
Liang et al. 2024 | https://doi.org/10.34133/remotesensing.0289 1

RESEARCH ARTICLE

Diurnal Carbon Monoxide Retrieval from  
FY-4B/GIIRS Using a Novel Machine  
Learning Method
Zhenxing  Liang1, Dasa  Gu1,2*, Mingshuai  Zhang3, Ning  Yang4,  
Chun  Zhao3,5,6, Rui  Li3, Qiaoqiao  Wang4, Yuxuan  Ye7,8, Jian  Liu9,10, Xin  Li1, 
Rui  Liu11, Yisheng  Zhang12, and Xiangyunong  Cao1

1Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water 

Bay, Hong Kong SAR, China. 2Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation 

for Environmental Quality, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 

China. 3School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China. 
4Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China. 5CAS 

Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, 

China. 6Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei 230026, 

China. 7Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences 

and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. 8College of 

Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. 9School 

of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519000, China. 10College of Environment and 

Ecology, Taiyuan University of Technology, Jinzhong 030600, China. 11Department of Geography, The 

University of Hong Kong, Hong Kong SAR, China. 12School of Environmental and Municipal Engineering, 

Qingdao University of Technology, Qingdao 266520, China.

*Address correspondence to: dasagu@ust.hk

Carbon monoxide (CO) is one of the primary reactive trace gases in the Earth’s atmosphere and plays 
an important role in atmospheric chemistry. The Geostationary Interferometric Infrared Sounder (GIIRS) 
onboard the FY-4 series satellites is currently the only geostationary hyperspectral thermal infrared sensor 
capable of monitoring the unprecedented hourly CO concentrations in East Asia during both daytime and 
nighttime. In this study, we presented a radiative transfer model-driven machine learning approach to 
quickly convert CO spectral features extracted from FY-4B/GIIRS into CO total columns. We built machine 
learning models for land and ocean regions separately from July 2022 to June 2023, and these models 
reproduced more than 97.77% (land) and 98.49% (ocean) of the CO column variance in the training set. 
We estimated the absolute uncertainty of the retrieved CO column based on error propagation theory 
and found that it is dominated by GIIRS measurement noise. We compared the machine learning retrieval 
results with optimal estimation and ground-based Fourier transform infrared measurements, and the 
results reveal the consistent spatial distribution and temporal variation across these different datasets. 
Our results confirm that the machine learning method has the potential to provide reliable CO products 
without the computationally intensive iterative process required by traditional retrieval methods. The diel 
cycle and monthly variation of CO over land and ocean demonstrate the value of GIIRS in monitoring the 
long-range transport of anthropogenic pollutants and biomass burning emissions.

Introduction

   Carbon monoxide (CO) is one of the primary reactive trace 
gases in the Earth’s atmosphere, whose atmospheric concentra-
tion is maintained by surface emissions from incomplete com-
bustion of fossil fuels in industry, traffic and domestic heating, 
or biomass burning, plus production through oxidation of 
methane and non-methane hydrocarbons in the atmosphere 

[  1 ,  2 ]. Additional minor sources of CO include ocean and veg-
etation [  3 ]. Production of CO is balanced by removal mainly 
from the reaction with the hydroxyl radical (OH), the primary 
tropospheric oxidant, thus directly affecting the atmospheric 
oxidation capacity [  4 ,  5 ]. Atmospheric CO concentration is 
essential in air quality and climate because CO is a precursor 
of tropospheric ozone and carbon dioxide [ 2 ,  6 ]. CO can also 
serve as a tracer for investigating long-distance transport of 
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pollutants due to its relatively long lifetime from weeks to 
months (e.g., [  7 ]).

   Several low-Earth orbit (LEO) nadir-viewing satellite instru-
ments launched over the past 2 decades provide near-global mea-
surements of CO vertical profile or total column based on its 
absorption of thermal or near-infrared (TIR or NIR) radiation 
[  8 ,  9 ]. These instruments and associated CO retrieval efforts 
include, but are not limited to, Terra/MOPITT (Measurement Of 
Pollution In The Troposphere) [  10 ], Aqua/AIRS (Atmospheric 
Infra-Red Sounder) [  11 ], Aura/TES (Tropospheric Emission 
Spectrometer) [  12 ], MetOp/IASI (Infrared Atmospheric Sound-
ing Interferometer) [  13 ,  14 ], Suomi-NPP/CrIS (Cross-track 
Infrared Sounder) [  15 ,  16 ], Envisat/SCIAMACHY (SCanning 
Imaging Absorption spectroMeter for Atmospheric CHarto-
graphY) [  17 ,  18 ], Sentinel-5P/TROPOMI (Tropospheric Moni-
toring Instrument) [  19 ,  20 ], and GOSAT-2/TANSO-FTS (Thermal 
And Near infrared Sensor for carbon Observations-Fourier 
Transform Spectrometer) [  21 ]. MOPITT uses TIR or NIR radia-
tion or both to retrieve the CO profile. The TIR-only retrieval is 
typically most sensitive to CO in the middle and upper tropo-
sphere, and when there is sufficient thermal contrast also sensitive 
to the lower troposphere. The TIR-NIR retrieval provides higher 
vertical resolution and features the greatest low-tropospheric sen-
sitivity. The latter 3 instruments use NIR radiation, and the other 
sensors use TIR radiation. The operational products of the above 
instruments are all based on physical methods. The TIR instru-
ments usually use the optimal estimation (OE) method, and NIR 
instruments use the OE, the differential optical absorption 
spectroscopy (DOAS) method or their variants. Specific retrieval 
details can be found in the above works and references therein. 
Under cloud-free conditions, the above LEO instruments can 
typically acquire near-global measurements of CO with a ground 
spatial resolution of ~5 to 22 km (AIRS has a coarser spatial reso-
lution of ~45 km) at a temporal resolution of half a day to 5 d.

   In June 2021, China launched an operational geostationary 
(GEO) orbit satellite, Fengyun-4B (FY-4B), equipped with a 
hyperspectral Geostationary Interferometric Infrared Sounder 
(GIIRS), which is the successor of the experimental satellite 
FY-4A launched in 2016 [  22 ]. In June 2022, the FY-4B satellite 
and its ground application system entered trial operation and 
started providing observation data and application services to 
global users. By combining FY-4A and FY-4B, GIIRS can scan 
East Asia at a time resolution of about 1 h with a spatial resolu-
tion of 12 to 16 km at nadir. However, an experiment shows 
that the measurement performance of FY-4A/GIIRS in the 
long-wave channels is inconsistent with that of FY-4B by com-
paring measured and simulated radiances [  23 ], which could 
raise questions about their compatibility for combination. So 
far, FY-4B/GIIRS is the only operational GEO hyperspectral 
thermal infrared instrument, with its mid-wave band (~1,650 
to 2,250 cm−1 with a spectral resolution of 0.625 cm−1) contain-
ing the sensitive intervals of CO. Therefore, GIIRS is valuable 
in diurnal CO retrieval with high temporal resolution.

   Zeng et al. [  24 ] recently retrieved the first CO at 2-h resolu-
tion for July 2022 from FY-4B/GIIRS based on the OE method, 
demonstrating the capability of GIIRS in observing the diurnal 
variation of CO in East Asia. OE is one of the most used physi-
cal methods in trace gas retrieval, which combines spectral 
measurements, prior state information, and corresponding 
uncertainty constraints and employs an iterative process to 
minimize the cost function between the measurements and the 
atmospheric state to infer an optimal solution [  25 ,  26 ]. OE can 

accurately retrieve trace gases with good prior knowledge, accu-
rate radiative calibration, and radiative transfer simulation 
[  27 ,  28 ]. However, the iterative process is complex and compu-
tationally resource-intensive because each process needs to map 
the atmospheric state vector to the satellite measurement vector 
through the radiative transfer model (RTM). Another limitation 
of the OE method is that it yields back the a priori when the 
spectral signal of the target species is not strong enough [  29 ], 
which is often the case with weak and broadband absorbers like 
the volatile organic compounds (VOCs) or low instrument sen-
sitivity due to atmospheric conditions [  30 ]. Furthermore, due 
to the contamination of the radiances in some GIIRS channels 
[ 23 ,  31 ,  32 ], and lack of analysis of the measurement performance 
of the adopted GIIRS spectral channels and necessary channel 
screening, the current OE CO product has a relatively noticeable 
latitudinal banding effects (i.e., deviations).

   Machine learning (ML) methods have gradually been devel-
oped for fast satellite remote sensing retrieval [  33 ,  34 ]. Whitburn 
et al. [  35 ] proposed the artificial neural network (ANN) method 
and subsequently applied it to ammonia retrieval using the hyper-
spectral range index (HRI) derived from IASI data. Then, the tech-
nique was gradually improved and applied to the retrieval of 
ammonia, methanol, formic acid, peroxyacetyl nitrate (PAN), 
acetone, acetic acid, isoprene, and ethylene from IASI and CrIS 
[ 30 ,  36 –  41 ]. Although compared with the traditional OE method, 
ML has shortcomings in analyzing the uncertainty contribution 
sources and vertical sensitivity of the retrieval results, such methods 
reduce the importance of the forward model in retrieval by con-
structing the nonlinear relationship between the column and spec-
tral index of the target species and are computationally efficient 
[ 30 , 35 ]. Another advantage of this method is that the temporal and 
spatial variation of the target gas concentration usually shows high 
agreement with the spectral index. HRI is a sensitive spectral index 
that quantifies the feature intensity of a target species in a specified 
continuous spectral interval by combining measurement covari-
ance, spectral sensitivity to target species, and background mea-
surement [  42 ]. However, like the OE approach, HRI might be 
prone to false detection when a major spectral interference (e.g., 
another trace gas and water vapor or emissivity features) overlaps 
with the absorption band of the target species [  37 ,  43 ]. Furthermore, 
abundant surface and atmospheric sources and relatively long life-
times produce a relatively uniform CO background column, which 
makes it inconvenient to select the satellite background observation 
(where no target trace gas appears) required in HRI.

   This study expects to use the ML approach to retrieve long-
term diurnal CO columns quickly and reliably from FY-4B/
GIIRS and weaken the band deviation in the current OE prod-
uct. Compared with HRI, the brightness temperature difference 
(BTD) between the absorption peak and valley of the target 
species can be regarded as a relatively conservative spectral 
index, which is also widely used to characterize the distribution 
of various trace gases [  44 –  49 ]. The abundant sources, relatively 
long lifetime, and strong absorption in several thermal infrared 
channels allow atmospheric CO columns to produce consider-
able brightness temperature contributions. Therefore, we intro-
duce the use of the BTDs at carefully selected multiple spectral 
channels as the spectral index, construct a representative train-
ing set with accurate radiative transfer simulation, and use ML 
methods to convert the spectral index into CO columns. It is 
also the first study where CO columns retrieved from GIIRS 
are compared to co-located high-quality ground-based solar 
absorption Fourier transform infrared (FTIR) measurements.
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   The content is structured as follows: The “Datasets” section 
describes the sources and roles of data needed in the retrieval 
and evaluation. The “Methodology” section describes the ML 
framework and the technical details. The “Results and Discussion” 
section shows the retrieval results, compares them with OE prod-
ucts, evaluates them with ground-based measurements, and 
discusses the advantages of GIIRS. Finally, we conclude in the 
“Conclusions” section.   

Materials and Methods

Datasets
FY-4B data
   GIIRS is carried on the FY-4 satellite series in GEO orbits about 
36,000 km above the equator [ 22 ]. FY-4B/GIIRS completes 12 
full scans per day over the observation region (as shown in Fig. 
S1) with a spatial resolution of 12 km at nadir. The spectral range 
of FY-4B/GIIRS includes mid-wave (MWIR; 1,650 to 2,250 cm−1) 
and long-wave infrared (LWIR; 680 to 1,130 cm−1), with a spec-
tral resolution of 0.625 cm−1. The experiment results of black-
body calibration in a laboratory thermal vacuum tank conducted 
by Li et al. [  50 ] show that the noise equivalent differential radi-
ance of FY-4B/GIIRS in the LWIR band is less than 0.5 mW/
(m2·sr·cm−1) and that in the MWIR band is lower than 0.1 mW/
(m2·sr·cm−1). The average radiometric calibration difference in 
the LWIR band is improved from 1 K to 0.2 K after the nonlinear-
ity correction, and that in the MWIR band also meets the 0.7 K 
index requirement in the dynamic range of 260 to 315 K, which 
is comparable to existing infrared sounders.

   FY-4B/GIIRS provides level 1 data from June 2022, and this 
study uses the level 1 MWIR radiation data of FY-4B/GIIRS to 
extract the spectral feature of CO. The corresponding observa-
tion geometry is used in the RTM simulation and participates 
in ML retrieval as the auxiliary parameter. We removed the 
invalid GIIRS measurements and filtered data with quality 
assessment scores in the level 1 product less than 60. The high-
resolution (4 km) cloud mask (CLM) product from the Advanced 
Geostationary Radiation Imager (AGRI) onboard FY-4B was then 
used to screen clear-sky measurements [  51 ,  52 ]. Specifically, we 
matched the surrounding CLM products for each GIIRS footprint 
and kept GIIRS measurements with at least 80% of the CLMs 
marked as clear or probably clear. All the above FY-4 data are 
available at  http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.
aspx?currentculture=en-US .   

Auxiliary data
   This study uses atmospheric pressure, temperature, water vapor 
profile, surface temperature and pressure, 2-m temperature, and 
10-m wind speed from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 and the monthly 
infrared land surface emissivity database from the University 
of Wisconsin-Madison (UOW-M) in the RTM to simulate 
GIIRS infrared radiation, and part of them also participated in 
ML retrieval. The temporal resolution of ERA5 is 1 h, and the 
spatial resolution is 0.25° [  53 ]. The UOW-M emissivity data 
have 10 wavenumbers from MWIR to LWIR [  54 ], and interpola-
tion was performed here to derive the emissivity in the needed 
channels. These auxiliary data were spatiotemporally sampled 
to match the GIIRS observations. The ERA5 data are available 
at  https://www.ecmwf.int/en/forecasts/datasets/reanalysis-data-
sets/era5 . The UOW-M emissivity data are available at  https://
cimss.ssec.wisc.edu/iremis/ .   

Intercomparison CO dataset
   Zeng et al. [ 24 ] retrieved the CO for July 2022 from FY-4B/GIIRS 
based on the OE method and compared the CO columns with 
MetOp-B/IASI L2 CO total column products. IASI is a LEO satel-
lite sensor with high radiometric performance [  55 ], stable retrieval 
algorithms [ 13 ], and mature products [ 9 , 27 ,  56 –  60 ]. In this study, 
the above GIIRS-OE CO columns from July 2022 were used to 
compare with the GIIRS-ML retrieval results. The MetOp-B/IASI 
CO products were used to evaluate the first monthly variation of 
GIIRS-ML CO. The GIIRS-OE CO data are available at  https://
doi.org/10.18170/DVN/M7DKKL . The IASI CO products are 
available at  https://iasi.aeris-data.fr/ .   

Ground-based FTIR measurements
   This study uses CO products provided by 2 ground-based FTIR 
sites (Fig. S15) within the GIIRS coverage region to evaluate the 
CO columns retrieved from GIIRS. These 2 FTIR sites belong to 
the Total Carbon Column Observing Network (TCCON) 
[  61 –  63 ]. One is located in Hefei, China [  64 ,  65 ], and the other is 
in Saga, Japan [  66 ,  67 ]. TCCON uses solar absorption spectros-
copy in the NIR region and adopts a nonlinear least-squares 
spectral fitting algorithm (same as OE) to iteratively retrieve the 
scaling factor of the prior vertical profile until the forward simu-
lated spectrum best fits the observed spectrum. The scaled prior 
profile is integrated over the vertical height to generate the verti-
cal column density of the target gas, which is then divided by the 
dry air column density to derive the final column-average dry 
mole fractions (XCO). The accuracy of XCO retrieved by the 
latest version of the algorithm (called GGG2022) has increased 
from 4% to 2% compared with the older version (GGG2014) 
[ 61 ,  62 ]. More information about TCCON is available on its offi-
cial website and in references ( http://www.tccon.caltech.edu/ ).    

Methodology
   The GIIRS-ML approach first uses RTM to simulate the radi-
ances that GIIRS would receive under different observation 
angles, atmosphere-surface state parameters (i.e., auxiliary 
parameters), and various CO columns, and then extracts the 
simulated spectral features of CO (i.e., BTD). The relationship 
between the CO column and its generated BTD is a complex 
function influenced by auxiliary parameters that affect radiative 
transfer. So, ML is used here to construct the nonlinear relation-
ship between the RTM-simulated BTD, the major auxiliary 
parameters (detailed in the “Training set preparation” section), 
and the CO columns. Finally, the trained ML model converts 
the GIIRS-calculated BTD and corresponding auxiliary param-
eters into the CO columns.

   This section describes the steps as shown in Fig.  1  for retriev-
ing the CO total column from FY-4B/GIIRS in detail, including 
RTM simulation, gas spectral sensitivity analysis, GIIRS spec-
tral channel selection and CO spectral feature extraction, the 
representative training set construction, ML training and evalu-
ation, and retrieval uncertainty estimation and post-filtering. 
We show the necessary figures in this section.          

RTTOV and spectral sensitivity analysis
   The RTM used in this study is RTTOV (Radiative Transfer for 
TOVS), which is a very fast RTM that can be used to simulate 
visible, infrared, and microwave downward-viewing satellite 
radiometers, spectrometers, and interferometers [  68 ,  69 ]. RTTOV 
has been used as the forward operator in a series of trace gas 
retrieval work, such as the CO, methanol, methane, ozone, and 
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water vapor, retrieved from IASI by the Rutherford Appleton 
Laboratory (RAL) space remote sensing group [  70 ]. RTTOV 
characterizes sensor-specific measurements through its pre-
generated coefficient files, and the FY-4B/GIIRS coefficient file 
is used here. The simulation error of RTTOV is characterized by 
comparison with an accurate line-by-line RTM and is involved 
in calculating retrieval uncertainty in the following section. More 
information is available at  https://nwp-saf.eumetsat.int/site/
software/rttov/ .

   Selecting spectral channels with as few interfering species 
effects as possible is essential for reliable CO retrieval. The 
MWIR band of FY-4B/GIIRS includes the strong absorption 
spectral interval of CO (~2,040 to 2,230 cm−1), where the major 
interfering molecules include water vapor, N2O, CO2, and O3. 
Figure  2 A shows the spectral sensitivity of each trace gas cal-
culated from RTTOV simulated brightness temperatures. There 
are substantial influences of water vapor, O3, and CO2 in the 
interval of ~2,040 to 2,143 cm−1 and that of N2O in ~2,181 to 
2,230 cm−1. Therefore, in CO thermal infrared retrieval, the 
shaded interval (~2,143 to 2,181 cm−1) is common to avoid the 
influence of other molecules except for water vapor. We calcu-
lated the difference in sensitivity to CO and interfering mole-
cules between each pair of spectral channels in the shaded 
interval, as shown in Fig.  2 B. Then, based on the principle of 
being sensitive to CO and insensitive to interfering molecules, 
we screened some spectral channel combinations composed of 
CO absorption peaks and valleys, as shown in Fig.  2 C. These 
combinations can theoretically be used to extract the spectral 
features of CO. In addition, the interference between these 
channels mainly comes from water vapor, so several spectral 
channel combinations of water vapor were also screened out 
to consider its influence during retrieval.           

GIIRS spectral channel selection and  
feature extraction
   Whether the channels determined by the above RTTOV simu-
lation are suitable for actual GIIRS measurements depends on 
the influence of interfering species and is closely related to the 
instrument measurement performance. Figure S2 shows the 
spectral features (i.e., BTDs) extracted from one peak channel 
(2,150.625 cm−1) and each valley channel, where many BTDs 
exist banding effects and are more significant at the latitude 
bands scanned by the instrument and over the ocean. That is 
due to the contamination in the level 1 radiance of some GIIRS 
channels mentioned in the introduction and may also be due 
to the accumulation of dual-channel measurement errors when 
calculating BTD. Therefore, if we do not perform measurement 
performance analysis and necessary post-filtering of the GIIRS 
spectral channels, the retrieved gases may have apparent band-
ing effects. Through visual analysis of all BTDs, we finally iden-
tified several channel combinations that can reliably extract the 
CO spectral features and weaken banding effects (Fig. S3).

   Theoretically, an average value calculated using multiple valley 
channels provides a more robust characterization of the back-
ground spectrum, and the same principle applies to the peak 
channels [  45 ,  48 ]. After many experiments on channel aver-
aging, corresponding ML model training, and retrieval (as 
shown in Fig. S4), we determined to use the brightness tem-
perature at the absorption peak channel (2,154.375 cm−1) 
and the average brightness temperature at the valley channels 
(2,143.125, 2,159.375, and 2,166.875 cm−1) to extract the spec-
tral features of CO (as shown in Fig.  3 A). In Fig.  3 A, anoma-
lously high values occur in the boxed region A, which may be 
caused by the larger satellite viewing angles (Fig.  3 C) with 
longer radiation propagation path and more disturbances. 
These anomalously high BTDs are also sparsely ground-sam-
pled, and if they produce anomalous CO columns in the 
retrieval, the post-filtering can be easily performed according 
to the viewing angle. In the boxed region B, there are also high 
values, which should be caused by the surface emissivity (Fig. 
 3 D) or thermal contrast (Fig.  3 E), as the nadir thermal infrared 
instruments usually have higher sensitivities to the target gas 
at high thermal contrasts [  71 ]. When these auxiliary param-
eters are considered in the ML model, these high BTD values 
map to the normal CO columns.        

   Except for the boxed regions A and B, in the hotspot regions 
usually densely populated by human activities (as shown in Fig. 
S5), such as the Sichuan Basin, the North China Plain, northeast 
China, Primorye Russia, northern India, and Pakistan, high BTD 
values correspond to high CO columns (Fig.  3 B). In contrast, 
the relatively lower BTD values in southeast China and Southeast 
Asian countries (e.g., Vietnam and the Philippines) correspond 
to lower CO columns. In the Qinghai–Tibet Plateau region of 
China, the extremely low BTD values correspond to relatively 
uniform CO background columns and high altitudes. These 
performances illustrate that the spectral features calculated 
directly from the GIIRS measurements can characterize the 
CO distribution and column variation (except in regions 
strongly influenced by surface emissivity or viewing angle). 
In addition, related gas retrieval works usually input water 
vapor reanalysis data into the ML models to account for 
potential weak water vapor interference. Here, we replace the 
reanalysis data with water vapor spectral features extracted 
directly from GIIRS (Fig.  3 F) to reduce the retrieval error and 
uncertainty.   

Fig.  1.  A flowchart to illustrate the main steps of the methodology. The CO column 
retrieval (F.1) and uncertainty estimation (F.2) are performed simultaneously in the code.
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Training set preparation
   The performance of ML retrieval depends heavily on the quality 
of the training set, which should be as comprehensive and rep-
resentative as possible [ 30 ]. Theoretically, all parameters that 
affect the radiative transfer simulation and spectral feature 
should be part of the training set, but the data dimension is huge 
and requires intensive computing resources. Therefore, only the 
spectral features of the CO and major auxiliary parameters are 
involved in the input parameters of the ML model, and the pre-
dicted output of ML is the CO column. These auxiliary param-
eters include spectral features of water vapor, satellite angles 
(zenith angle and azimuth angle), solar angles (zenith angle and 
azimuth angle), thermal contrast, surface pressure, surface skin 

temperature (sea surface temperature for ocean), and surface 
spectral emissivity. In this study, the land surface spectral emis-
sivity was calculated from the UOW-M emissivity database. The 
surface spectral emissivity of the ocean can be characterized as 
a function of observation angle and wind speed [  72 ], so we input 
the latter 2 directly into the model.

   When constructing the training set, we extracted all the aux-
iliary parameters corresponding to all GIIRS cloud-free observa-
tions during the daytime and nighttime each month from July 
2022 to June 2023 and then performed spatiotemporal regular 
sampling. Specifically, given the importance of thermal contrast 
to the instrument’s sensitivity, we used thermal contrast as the 
flag to process each 0.5 × 0.5° grid. We first sorted the thermal 

Fig. 2. Spectral sensitivity analysis and channel selection of CO. (A) Spectral sensitivities of CO and major interfering molecules (i.e., water vapor, N2O, CO2, and O3), calculated 
from the change of RTTOV simulated brightness temperature produced by adjusting the column of each gas. The proportions of column adjustment marked in the legend are 
approximately their retrieval accuracy requirements. (B) Differences in sensitivity to CO (left panel) and interfering molecules (right panel) between each pair of channels in the 
shaded interval of (A). (C) The screened absorption peak and valley channels for CO and H2O, and their combinations might be used to extract their spectral features.
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contrast in each grid, saved the position index, and retained the 
maximum and minimum values. Then, we sampled the remain-
ing samples at equal intervals to keep a constant ratio of the 
numbers. Finally, we extracted other corresponding auxiliary 
parameters according to the position index. Furthermore, we 
ensured that the number of samples obtained per unit time reso-
lution was consistent to prevent the training set from overly 
representing a specific period. Such regular sampling ensures 
that samples can represent the measurement conditions of GIIRS 
while reducing data redundancy and improving the efficiency of 
ML training. Then, we assigned different CO profiles taken from 
random scaling of the reference profile to the representative aux-
iliary parameters and input them into RTTOV to simulate and 
generate a wide range of BTDs with various CO columns. The 
reference profile of CO was taken from the spatiotemporal aver-
age of the EAC4 monthly averaged fields in the study region in 
2021 (as shown in Fig. S6) [  73 ].   

ML training and evaluation
   After constructing the above RTTOV-derived training sets, we used 
the random forest (RF) method to build nonlinear relationships 
between input and output parameters each month. RF uses ran-
domly selected training samples and subsets of variables to generate 

multiple decision trees that comprehensively determine the model 
output [  74 ]. RF can successfully handle high-dimensional data and 
multicollinearity and only needs to adjust 2 parameters when train-
ing the model [ 33 ]. Since land and ocean have different surface 
properties, such as temperature and emissivity, related research has 
also shown that training separate ML models for land and ocean 
observations improves training performance for both groups [  75 ]. 
In addition, there are large differences in observation conditions in 
different months. For example, favorable observation conditions 
in summer correspond to larger thermal contrast and lower mea-
surement noise, while the opposite is true in winter. Therefore, we 
trained the monthly RF models separately for land and ocean, and 
then selected the corresponding models based on land and ocean 
markers and months during retrieval.

   In the RF method, 2 parameters need to be set when generat-
ing forest trees: the number of decision trees (Ntree ) and the num-
ber of variables to be selected and tested for optimal segmentation 
of growing trees (Ntry ) [ 33 ]. The latter is usually set to the square 
root of the number of input variables. We used 10-fold cross-
validation to evaluate the performance of the RFs under different 
 Ntree . Specifically, the training set was randomly divided into 10 
parts, 9 of which were taken each time to train the model, and 
the remaining one was predicted. The control experiments in 
Fig. S7 show that with the increase in Ntree , the model R 2 increases 
and the root mean square error (RMSE) decreases and then 
gradually reaches a stable state with minimal fluctuations. In this 
study, Ntree  was set to 200. We also used the mean relative error 
of the predicted columns (ŷ) over the trained columns y to evalu-
ate the relative uncertainty of the model. The equation for cal-
culating the mean relative error within each unit grid is as 
follows, where n is the number of columns in the grid [ 35 ]:

     

   In July 2022, the coefficients of determination (R 2) between 
the training CO column and the RF-predicted CO column reach 
0.995 and 0.989 over land and ocean, respectively (Fig.  4 A and 
C), and the relative uncertainty of the model is generally less than 
10% at columns greater than 0.5 × 1018 molecules/cm2 over land 
and ocean [as shown in the 2-dimensional (2D) error plots Fig. 
 4 B and D]. These two 2D error plots also show that the model’s 
relative error increases at lower background columns, where the 
BTDs produced by the columns are closer to the detection thresh-
old of the instrument. In Fig.  4 E, the RF model outputs the 
expected relative importance of each parameter, i.e., the CO spec-
tral feature dominates the model, and the satellite zenith angle 
also plays an important role. In addition, the importance of CO 
spectral features over the ocean is more significant than that over 
land. From July 2022 to June 2023, the performance of the RF 
model on the training set in each month is shown in Table S1. 
The performance of the RF model decreases slightly in the colder 
months due to unfavorable observation conditions, but overall 
performs well in all months, with R 2 larger than 0.97 and 0.98 
over the land and ocean even in the coldest month (January 2023).           

Retrieval uncertainty estimation and  
post-filtering mechanism
   The absolute uncertainty for each retrieved CO column over 
land and ocean (Sland  and Socean ) was estimated by propagating 
the uncertainties of the input parameters in RF retrieval [ 35 ]:

(1)Error =
1

n

n∑

k=1

|||||

ŷk−yk

yk

|||||
× 100

Fig. 3. Analysis of CO spectral features extracted from GIIRS measurements and major 
influencing factors in July 2022. (A) CO spectral features extracted directly from all 
GIIRS cloud-free measurements during daytime and nighttime based on the brightness 
temperature at the absorption peak channel (2,143 cm−1) and the average brightness 
temperature at the valley channels (2,143.125, 2,159.375, and 2,166.875 cm−1). Here, we 
adjust the color bar to highlight key information. (B) CO total column in the same month 
retrieved by Zeng et al. [24] based on the OE method. (C) Satellite zenith angles. (D) Surface 
emissivity calculated from the average of wavenumbers used in (A). (E) Thermal contrast 
(i.e., the temperature difference between the surface and the 2-m overlying layer). 
(F) Spectral features of the water vapor, calculated from the water vapor absorption peak 
(2,152.5 cm−1) and valley channels (2,153.75 and 2,164.375 cm−1). The above maps are 
monthly averages drawn at a spatial resolution of 0.5 × 0.5°.
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where BTDCO  is the uncertainty of CO spectral feature, calcu-
lated as the average of the measurement noise equivalent tem-
perature difference (NEdT) of the CO spectral channels used 
in BTD. RTTOVCO  represents the mean simulation uncertainty 
of RTTOV in the above CO spectral channels. BTDH2 O  and 
 RTTOVH2 O  represent the instrument measurement noise and 
RTTOV simulation uncertainty at the water vapor spectral 
channels. STC  and STskin  represent the uncertainty of thermal 
contrast and surface temperature and were set to 1 K, referring 
to Whitburn et al. [ 35 ]. SSP  is the uncertainty of ERA5 surface 
pressure set to 3 hPa [  76 ]. SSe  is the uncertainty of the surface 
emissivity set to 0.01. SWS  is the uncertainty of the wind speed 
and set to 2 m/s [  77 ]. The uncertainty of the satellite observa-
tion geometry was negligible. The results in Fig. S8 show that 
the uncertainty contributed by NEdT is usually more than 90% 
of the total uncertainty, indicating that the absolute uncertainty 
in the retrieved CO is dominated by instrument measurement 
noise. Figure S9 shows the absolute uncertainties of the retrieved 
columns for each month. It is obvious that under unfavorable 
observation conditions in the colder months from December 
2022 to February 2023, the retrieval uncertainties are larger 
than in warmer months. Moreover, these regions with poor 
retrieval performance are mostly located in high-latitude areas 
with large GIIRS observation angles, high measurement noise, 
and sparse sampling, as well as in the high-altitude CO back-
ground regions of the Tibetan Plateau.

   To determine a robust post-filtering basis, we observed thou-
sands of the retrieved columns, uncertainties, and multiple 
influencing factors corresponding to GIIRS unit time observa-
tions in 4 representative months (one example in Fig. S10). We 
first used NEdT/BTD less than 10% as a strict basis and then 
filtered out those extremely cold observations with surface 
temperatures less than 273.15 K. Additionally, we made a 
mask file in Fig. S11 to filter out those sparsely sampled mea-
surements. Figure S12 shows the performance of the post-
filtering mechanism during the daytime and nighttime in each 
month. Specifically, the filtered number during the nighttime 
is larger than in the daytime and winter than in summer. In 
January 2023, the coldest month, nearly 40% of the retrieval 
results were filtered due to the strict thresholds, but most of 
these removed measurements were not in hotspots.     

Results and Discussion
   This section compares GIIRS-ML retrieval results with the OE 
method and performs the first evaluation of GIIRS CO with 
high-quality ground-based FTIR measurements. Note that 
since the CO profile has different action mechanisms in OE 
and ML methods, we usually call it the prior profile in OE and 
the reference profile in ML. We discuss the consistency and 

differences between the different products and point out ways 
to improve ML products further in the future. We also discuss 
the advantages of GIIRS in monitoring CO emissions and long-
range transport by drawing the diel cycle of the GIIRS-ML CO 
column and its monthly variations for a whole year from July 
2022 to June 2023.  

Comparison of CO between ML and OE method
   Zeng et al. [ 24 ] carried out the spatial and temporal compari-
sons between the GIIRS-OE CO column and the IASI CO 
product and showed good agreement between them. Here, we 
select the same regions and periods as in the above comparisons 
to compare the GIIRS-ML and GIIRS-OE CO columns. When 
comparing products from different sensors or algorithms (e.g., 
products A and B), it is usually best to consider the impact of 
different profiles and average kernels to make a proper com-
parison, as shown in the following equations [  78 ]:
    

    

where x is the CO concentration profile whose dimension is 
equal to the number of retrieved pressure levels (N) or the 
CO partial column profile whose dimension is equal to the 
number of layers (M = N – 1) and AK is the average kernel 
matrix (N × N or M × M), representing the retrieved state’s 
sensitivity to the true state. The dimensions depend on 
whether the product provides concentration profiles or partial 
column profiles.  Equation 4  first uses a profile in product B 
to adjust the CO retrieved in product A. Then,  Eq. 5  uses the 
average kernels in product A to smooth the CO retrieved in 
product B.

   Figure  5 A and B compares GIIRS-ML and GIIRS-OE col-
umns in 2 daytime and nighttime scenes on 2022 July 7. The 
GIIRS-ML and GIIRS-OE columns show the same CO source 
regions, an anthropogenic emission source in the North China 
Plain, and a natural wildfire emission source in Siberia. In addi-
tion, the GIIRS-ML CO column during daytime over urban 
areas in northern India is slightly higher than that of GIIRS-OE. 
The scatterplots also show good agreements between GIIRS-ML 
and GIIRS-OE CO columns during daytime and nighttime. 
We performed various tests to discuss the impact of different 
profiles and average kernels, as shown in Figs. S13 and S14.        

   The results show that in trace gas retrieval, the profiles used 
in the OE or ML method have important impacts on the retrieval, 
and it is essential to introduce the average kernel in ML to evalu-
ate the retrieval quality. The availability of average kernels has 
always been one of the greatest strengths of OE methods, while 
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the lack of average kernels is a major drawback of ML. Until a 
recent trace gas retrieval work, formulas for calculating average 
kernels in ML were systematically derived, which can be used 
to undo the effect of the profile shape assumption of the retrieval 
[  79 ]. Therefore, the ways we are considering to improve the ML 
algorithm include selecting the optimal reference profile shape 
for different regions based on historical data and introducing 
average kernels.

   For the comparison of time series in Fig.  5 C, we refer to the 
4 representative regions (as shown in Fig. S15) delineated by 
Zeng et al. [ 24 ], among which the North China Plain and 
northern India represent anthropogenic source regions with 

persistent high CO emissions, Mongolia represents the CO 
background region, and the Eastern China Sea represents 
the ocean. During the daytime and nighttime, the GIIRS-ML 
and GIIRS-OE columns in all 4 regions show consistent daily 
variabilities, reflecting that both methods can capture CO infor-
mation from GIIRS. Except for the differences in a few days in 
northern India that lead to low correlation coefficients between 
the 2 datasets, the correlation coefficients in other regions and 
times are higher than 0.61, especially in the East China Sea, 
where the correlation coefficients reach 0.96 and 0.94 during 
the daytime and nighttime, respectively. The differences between 
the GIIRS-ML and GIIRS-OE columns as a proportion of the 

Fig. 4. Performance of the RF model on the training sets over land and ocean in July 2022. (A and C) Relationships between the trained and RF-predicted CO columns over land 
and ocean, respectively. (B and D) Relative uncertainty of the RF model in the unit TC and Column grid (0.25 K and 5 × 1016 molecules/cm2) over land and ocean, respectively. 
The 2 grey dotted lines in (B) and (D) represent the marking lines for the CO column of 0.5 × 1018 molecules/cm2. (E) Relative importance of input parameters in the RF model 
over land and ocean. The relative importance here indicates how each input parameter improves the model's prediction error. The higher the value, the greater the contribution 
of this parameter to the model's prediction results. The left y axis represents land, and the right y axis represents ocean.
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Fig. 5. The spatial and temporal comparisons of GIIRS CO columns retrieved by ML and OE methods. (A) Spatial distribution and scatterplot of GIIRS-ML and GIIRS-OE CO 
columns during daytime at a unit time resolution on 2022 July 7 (10:00 to 11:59 Beijing time). The values in the scatterplot are the 0.5° × 0.5° grid means matched by GIIRS-
ML and GIIRS- GIIRS-OE. (B) Same as (A) but represents the night observation on 2022 July 7 (20:00 to 21:59 Beijing time). There may be slight differences between ML and 
OE in the spatial distribution due to differences in data preprocessing (e.g., cloud screen) and post-filtering mechanisms. (C) Comparison of the daily average of GIIRS-ML 
and GIIRS-OE columns in 4 representative regions in July 2022. Here, the column unit is converted from molecules/cm2 to mole/m2 via Avogadro’s constant to be consistent 
with Zeng et al. [24].
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GIIRS-ML columns are also marked in Fig.  5 C. The differences 
between the 2 datasets are usually less than 8% in the North 
China Plain and the East China Sea. In Mongolia and northern 
India, the differences between the 2 datasets are about 14 to 15%, 
which is within the influence of profile shape in the ML training 
set. In addition, the comparison between GIIRS-OE and IASI 

products also shows similar performance (as shown in figure 14 
of Zeng et al. [ 24 ]). There are larger differences between the 2 
datasets in Mongolia and northern India. In future work, opti-
mizing the profile shape in the ML training set and introducing 
the average kernel can reduce the differences between different 
datasets.   

Fig. 6. The evaluation of GIIRS-ML and GIIRS-OE retrieval results with ground-based FTIR measurements at the (A) Hefei and (B) Saga sites. The legend shows that each subfigure 
contains 3 solid lines and 3 dashed lines. Among the 3 solid lines, the one marked with black circles is the 2-h average FTIR XCO, the one marked with blue circles represents 
the result of smoothing FTIR XCO based on the ML CO reference profile, and the one marked with orange circles represents GIIRS-ML retrieval results. Among the 3 dotted 
lines, the one marked with blue circles is the difference between the FTIR XCO and smoothed XCO using the ML CO reference profile. The one marked with orange circles shows 
the difference between smoothed FTIR and GIIRS-ML XCO. The one marked with red circles represents the difference between the GIIRS-OE XCO and FTIR XCO smoothed by 
the OE prior profile. The 2 horizontal dotted lines above and below the horizontal dotted line with the ordinate of 0 represent the greatest impact of profile smoothing on FTIR 
after excluding extreme values. Note: OE results are only available for July 2022, and ground-based FTIR measurements are not continuous.
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Evaluation with FTIR measurements
   The comparisons in the previous section demonstrate the good 
spatial and temporal consistency between GIIRS-ML and 
GIIRS-OE columns, and the differences between them are 
within the influence level of the reference or prior profiles. This 
section provides a preliminary evaluation of the GIIRS-ML and 
GIIRS-OE columns using CO measurements from 2 available 
ground-based FTIR sites (shown in Fig. S15) within the GIIRS 
scan region and the period after July 2022. As of the submission 
date of this manuscript, the data of the Hefei site have been 
updated to 2022 December 19, and the Saga site has been 
updated to 2022 October 14. We averaged the FTIR measure-
ments every 2 h and then matched them to the GIIRS-ML and 
GIIRS-OE columns within 2° and 8 h for comparison. Since 
the surface altitudes of GIIRS measurements within 2° are not 
the same as that of the FTIR site, we adapted the GIIRS columns 
according to the FTIR surface altitude [  58 ,  80 ]. FTIR provides 
measurements as the column-averaged dry air mole fractions 
XCO, so we convert GIIRS-OE and GIIRS-ML columns to XCO 
by dividing by the dry air column density derived from co-
located ECMWF pressure fields [ 80 ]. According to the official 
instructions of TCCON ( https://tccon-wiki.caltech.edu/Main/
AuxiliaryDataGGG2020 ), the prior profiles and average kernels 
of FTIR need to be considered when comparing with other 
products. Therefore, we smooth the XCO of FTIR with the 
profiles adopted in OE and ML methods, respectively, following 
the instructions:
     

   where ca  is the TCCON XCO prior, xa  is the TCCON CO prior 
wet mole fraction profile, x is the wet mole fraction profile in 
OE or ML, and a is a vector that is an element-wise product of 
the TCCON averaging kernel and integration operator pro-
vided in the TCCON product.

   In Fig.  6 , the results before and after smoothing FTIR using 
the ML reference profile once again prove that the prior profile 
considerably impacts the retrieval results. In addition, most of 
the time, using the ML reference profile to smooth the FTIR 
XCO makes the retrieval results of FTIR and ML closer, which 
reflects the necessity of considering the profile and average 
kernel when comparing products of different instruments or 
algorithms. Moreover, profile smoothing does not change the 
variation trend of FTIR XCO in time series; GIIRS-ML and 
FTIR XCO show the same trend in each period. The differences 
between GIIRS-ML and GIIRS-OE and the smoothed FTIR 
XCO are also within the level that the profile can influence. 
However, in December at Hefei station, although GIIRS-ML 
and FTIR XCO showed a consistent trend, the differences were 
relatively large. That requires further improvements to the ML 
algorithm and the collection of more ground measurements 
for further evaluation in the future.           

Diel cycle of CO
   As the world’s first GEO hyperspectral thermal infrared sensor, 
GIIRS has the unique advantage of performing high temporal 
resolution observations during the daytime and nighttime. 
Considering that CO is long-lived, large outflows are observable 
over the ocean, particularly from eastern China and Southeast 
Asia (as shown in the following cases). GIIRS observations are 
valuable for monitoring the long-range transport of anthropo-
genic pollutants and biomass burning emissions.

   Figure  7  shows the GIIRS-ML CO columns on 2022 September 
5 and 2023 April 18, respectively. On that day in September 2022, 
there were obvious regions with high CO concentrations, including 
the North China Plain and the Pearl River Delta, dotted with 
densely populated large cities and vast agricultural areas. In these 
high-value areas, CO concentrations are higher during the daytime 
and relatively lower at nighttime. In addition, there are high con-
centrations in the ocean near the Pearl River Delta with the same 
diurnal variation, which should relate to the diffusion of pollutants. 
On that day in April 2023, GIIRS observed widespread high con-
centrations of CO over land in Southeast Asia, as well as in the 
ocean regions of Southeast Asia and eastern China. Furthermore, 
there are obvious long-distance transports of CO over the ocean. 
For example, in the ocean region of eastern China, the CO con-
centration is low at 8:00 AM during the daytime, then gradually 
increases in the following hours, and then reaches and maintains 
a peak value at nighttime. Similar transport exists in the ocean 
region of eastern India, but its peak value is only held between 4:00 
and 8:00 PM. The CO concentration over land in Southeast Asia 
shows significant diurnal variations related to the land–ocean 
transport of pollutants.           

Monthly variation of CO
   To verify the robustness of the ML method, we retrieved all 
GIIRS cloud-free measurements from July 2022 to June 2023 
and evaluated the reliability of the GIIRS-ML columns with 
the operational CO products of the MetOp-B/IASI. Figure S16 
shows the unfiltered GIIRS-ML CO columns, which show the 
spatial distribution and monthly variation consistent with the 
IASI CO columns (Fig.  8 ), although there are large differences 
in the scanning frequency between IASI and GIIRS over the 
region. Specifically, in the summer of July and August 2022 
over the land region, the major CO hotspots are the North 
China Plain, northern India, and Pakistan. In July, there is high 
CO caused by wildfires in the Siberia region. In the following 
autumn, from September to November 2022, the hotspots 
gradually moved southward to the Pearl River Delta and eastern 
India, with a brief peak in September. In early winter of 
December 2022, the hotspots are still in the Pearl River Delta 
and then gradually spread to the North China Plain and 
Southeast Asia. Over the ocean region, there is an extensive 
CO transfer belt in March and April 2023.        

   Figure  9  shows the post-filtered GIIRS-ML CO columns. 
As discussed in the “Retrieval uncertainty estimation and 
post-filtering mechanism” section, the strict post-filtering 
mechanism filters out many winter measurements at northern 
latitudes, which is consistent with attempts to retrieve CO from 
GIIRS on a certain day in winter based on the OE method (as 
shown in section 7.1 and figure S12 of Zeng et al. [ 24 ]). This is 
because the measurement noise of GIIRS in northern latitudes 
is significantly higher under unfavorable observation condi-
tions in winter. It should be noted that under the 0.5 × 0.5° grid 
monthly average, especially over the ocean region in March 
and April 2023, banding effects seem to be related to the GIIRS 
longitude direction scanning (see Fig. S1). However, we did not 
find any obvious banding effect after observing the retrieval 
results at unit time resolution for the whole year from July 2022 
to June 2023 (e.g., Fig.  7 ). Therefore, the above banding effect 
appearing under the monthly average should be caused by time 
accumulation, and the impact on the application of GIIRS 
advantages such as hour-level CO emission and transport 
research can be ignored.            
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Fig. 7. The post-filtered GIIRS-CO column on 2022 September 5 and 2023 April 18. The figure is drawn with the unit time resolution of GIIRS at a spatial resolution of 0.5 × 0.5°, 
and the marked time is Beijing time. There are fewer observations from 10:00 to 11:59 PM. During the 2 dates selected here, there are almost no observations.
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Conclusion

   GIIRS is the only GEO hyperspectral thermal infrared sensor so 
far with the ability to continuously detect hourly CO in East Asia 
during the daytime and nighttime. Based on the analysis of CO 
spectral sensitivity and GIIRS measurement performance, this 
study found that the BTD extracted from the CO absorption peak 
and valley channels of GIIRS can robustly characterize the distri-
bution and variation of CO. Subsequently, the ML model trained 
by the RF method can reliably convert BTD and auxiliary param-
eters into CO columns. From July 2022 to June 2023, the RF model 
for each month reproduced at least 97.77% and 98.49% of the CO 
column variance in the land and ocean training sets, and the rela-
tive uncertainty of the RF model is generally less than 10% at 
columns greater than 0.5 × 1018 molecules/cm2. We retrieved 
GIIRS clear-sky measurements for a whole year based on the RF 
models and estimated the absolute uncertainty of the retrieved 
column and the contribution of each source based on the error 
propagation theory. Under favorable observation conditions in 
July 2022, the uncertainty contributed by NEdT usually accounts 
for more than 90% of the total uncertainty, reflecting that the 
absolute uncertainty of the GIIRS-ML column is dominated by 
instrument measurement noise. By observing thousands of unit 
time GIIRS-ML retrieval results and influencing factors, we found 
that the ratio of NEdT to BTD is the optimal post-filtering basis.

   We performed the spatial and temporal comparisons between 
the GIIRS-ML and optimal estimate retrieved (GIIRS-OE) col-
umns. GIIRS-ML and GIIRS-OE show the same spatial distri-
bution in the daytime and nighttime scenes, with correlation 
coefficients of 0.80 and 0.77, respectively. GIIRS-ML and 
GIIRS-OE found anthropogenic sources in the North China 
Plain and wildfire emissions in the Siberian. In the 4 representa-
tive regions, the GIIRS-ML and GIIRS-OE columns show con-
sistent daily variations during the daytime and nighttime. The 
correlation coefficients between the 2 during the daytime and 
nighttime are highest in the East China Sea, reaching 0.96 and 
0.94. In North China Plain, Mongolia, and northern India, 
the correlation coefficients are usually between 0.61 and 0.79. 
GIIRS-ML also shows a consistent variation trend in each period 
with the 2 ground-based FTIR measurements in Hefei and Saga. 
In the 2 cases on 2022 September 5 and 2023 April 18, the diurnal 
variations of GIIRS-ML columns reflect the advantages of GIIRS 
in monitoring hourly CO emission and short-term pollutant dif-
fusion. The monthly GIIRS-ML column distributions for the 
whole year from July 2022 to June 2023 reflect the value of GIIRS 
in investigating the long-distance transport of anthropogenic 
pollutants across land and ocean.

   This study shows that this novel ML approach can reliably 
retrieve CO columns from GIIRS, avoiding the complex iterative 
process of traditional OE, and can theoretically be applied to 

Fig. 8. The IASI CO columns from July 2022 to June 2023. Figures are plotted as monthly averages every 0.5 × 0.5°.
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other similar LEO sensors. We roughly estimated the retrieval 
speed of ML and OE using the same local computing resources 
(1 CPU core). In the code, we process a pre-extracted GIIRS file 
with unit time resolution each time. The ML method can process 
4,231 files from July 2022 to June 2023 within 40 h, exceeding 
42.5 million measurements. However, the OE method requires 
iterative retrieval for each measurement and can only process 
about 0.25 million measurements within 40 h. Therefore, ML 
has great advantages in retrieval efficiency, but the approach still 
needs further improvements to achieve operational retrieval. In 
addition to optimizing the selection of reference profiles and 
introducing average kernels discussed in the “Comparison of 
CO between ML and OE method” section, finding an alternative 
to BTD as an index to characterize CO spectral features is mean-
ingful. Specifically, this study expects to extract the spectral 
features by visualizing CO distribution (i.e., BTD). However, we 
have to use only a few spectral channels due to the radiance 
contamination of some GIIRS channels or the accumulation of 
measurement errors. In the future, using all channels that are 
sensitive to CO and have little impact from interfering molecules 
as model inputs may suppress noise and improve the stability 
of the retrieval results. Furthermore, different spectral channels 
are sensitive to different altitude layers, so they also have the 
potential to retrieve the height-resolved CO profile.   
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