract effective features, enhancement of the 
original dataset is needed to increase data diversity and improve 
model generalizability. The data enhancements in this paper 
includes (a) applying photometric distortion, such as light and 
dark adjustments to the luminance, to simulate sunlight changes. 
(b) Perspective transformation enhancements, such as mirror 
flipping of images. (c) Scale transformation enhancements, 
such as the scaling of images. To minimize the impact of the 
data distribution on network training, the number of enhance-
ments for the Tungro and Brown Spot categories is balanced. 
Taking Tungro as an example, the data enhancement results 
are shown in Fig. 2C. The annotations for each image are stored 
in PNG format.

AISOA-SSformer
Considering the characteristics of rice leaf diseases, this paper 
proposes AISOA-SSformer, a rice leaf disease segmentation 
method based on Segformer_b0, whose structure is shown in 
Fig. 3A. AISOA-SSformer consists of 2 parts: (a) a hierarchical 
Transformer decoder that generates high-resolution coarse 
features and low-resolution fine features, and (b) a lightweight 
SGUP layer decoder that fuses these multilevel features to pro-
duce the final semantic segmentation mask. First, we propose 
the SGUP, which replaces the regular MLP in the original 
decoder. The constructed adaptive parameter updater (APU) 
is used to update the model training parameters in a more 
refined way, improving the stability and continuity of the net-
work. On the optimizer, we propose the AISOA, which helps 
the model jump out of the local optimal point by mimicking 
the sparrow random exploration. At the tail of the SGUP layer 
decoder, this paper proposes the SFAM. This structure provides 
a rich and fine-grained feature representation for the rice 
semantic segmentation task by decomposing the feature map 
into horizontal and vertical directions and performing SRM 
and CRM operations on the feature maps in the 2 directions, 
respectively, which ensures that the model focuses on impor-
tant features.

Sparse global-update perceptron
Rice leaf diseases usually involve many irregular speckled leaves, 
such as brown spots on brown spots, which are easily confused 
with the texture and color features of the rice itself, making it 
difficult for the segmentation algorithm to accurately distinguish 

them. In Segformer, the MLP [22] learns and extracts features at 
different levels through multilayer nonlinear transformations, but 
due to its single linear layer and simple parameter updating strat-
egy, it is more sensitive to fluctuations and noise in the training 
data, which restricts its ability to handle complex data. To solve 
this problem, Wang and Zhang [23] proposed an improved deep 
learning method based on the EMA [24], which improves the 
stability and generalization ability of the network by using the 
EMA of the parameters during the training process. Based on 
the above research, this paper proposes the SGUP module for 
irregular spots in rice leaf diseases. The SGUP module enhances 
the MLP by considering the number of parameters in the train-
ing process. It also integrates the APU. Through dynamic 
weight adjustments and a new parameter update mechanism, 
the SGUP module captures and retains multiple disease regions. 
This reduces the possibility of missegmentation and improves 
segmentation accuracy. The structure of the SGUP is shown in 
Fig. 3B, which describes the operational process of the SGUP 
in detail.

To enhance the model’s robustness to irregular patches and 
improve segmentation accuracy, we propose an innovative method 
called the SGUP. This method replaces the traditional MLP in 
the network and is specifically designed to process complex 
spatial data such as irregular patches. First, the method pre-
processes the input tensor x through dimensional rearrange-
ment and flattening operations to convert the multidimensional 
data into one-dimensional vectors for subsequent linear pro-
cessing. Then, the output tensor y is obtained by inputting a 
sparse linear layer (SparseLinear). The weight matrix is sparsi-
fied by zeroing some elements, which reduces the number of 
model parameters and improves training efficiency. This helps 
the model focus on key features and enhances its learning 
ability for highly irregular data patterns. Additionally, during 
forward propagation, we integrate the APU mechanism to opti-
mize model parameters by combining the EMA and WMA [25] 
strategies.

The mechanism is designed with a sliding window of length 
“n” to track the history of the neural network model’s param-
eters. A larger value of “n” means that it utilizes a longer history 
of information, and more historical parameters are taken into 
account when calculating the weighted average, resulting in 
smoother parameter updates, fewer fluctuations, and a more 
stable model during the training process. In contrast, when set-
ting a smaller value of “n,” the APU will only take into account 
the most recent historical parameters, which makes the param-
eter update more sensitive to recent changes, enabling the model 
to respond to parameter changes more quickly, but also tends 
to introduce more noise. For irregular patches in complex back-
grounds, larger values of “n” provide more stable parameter 
updates, helping the model to remain stable in the face of com-
plex and variable data, thus reducing the interference caused 
by background changes. For simpler tasks, smaller “n” values 
allow the model to adapt to data changes faster but also tend 
to introduce more noise and interfere with model training. 
Therefore, the choice of the “n” value needs to be weighed 
against the complexity of the task and the need for the model 
to respond to data changes.

We designed the SGUP to reflect the latest learning trend 
of the model and enhance its stability. Therefore, this approach 
provides significant performance improvements when dealing 
with data with complex spatial relationships, such as irregular 
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Fig. 2. (A to C) Examples of the labeling process and data enhancement of labels and original images.
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patches. The forward propagation formulation and WMA cal-
culation formula for the sparse linear layer are as follows:

The ⊙ in Eq. 1 denotes elementwise multiplication, where 
the mask is a matrix consisting of randomly generated sparsity 
masks that, when multiplied by the weight matrix weight, will 
result in a fraction of the elements being zero. ωl in Eq. 2 represents 
the weight of the lth parameter, Pl is the value of the lth parameter, 
and PW represents the weighted average parameter.

Finally, the computed weighted average parameters are used 
to update the parameters of the EMA model. This smooths the 
parameter updating process by blending the preupdate parameters 
with the computed weighted average parameters and updating 
the model parameters with a fixed decay factor. The instability 
caused by random fluctuations in the data (e.g., the disturbance 
of irregular speckled blades) is effectively reduced, and the 
robustness of the model is improved by fully considering the 
neighboring parameters. The updating equations of the EMA 
are as follows:

where PE is the current EMA parameter, P′
W

 is the EMA 
parameter from the previous step, ωi is the weight of the param-
eter, which determines the importance of the parameter in 
calculating the new EMA parameter, and Pi is the weight of the 
model.

We replace the MLP in the lightweight MLP layer and the 
MLP in the last layer of the decoder with the SGUP to optimize 
the decoder in segmenting the diseased rice leaves, where the 
optimized decoder operates as follows.

First, the decoder processes the rice leaf disease data through 
the hierarchical Transformer encoder. The original image is 
segmented into multiple overlapping patches using the overlap 
patch embedding module. Each patch is then mapped into a 
high-dimensional feature space through a convolution opera-
tion to extract local features from the image. These embedding 
vectors are then processed through a series of Transformer 
blocks, each of which contains the self-attention mechanism 
[26], Mix-FFN (a hybrid feedforward network), and patch 
embedding modules, which further process the disease features 
to capture the global dependencies. Finally, the multilayer fea-
ture Fi is obtained through 4 block processes, and the 4 feature 
maps are upsampled to the same size through resizing. Each 
feature is individually passed through LayerNorm to unify the 
channel dimensions, followed by an upsampling operation to 
resize the features to 1/4 of their original size before concatenat-
ing them. Then, the spliced features F are fused again after 4 
SGUPs, and finally, a separate SGUP is used to predict the seg-
mentation mask M. This mask utilizes the spliced and fused 
features with a resolution of H/4 × W/4 × N, where N is the 
number of categories. This step directly generates the semantic 
segmentation output from the fused features, avoiding complex 

postprocessing or additional components. The above decoder 
operation process is represented by the following equation:

In the equation, M is the prediction mask; SparseLinear(Cin, Cout)
(·) represents the sparse linear layer operation with Cin and Cout as 
the input and output vector dimensions, respectively; and Fi is 
the multilayer feature.

After the above operation, we utilize the lightweight MLP pro-
posed by Segformer. In this structure, we replace the traditional 
MLP, which has only a single linear layer, with SparseLinear. The 
sparsity of SparseLinear means that there are many zeros in the 
weight matrices of the layers. This helps the model to better learn 
the sparsely distributed features of the data while maintaining 
computational efficiency. In this way, the model can focus more 
on those features that are more critical for recognizing irregularly 
shaped spots.

In addition, this mechanism captures rich multidimensional 
information in each forward propagation of the model by inte-
grating the APU mechanism during each forward propagation 
of the SGUP, and real-time adaptation to changes in the input 
data is achieved by continuously and dynamically adjusting the 
model parameters. This continuous parameter adaptive updat-
ing strategy greatly enhances the model’s adaptive capability, 
especially when dealing with data with a high degree of irregu-
larity and complexity, such as irregular disease spots on rice 
leaves. The experimental results show that the SGUP structure 
exhibits excellent performance when dealing with data with a 
high degree of variability, which enables the model to better 
understand and adapt to different data distributions and struc-
tural changes. Experiments on the SGUP are described in the 
“Effectiveness of SGUP” section.

Salient feature attention mechanism
As mentioned in the previous section, there are problems such 
as cluttered background elements in rice leaf pest images, which 
have a significant impact on the training of the deep learning 
model, such as increasing the difficulty of training the model 
and reducing its robustness. While the attention mechanism is 
widely used in image processing [27–32], the early SE [33] 
adaptively learns the weights of each channel by increasing the 
attention in the channel dimension and then assigns different 
weights to each feature according to the importance of each 
weight. This not only improves the performance of the network 
but also shows good robustness. Coordinate attention (CA) 
[34], which has emerged in recent years, targets the length and 
width of an image separately and better captures the global 
context information and long-range dependencies. Based 
on the above study, we propose a new attention mechanism, 
the SFAM, to achieve accurate rejection of the cluttered 
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background elements through more efficient processing and 
reconstruction of input features and accurate capture of the 
spatial and channel relationships. The structure of the SFAM 
is shown in Fig. 3C, and it operates as follows.

First, we perform preliminary processing of the input feature 
maps, and we borrow the core idea from CA and Scconv [35]. 
First, the input rice disease feature maps are spatially dimen-
sionally separated by 2 parallel avgpools and separated into 2 
sets of features of C × W × 1 and C × H × 1, which are input 
into SRM and CRM for processing.

1. After inputting feature XH ∈ N × C × H × 1 into SRM, the 
processing steps are as follows. For the input rice feature map 
XH ∈ N × C × H × 1, we achieve better feature fusions by per-
forming separation and reconstruction operations. A bulk nor-
malization layer (BN) is first constructed. It normalizes the input 
feature Xw by subtracting the mean μ divided by the variance σ 
to generate the intermediate value Xout. This is followed by map-
ping Xout through a sigmoid function to generate a weight value 
W ranging between (0,1). This weight value is necessary for the 
subsequent gating operation, which is based on a certain thresh-
old value to determine which features are important. Through 
this process, the model learns to distinguish between features 
that are more important and those that are less important for 
identifying leaf disease areas. Two new weight values, W1 and 
W2, are distinguished by comparing and judging W with the set 
gating threshold, gate_threshold, with W1 being the weight for 
the most informative rice leaf disease, i.e., the important feature, 
and W2 being the least informative rice leaf disease, i.e., the 
unimportant feature. Eventually, we select a more reasonable 
reconstruction strategy by multiplying the 2 weights W1 and W2 
with the original feature XH, respectively, based on the different 
amounts of information in these 2 parts. This strategy combines 
information-rich features with less informative features to gen-
erate richer features as a way to optimize space utilization effi-
ciency. To perform this reconstruction operation efficiently, we 
perform a further split operation on these 2 parts of the features 
to generate 4 different subfeatures XW11

H
, XW12

H
, XW21

H
, and XW22

H
, 

which are then cross-reconstructed to generate the new output 
XW
H

 combining both the informative and the uninformative 
parts, and the entire separation and reconstruction process can 
be expressed as follows:

where ⊕ is the summation and ⊗ is the multiplication. After 
passing the pooled features through SRM, the important and 
unimportant features of rice leaf disease are distinguished. This 
allows the network to focus more on the important features 
related to rice identification and segmentation while ignoring 

irrelevant and cluttered background information. The improve-
ment in feature extraction capability caused by this separation 
processing operation of the features is especially important when 
dealing with complex agricultural scenarios. The structure of 
SRM is shown in Fig. 3D.

2. The feature XH ∈ N × C × W × 1 is input into the CRM, 
which adopts the segmentation–transformation–compression–
fusion strategy. To process the upper and lower features of rice 
separately and achieve a more reasonable allocation of compu-
tational resources, we divided the input rice leaf disease feature 
map into 2 parts with the same number of channels. Assuming 
C = channel, the 1/2 channel is input into the upper feature (UP) 
and the other 1/2 channel is input into the lower feature (LOW). 
Next, we compress the channels of the upper feature and the 
lower feature using 2 parallel 1 × 1 Conv layers to improve com-
putational efficiency. This process results in obtaining 2 features, 
XW
UP

 and XW
LOW

. Among them, the upper feature can capture a 
wider range of contextual information, such as the overall shape 
of the leaf, while the lower feature focuses more on capturing 
the details of the disease on the leaf, such as the spots and the 
discolored areas. For the upper and lower features, we use more 
efficient convolutions, such as groupwise convolutions (GWC; 
[36]), pointwise convolutions (PWCs), and depthwise separable 
convolutions (DSC; [37]), instead of complex k × k convolu-
tions, reducing the computational cost, which is schematically 
shown in Fig. 3F to H. DSC divides the convolution operation 
into 2 steps, depth convolution and PWC, which require only 
1/channel subcomputation of the original convolution and are 
more computationally efficient. The PWC compensates for the 
convolution process with information loss and helps the infor-
mation flow between the feature channels. GWC performs a 
grouping operation on the channels and uses a separate set of 
convolution kernels for each group to improve the overall effi-
ciency. We perform a 3 × 3 GWC and DSC operation for the 
upper layer feature XW

UP
, which aims to deeply extract the global 

and local feature information of rice disease at a low computa-
tional cost to obtain the upper layer feature map YW

1
. On the 

other branch, we subject XW
LOW

 to a DSC and a cheaper 1 × 1 
PWC to extract the features with shallow hidden details of the 
disease site, and the generated lower feature map YW

2
serves as 

a complement to the upper features. The operation of the 2 
branches is represented as follows:

Finally, the upper feature map YW
1

and the lower feature map 
YW
2

 are spliced in the channel dimension to obtain the fused 
feature map. Then, the Softmax operation is performed on the 
fused feature map to generate the attention weights. Next, the 
attention weight tensor is split into 2 layers in the channel 
dimension, which are used to further reorganize the features, 
and then are multiplied by the fusion feature map. Finally, the 
results of the 2 multiplications are summed to obtain the final 
feature map YW.

Then, the XW
H

 and YW generated by SRM and CRM are 
spliced in the channel dimension to obtain y, which is then 
passed through a 1 × 1 convolution layer, BN layer, and sigmoid 
activation function to perform the downscaling and feature 
transformation. To process the features in the length and width 
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directions separately and generate more detailed attention weights, 
we split them into yh and yw in spatial dimensions. We then 
apply 2 convolution operations in parallel to convert them into 
an attention map. After passing the attention map through the 
sigmoid function, we multiply it by the main element identity 
of the original feature map. This yields the final feature map, 
and the operation flow after generating XW

H
 and YW is shown 

as follows:

By integrating the spatial information modeling capability 
of SFAMs, this method significantly enhances the ability to 
capture the features of rice leaf diseases. SRM differentiates 
between information-dense and sparse areas, while CRM 
refines the feature processing and fusion, collectively improving 
the model’s sensitivity and recognition capability for fore-
ground features. Additionally, the attention weights generated 
by 2 parallel convolutional layers and an efficient activation 
function, when combined with the original feature map, not 
only preserve important foreground feature information but 
also effectively suppress background noise and irrelevant infor-
mation interference. This integrated strategy greatly improves 
the recognition and segmentation accuracy of rice leaf disease 
detection, ensuring the model’s robustness and efficiency in 
complex backgrounds. The CRM structure is shown in Fig. 3E, 
and the SFAM experiments are described in the “Effectiveness 
of the SFAM” section.

Annealing-integrated sparrow optimization algorithm
In the task of semantic segmentation of diseased rice leaves, 
the fuzzy boundary near the diseased spot has a large impact 
on the segmentation network. Selecting efficient optimizers 
such as SGD [38] and Adam [39] can accelerate model conver-
gence through adaptive learning rates. SGD uses random 
samples to update parameters and can include momentum to 
speed up learning. Adam achieves finer learning rate tuning by 
calculating EMAs of the gradient, and squared EMAs for nor-
malizing and bias-correcting the gradient. However, fuzzy 
edges lead to weak gradient signals, and adaptive learning rate 
optimizers, such as Adam, have difficulty accurately estimating 
the gradient, which affects learning and generalization. In con-
trast, AdamW [40] adds decoupling weights and parameter 
updates to Adam to provide more effective regularization, 
which is suitable for processing complex images, but its explor-
atory ability and update strategy are slightly insufficient. 
Therefore, based on AdamW, we introduce the sparrow search 
algorithm [41] and simulated annealing algorithm [42] and 
propose a new optimizer algorithm, the AISOA, to better cap-
ture fuzzy diseased leaf features, stabilize training, and improve 
segmentation accuracy.

The optimization parameter process of the AISOA consists of 
the following steps. First, the initial parameters of the optimizer 

are set, such as the learning rate lr, the momentum term beats, 
the smoothing term eps, the weight decay weight_decay, the 
annealing rate anneal_rate, the updating interval update_interval, 
and the perturbation parameter sparrow_factor. Next, the param-
eters are updated with AdamW, the exponential average of the 
first-order moments (mean) and second-order moments (vari-
ance) of their gradients are computed, bias corrections are applied, 
and the weights are updated based on these computed values. 
This process can be expressed in the following equation:

where mt and vt are the EMAs of the first- and second-order 
moments at moment t, respectively; gt is the scale at moment t; 
and β1 and β2 are the momentum decay rates. m̂t and ̂vt are the 
bias-corrected moments, θt is the weight at step t, ηt is the learning 
rate at step t, and λ is the coefficient of the weight decay. ε is a 
constant to prevent division by zero errors.

The conventional AdamW optimizer has no additional mecha-
nism to facilitate exploration of the parameter space and is prone 
to falling into local optima, leading to reduced generalizability. 
Therefore, we choose to introduce the sparrow optimization algo-
rithm (SOA), which is more capable and efficient in exploration, 
by introducing its key idea, the introduction of randomness to 
simulate the natural behavior of sparrows, into the AdamW opti-
mizer. This helps to increase the diversity of the solution space and 
prevents the algorithm from converging prematurely to a local 
optimum. The optimizer’s performance in complex optimization 
environments is enhanced, such as in situations with disease 
objects with fuzzy edges, and its ability to generalize is also 
improved. The logic of the joined SOA is that through the intro-
duction of the update_interval parameter mentioned above, we 
apply a random perturbation to the model parameter variable after 
each update_interval step, and this periodic perturbation is 
achieved by multiplying the sparrow_factor by a Gaussian random 
number, which has the following mathematical expression:

where N (0, I) is a Gaussian random vector with mean 0, and 
the covariance matrix is the unit matrix, and η denotes the 
learning rate.
Finally, considering that the increase in computation caused by 
the continuous application of the SOA throughout the training 
process is likely to affect the efficiency of model training, we 
integrate the annealing mechanism, the core idea of which is 
borrowed from the simulated annealing process in physics, 
where annealing is a heat treatment process that reduces internal 
defects in a material by gradually lowering the temperature of 
the material to achieve a more stable state. In the AISOA, we use 
the annealing mechanism to gradually adjust the optimization 
parameters to improve the efficiency and quality of the search 
for the optimal solution. Our annealing mechanism achieves this 
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by gradually decreasing the value of the sparrow_factor. A greater 
sparrow_factor allows for a greater magnitude of stochastic 
perturbations in the early stages of training, facilitating extensive 
exploration of the parameter space and helping the optimizer 
jump out of the locally optimal solution, whereas as training 
progresses, the sparrow_factor is gradually reduced to reduce 
the magnitude of the stochastic perturbations, thereby reduc-
ing the intensity of exploration and allowing the optimizer to 
tune the parameters more carefully to find a more accurate opti-
mal solution. The mathematical expression is as follows:

where global_step is the global step used to track the number 
of times the optimizer calls the method.

By employing the AISOA optimizer, the model performs 
much better on the task of segmenting the fuzzy edges of rice 
leaves. AISOA combines the annealing mechanism and periodic 
perturbation, which not only enhances the model's ability to avoid 
falling into local optimums but also helps to identify and learn 
difficult features such as fuzzy edges. This optimization strategy 
motivates the model to capture edge information more accurately 
in complex backgrounds, improving the accuracy and robustness 
of the segmentations. In conclusion, the use of the AISOA opti-
mizer significantly optimizes rice leaf disease segmentation, espe-
cially for regions with unclear edges. Experiments on the AISOA 
are described in the “Effectiveness of the AISOA” section.

Results and Analysis

Experimental environment
To prevent different experimental environments from affecting 
the results, all the experiments in this paper were run in the 
same hardware and software environment. The main hardware 
devices used in this experiment were an NVIDIA GeForce 
RTX A5000 (24 GB) and a 15 vCPU AMD EPYC 7543 32-Core 
Processor. However, the versions of Python, CUDA, and 
CUDNN did not affect the results of the experiment but needed 
to be compatible with the software and hardware. We imple-
mented AISOA-SSformer on PyTorch 1.10.0.

Experimental indicators
To evaluate the segmentation results, we used the MIoU, Dice 
coefficient [43], precision, and recall as evaluation metrics. The 
Dice coefficient is a measure of the similarity between the true 
value and the predicted output in the segmentation results. The 
MIoU measures the degree of overlap between the spot areas 
predicted by the model and the actual spot areas. Precision 
indicates how many of the areas predicted by the model to be 
spots are correct. Recall represents the proportion of the spot 
areas that the model can correctly identify to all the actual spot 
areas. The formulas for the above 4 metrics are as follows:

where TP, FP, and FN are true-positive, false-positive, and false-
negative measurements, respectively.

GFLOPs, or Giga Floating-Point Operations per Second, are 
used to denote the computational complexity of a model or 
algorithm in processing a task. They measure the number of 
floating-point operations performed in each second. To calcu-
late GFLOPs, you count the total number of floating-point 
operations required to complete a task and then divide by one 
billion (since “Giga” denotes a billion). 

Hyperparameter settings
In the Segformer source code, the recommended number of 
iterations for the Segformer_b5 model is 1.6 × 105. However, our 
benchmark experiments used the Segformer_b0 model, which 
is smaller and has fewer parameters than the Segformer_b5 
model. Therefore, we conducted an 1.6 × 105 iteration experi-
ment and observed its loss curve and found that when the num-
ber of model fitting iterations was approximately 8 × 104, the loss 
value was similar to that of 1.6 × 105 iterations, which was 
approximately 0.018. Therefore, we decided to set the number 
of iterations to 8 × 104 to improve the model training efficiency. 
The other training hyperparameters are shown below:

where the training set contains 1,604 images, the test set 
contains 401 images, and the size of the input images is 256 × 
256. We used the AISOA optimizer with the learning rate set 
to 1 × 10−3 and the weight decay factor set to 1 × 10−2 with a 
polynomial decay strategy for learning rate tuning. The batch_
size was set to 2, and the baseline model was Segformer_b0. 
The number of training iterations was 8 × 104.

Module effectiveness experiments
Effectiveness of SGUP
In this paper, we use the SGUP instead of the traditional MLP 
to enhance the stability of the model in the face of irregular 
features. In the “Sparse global-update perceptron” section, we 
mentioned that a sliding window of size “n” is designed to 
smoothly update the parameters by considering the parameter 
values within this sliding window to reduce the parameter 
variations caused by word iterations. In this experiment, we 
compare the effect of the SGUP under different values of n. The 
experimental results are shown in scheme 1 in Table 2.

From the experimental results, it can be seen that when the 
value of n is small or large, the effect on Segformer is small or 
even negative, which means that when the value of n is too 
large, the model needs to store more historical parameters, 
which increases the memory demand, and the calculation of 
the weighted average involves more data points, which increases 
the data overhead, resulting in a sluggish response. When the 
value of n is too small, the model will be more sensitive to the 
transformations at each iteration when the parameters are 
updated, which leads to oscillations during the training process 
and reduces the generalization ability of the model. Therefore, 
we choose an intermediate value of n = 20 as the size of the 
sliding window in the SGUP.
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Effectiveness of the SFAM
To demonstrate the effectiveness and superiority of SRM and 
CRM for the network, we conducted experiments with and 
without the addition of SRM and CRM alone and without the 
addition of the 2 modules, and the results of the experiments 
are shown in scheme 2 of Table 2.

The experimental results show that attention has little effect 
on the network’s enhancement when no SRM or CRM is added, 
while the performance of the network is improved to a certain 
extent after SRM and CRM are added separately, and the best 
effect is achieved when both are added, which indicates that 
the gating mechanism and feature reconstruction capability of 
SRM and the channel compression and change mechanism of 
CRM are effective, which can make the network process and 
utilize the feature information more efficiently.

To test the overall performance of the SFAM, we introduced 
other attention mechanisms, such as SE, CBAM [44], triplet 
attention (TA) [45], ECA [46], and CA, at the same locations 
in the network. The experimental results are shown in scheme 3 
of Table 2.

The experimental results show that, excluding SE, the 
remaining attention can filter the interference information and 
improve the segmentation accuracy to some extent, but the 
effect is not significant. This is because SE mainly focuses on 
channel attention, which ignores the importance of spatial 
information while enhancing channel features, which is par-
ticularly important for image segmentation, so the addition of 
SE leads to a reduction in segmentation accuracy. CBAM, 
although it considers spatial attention, is still deficient in cap-
turing contextual information. The TA focuses on applying 
attention in different dimensions but does not integrate this 
information well, so it is less effective. The SFAM is optimal for 
all 3 key metrics, improving the model’s segmentation accuracy 
for rice leaf disease images with complex backgrounds.

To demonstrate the effectiveness of the SFAM in semantic 
segmentation of rice leaf disease more intuitively, we com-
pared the attention maps of the above methods, as shown in 
Fig. 4.

By comparing attention maps, it is clearly observable that 
SFAM exhibits superior capabilities in the identification and 
precise localization of disease features on rice leaves. It dem-
onstrates exceptional precision and coverage across various 
background conditions, whether simple or complex (such as 
those with shadows and weeds). In simple backgrounds, all the 
attention mechanisms can focus on the disease features, but 
SFAM’s focal points are more accurate. With more complex 
backgrounds, the performance advantage of the SFAM becomes 
even more pronounced. It accurately highlights diseased areas 
while reducing attention to background noise. Such precision 
is crucial for practical applications because it ensures the algo-
rithm’s reliability and robustness in real-world scenarios. Overall, 
the SFAM had the highest comprehensive indicator scores and 
had stronger localization capabilities for diseased areas, proving 
its suitability for the recognition and segmentation of rice leaf 
diseases.

Effectiveness of the AISOA
In this paper, we incorporate the Sparrow algorithm and anneal-
ing mechanism based on AdamW to improve the model’s seg-
mentation ability and robustness to fuzzy edges. We conduct 
experiments on several advanced optimizer algorithms (Adam, 
Lion [47], RAdam [48], and RMSprop [49]) under the same 
experimental configuration and compare them with experi-
ments that only add the SOA. The loss function curves obtained 
during the validation process and the experimental results are 
shown in scheme 4 of Table 2 and Fig. 5A, respectively.

The experimental results show that compared to other opti-
mizers, the AISOA exhibits better performance on our home-
made dataset. First, it has a significantly lower loss curve, which 
indicates that AISOA has better convergence performance on 
the dataset. Especially in the early stage of training, the loss of 
the AISOA decreases rapidly, which means that it can learn 
faster and find the optimal solution quickly. In contrast, when 
comparing the optimizers after adding only SOA, although 
there is little difference in the loss curves, due to the lack of an 
annealing mechanism in SOA to downscale the search magni-
tude, the model has excessive training computations, which 
leads to a lower segmentation performance. AISOA also leads 
in key performance metrics, achieving the highest scores in 
both the MIoU and Dice coefficient, with values of 0.794 and 
0.749, respectively. This further demonstrates its accuracy 
in image segmentation tasks. Overall, the AISOA effectively 

Table 2. Results of the AISOA-SSformer module experiment

Group Method MIoU
Dice  

coefficient Recall

① MLP 0.782 0.729 0.619

SGUP (n = 10) 0.772 0.714 0.596

SGUP (n = 20) 0.793 0.743 0.642

SGUP (n = 30) 0.752 0.681 0.531

SGUP (n = 40) 0.787 0.708 0.628

SGUP (n = 50) 0.762 0.698 0.562
② Without 

attention
0.782 0.729 0.619

Without SRM 
and CRM

0.787 0.715 0.663

With SRM 0.795 0.751 0.751

With CRM 0.796 0.752 0.752

SFAM 0.809 0.771 0.716
③ Without 

attention
0.782 0.729 0.619

SE 0.772 0.715 0.701

CBAM 0.788 0.738 0.618

TA 0.792 0.761 0.657

CA 0.786 0.737 0.629

SFAM 0.809 0.771 0.716
④ AdamW 0.782 0.729 0.619

Adam 0.775 0.719 0.636

Lion 0.789 0.732 0.651

RAdam 0.763 0.701 0.639

RMSprop 0.744 0.668 0.565

Only SOA 0.781 0.729 0.655

AISOA 0.794 0.749 0.656
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suppresses fuzzy edge features through its progressive stochas-
tic search method, which ensures a stable convergence of the 
model while obtaining the lowest loss curve. This approach 
improves the segmentation accuracy and enables the AISOA 
to outperform current popular optimizer algorithms in terms 
of performance.

Ablation experiments
To verify the effectiveness of the proposed Segformer-based 
approach, we conducted ablation experiments on AISOA-
SSformer, and the results of the experiments are shown in Table 3. 
We integrate SGUP, AISOA, and SFAM sequentially using 
the control variable method and conduct 8 sets of ablation 
experiments by combining these 3 AISOA-SSformer modules. 
The experimental results show that our proposed SFAM can 
significantly improve the segmentation performance of the 
network, which can improve the MIoU by 3.45% and the Dice 
coefficient by 5.79% on average under different conditions, 
which proves that the SFAM is able to improve the segmenta-
tion accuracy of diseased rice leaves by performing accurate 
feature extractions on the feature maps in both the length and 
width dimensions simultaneously in both the channel and space. 

In addition, we optimized the network using SGUP and AISOA, 
which are still effective, although their MIoU and Dice coef-
ficient improvements are relatively small, at 1.41% and 1.92% 
and 1.53% and 2.75%, respectively. In conclusion, each module 
of AISOA-SSformer positively affects the MIoU and Dice coef-
ficients of the model segmentation, which confirms that our 
proposed SGUP, AISOA, and SFAM are effective.

Comparison experiments with other networks
To further analyze the performance of AISOA-SSformer, we 
conducted comparative experiments with several classical and 
current state-of-the-art target detection methods on the same 
test environment and test set and plotted the loss plots of all 
the network training processes. The experimental results are 
shown in Table 4 and Fig. 6. We circle the locations of the 
incorrectly segmented and missing (or extra) segments for each 
network, where the oval boxes are incorrectly segmented seg-
ments and the rectangular boxes are missing (or extra) seg-
ments. The loss curve comparison plots are shown in Fig. 5B.

Among the CNN-based [50] algorithms, UNet increases 
feature depth and fuses features in the encoder through a sym-
metric decoder-encoder structure but relies on localized regions, 

Origin SE CBAM TA CA SFAM

Fig. 4. Comparison of attention maps for different types of attention.

Fig. 5. (A and B) Verification loss curves for different optimizers and networks.

D
ow

nloaded from
 https://spj.science.org on N

ovem
ber 24, 2024

https://doi.org/10.34133/plantphenomics.0218


Dai et al. 2024 | https://doi.org/10.34133/plantphenomics.0218 13

making it difficult to capture small changes in complex back-
grounds. U2Net enhances detail fusions with a deeper nested 
U-shaped structure, but its multilayer structure increases com-
putational complexity and reduces efficiency. UNet++ adds 
dense jump connections to UNet, lowering the computational 
complexity but still focuses on local features while ignoring the 
broader contextual information. SegNet uses encoder pooling 
indices for upsampling to capture spatial details but struggles 
with differentiating features in complex backgrounds. The 
MC-UNet model relies on local convolutional operations for 
feature extractions and often omits long-distance correlations 
between rice disease pixels.

For Transformer or hybrid architectures, DeepLabV3 uses 
hollow convolution and ASPP modules to emphasize the mul-
tiscale information, but this can cause the model to overlook 
necessary details. The Swin Transformer incorporates self-
attention and a hierarchical structure but lacks sensitivity in the 
fine processing of small regions. SETR combines global self-
attention with traditional convolutional networks and excels in 
handling large-area features but has too many parameters and 
insufficient precision for small-range features. The experimental 
results show that our proposed AISOA-SSformer outperforms 

traditional and popular semantic segmentation algorithms in 
terms of the MIoU, Dice coefficient, and recall, is second only 
to UNet in terms of precision, is slightly more complex than 
Segformer, and has the lowest loss value, demonstrating its 
efficiency and accuracy in extracting the complex features of 
rice leaf diseases.

Compared to the other models in the table, AISOA-SSformer 
is the most suitable model for rice leaf disease segmentation. 
We speculate that our AISOA-SSformer outperforms the other 
models for the following reasons: (a) AISOA-SSformer is an 
improvement on Segformer. This study designed a novel hier-
archical Transformer, and since rice disease areas may behave 
differently at different scales, this hierarchical approach helps 
the model identify and segment different types of diseases more 
accurately and improves the accuracy of the model. (b) The 
adoption of the SGUP instead of the MLP in AISOA-SSformer 
improves the model’s smoothing inference and updating of 

global parameters, and accurately captures and retains key fea-
tures in rice leaf disease segmentations. (c) The introduction 
of the SFAM greatly enhances the ability of the network to fuse 
features at different levels. This optimization significantly 
improves the model’s efficiency in perceiving and recognizing 
foreground features, which is especially critical for accurately 
distinguishing small differences between rice and complex 
backgrounds. As a result, the model exhibits higher accuracy 
in recognizing the boundary between rice and complex back-
grounds. (d) Substituting the AISOA for AdamW in the origi-
nal network avoids falling into a local optimum during model 
training and helps the model learn difficult-to-capture fea-
tures more efficiently. The ability to explore a wider parameter 
space is crucial for improving model performance when deal-
ing with disease images with blurred edges. (e) The home-
made dataset in this paper eliminates some blurred and 
lower-quality images, and its images are clear and favorable 
for model training.

Discussion
To test the effectiveness of the AISOA-SSformer model in rice leaf 
disease segmentation, we built a rice leaf disease segmentation 

Table 3. Comparison of ablation results

SGUP SFAM AISOA MIoU
Dice  

coefficient

Segformer 0.782 0.729

√ 0.793 0.743

√ 0.809 0.771

√ 0.794 0.749

√ √ 0.824 0.771

√ √ 0.813 0.776

√ √ 0.817 0.793

√ √ √ 0.831 0.803

Table 4. Comparison of the performances of the AISOA-SSformer and other networks

Model MIoU Dice coefficient Recall Precision Parameters GFLOPs

Segformer [18] 0.782 0.729 0.619 0.889 14.15 million 3.38G

UNet [12] 0.768 0.707 0.599 0.961 24.89 million 31.12G

U2Net [54] 0.773 0.715 0.621 0.842 167.71 million 37.65G

UNET++ [55] 0.778 0.722 0.619 0.868 34.96 million 34.87G

DeepLabV3 [56] 0.802 0.761 0.696 0.838 42.07 million 2.49G

Swin Transformer [57] 0.812 0.776 0.721 0.841 107.89 million 4.37G

SegNet [58] 0.795 0.749 0.701 0.807 112.32 million 40.17G

SETR [59] 0.824 0.772 0.739 0.853 370.41 million 15.90G

MC-UNet [30] 0.803 0.769 0.704 0.845 6.67 million 18.00G

Ours 0.831 0.803 0.765 0.892 14.71 million 3.28G
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Fig. 6. Examples of segmentation results for different networks.
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system. Figure 7 shows (A) an architectural diagram of the system 
and (B) a running example of the executable. As shown in the 
figure, we created a Pyqt interface to act as our system. After 
deployment, we uploaded the rice disease images captured in the 
field to the local host, entered the system, and clicked “Enable it” 
to start the segmentation, and the segmentation results were 
directly displayed on the system interface to help people analyze 
and evaluate the rice diseases in a targeted way.

To verify the generalization ability of AISOA-SSformer and 
the segmentation effect on different disease datasets, we further 
expanded the experimental scope. We continued to expand the 
dataset and traveled to Yue yang, Hunan Province, to take field 
photos of rice leaf diseases. With the help of experts from the 
Institute of Plant Protection, Chinese Academy of Agricultural 
Sciences (CAAS), and after careful screening and identification 
of disease pathogens using polymerase chain reaction (PCR), 
we selected 2 common rice leaf diseases, bacterial leaf blight of 
rice (bacteria) and rice blast (blast), each had 300 available 

images, for generalizability experiments. In addition, to simu-
late real farmland with less disease image data, we conducted 
experiments without adding any training samples, adding 100 
training samples, and adding 200 training samples. The metrics 
for these 3 experiments are shown in Table 5, where the first 
part is without training samples, the second part is with the 
addition of 100 training samples, and the third part is with the 
addition of 200 training samples. The visualization results of 
the experiment in which 200 training samples were added are 
shown in Fig. 8.

The results show that AISOA-SSformer outperforms Segformer 
in segmenting unknown types of rice diseases (e.g., bacteria and 
blast) with higher segmentation metrics. This finding highlights 
the significant advantage of AISOA-SSformer in terms of its gen-
eralizability. In particular, in the case of complex and intrusive 
backgrounds (e.g., human interference), the performance of 
Segformer is only barely passable, whereas AISOA-SSformer 
significantly outperforms Segformer, demonstrating a stronger 

Image processing

Taking disease images

Terminal output

256×256

256×256

SampleSample SampleSample

Segmentation resultsWaiting for processing

Rice disease segmentation system Rice disease segmentation system

A

B

Fig. 7. (A and B) Schematic diagram of the disease segmentation system and system demonstration example.
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processing capability. With the addition of a small number of 
training samples, the metrics of AISOA-SSformer increase sig-
nificantly, indicating that AISOA-SSformer is able to segment rice 
leaf diseases more accurately with the same dataset size. 
Specifically, after adding 100 training samples, the model perfor-
mance improved significantly, showing a stronger learning ability 
and disease feature recognition. When the training samples are 
increased to 200, the performance is further improved, demon-
strating superiority on small sample datasets. The addition of a 
small number of training samples significantly enhances the accu-
racy and robustness of the model compared to the case where no 
training samples are added. In summary, the experimental results 
demonstrate the superior performance of AISOA-SSformer in 
rice leaf disease segmentation tasks, especially in the case of a 
small number of training samples, which has potential for wide 
application. However, it still has slightly lower metrics in predict-
ing unknown disease categories compared to the 2 trained disease 
categories, and we also found some cases of missed segmentation 
and incorrect segmentation, which suggests that our network 
model is more suitable for segmenting those rice leaf disease 
images that have been included in the training data. In addition, 
although the model is more capable of handling complex back-
grounds, the performance may still be limited under extreme 
conditions, such as when there are drastic changes in light, over-
lapping leaves, or many occlusions. These conditions are more 
common in natural environments, so improving the robustness 
of the model in the face of these challenges is a focus of future 
research.

Given our ultimate goal of applying the network to practical 
rice disease analyses, we anticipate that the images we will need 
to process will cover a wider variety of diseases and be accompa-
nied by more complex backgrounds. To address these challenges, 
we plan to adopt the following 3 main strategies in our future 
work. First, we will expand the training dataset to cover a broader 
range of disease types and background conditions. Second, we 
will explore the possibility of using multistage segmentation mod-
els to improve the handling of diverse diseases and complex back-
grounds. Finally, we will lightweight and quantitatively deploy 
the model on edge devices using methods such as knowledge 

distillation to ensure efficient and accurate identification and 
segmentation of rice leaf diseases in practical deployments. By 
combining these measures and optimizations, we hope to develop 
a more robust and reliable automatic rice disease identification 
and segmentation system that can not only accurately process 
existing and unknown disease types but also adapt to various 
complex environmental conditions, thereby providing efficient 
technical support for agricultural production.

Conclusion
Rice leaf disease and pest segmentation is an important tech-
nology for precision agriculture and crop health management 
that provides accurate information on rice leaf diseases and 
helps farmers assess disease severity and progress. This technol-
ogy helps farmers make more effective decisions by assessing 
disease severity and progression in a timely manner. Through 
this approach, crop management efficiency and yield can be 
significantly improved while reducing the use of chemical pes-
ticides and promoting sustainable agriculture. However, rice 
leaf pest and disease segmentation also faces some challenges, 
such as irregular spots, blurred edge textures, and cluttered and 
complex background elements. To solve these problems, a new 
Transformer segmentation network, AISOA-SSformer, is pro-
posed in this paper, which achieves better results in rice leaf 
pest and disease segmentation.

a. Ablation experiments showed that SGUP, SFAM, and 
AISOA were more effective in rice leaf pest and disease seg-
mentation, with +1.41%, +3.45%, and +1.53% MIoUs, respec-
tively. Under the same experimental setup, compared with 
Segformer, AISOA-SSformer improved the MIoU and Dice 
coefficient by 6.27% and 10.14%, respectively.

b. Compared with the current mainstream segmentation 
algorithm pairs, the MIoU of AISOA-SSformer is 83.1%, the 
DICE is 80.3%, the recall is 76.5%, and the size of the model is 
only 14.71 million. The method shows excellent performance, not 
only in terms of segmentation accuracy but also in the handling 
of complex backgrounds and irregular lesions. AISOA-SSformer 
has excellent performance and has wide application potential 

Table 5. Comparison of segmentation metrics for unknown datasets with different training samples

Group Disease type Method MIoU
Dice  

coefficient Recall Precision

① Bacteria Ours 0.628 0.518 0.392 0.754

Segformer 0.553 0.345 0.222 0.781

Blast Ours 0.681 0.577 0.449 0.771

Segformer 0.568 0.333 0.214 0.744
② Bacteria Ours 0.743 0.737 0.635 0.859

Segformer 0.714 0.678 0.605 0.825

Blast Ours 0.722 0.654 0.538 0.833

Segformer 0.648 0.531 0.479 0.694
③ Bacteria Ours 0.812 0.801 0.746 0.872

Segformer 0.782 0.763 0.665 0.895

Blast Ours 0.786 0.739 0.617 0.834

Segformer 0.742 0.674 0.538 0.833
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Fig. 8. Visual comparison of segmentation of unknown datasets under 200 training samples.
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in the field of agricultural disease management and intelli-
gent disease diagnosis.

In this paper, an innovative rice leaf pest and disease seg-
mentation method (AISOA-SSformer) is proposed. This method 
significantly enhances the ability to recognize rice leaf pest and 
disease features by effectively extracting and fusing features at 
different scales and levels, thereby improving the consistency 
of intraclass predictions. According to a series of experiments, 
AISOA-SSformer performs well on several key performance 
metrics, including the MIoU, Dice coefficient, and recall. These 
results not only show the superior performance of AISOA-
SSformer in pest and disease segmentation but also highlight 
its excellent generalizability. The successful application of this 
method is important for precision agriculture and crop health 
management. By accurately segmenting and identifying pests 
and diseases on rice leaves, AISOA-SSformer can provide farm-
ers and agricultural experts with critical information to help 
them assess and manage crop diseases more effectively, thus 
realizing practical application value in multiple ways. First, 
AISOA-SSformer can significantly reduce the use of pesticides. 
By accurately segmenting pests and diseases, farmers can target 
pest control, avoiding the blind and excessive use of pesticides, 
thus protecting the environment and reducing pesticide resi-
dues. Second, the method improves crop yields, preventing the 
spread of diseases and pests by identifying and treating pest 
and disease problems in a timely manner, guaranteeing healthy 
crop growth, and ultimately improving the yield and quality of 
rice. In the future, we plan to apply AISOA-SSformer to a wider 
range of agricultural tasks, including pest and disease segmenta-
tion in other crops. In addition, we will explore the adoption of 
more advanced deployment technologies, such as knowledge 
distillation, to further improve the processing efficiency of 
AISOA-SSformer and expand its application scenarios so that it 
can play a greater role in actual agricultural production. Through 
these efforts, we expect AISOA-SSformer to make greater con-
tributions to smart agriculture and sustainable development.
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