CONTACT:Liz Crumbley(540)231-9772[email protected]

VIRGINIA TECH RESEARCHER WORKS TO REDUCE USE OF TOXIC SOLVENTS IN POLYMERS PROCESSING

BLACKSBURG, Dec. 18, 2001 -- In an attempt to curtail the annual use of 36 billion pounds of toxic solvents in the production of acrylic polymers, the U.S. Environmental Protection Agency (EPA) is funding "green engineering" research by Virginia Tech chemical engineering professor Don Baird.

About 6 billion tons of acrylic polymers are produced each year, primarily for use by the textile industry in the manufacture of fibers. Baird is developing a process to replace the toxic solvents used in production of acrylic polymers with carbon dioxide (CO2).

Solvents reduce the viscosity of acrylic polymers during fiber spinning and other shaping operations, Baird explained. After these operations, solvents are removed in a process that includes a water bath. The toxic solvents then must be separated from the water to prevent environmental contamination.

Although regulations require that manufacturers take pains to collect the solvents and keep them out of the environment, small amounts do escape into ground water and rivers, Baird noted. Even small amounts of the 36 billion pounds of solvents used annually pose a problem that the EPA would like to eliminate.

Super-critical--or high-pressure--CO2 can be used in place of solvents in acrylic polymer production, Baird said, and would offer distinct advantages. Because the gas occurs naturally, it can be taken from the air and then dispelled back into the air after the fiber-spinning process is completed. Replacing solvents with CO2 would significantly reduce the costs of manufacturing acrylic polymers as well as the expense of recovering and disposing of solvents.

In addition, CO2 does not pose a threat to the environment. "The gas is non-toxic, non-flammable, chemically inert, completely recoverable and inexpensive," Baird said.

The project does pose challenges. In order to make the super-critical CO2 suitable for acrylic polymer processing, Baird will have to design a chamber that can bring the gas down from the high-pressure state to normal atmospheric pressure in order to prevent polymer foaming.

The Virginia Tech researcher also must develop a method that will enable the CO2 to rapidly interact with the acrylic polymers during production.

The $325,000 grant for Baird's project comes from an EPA/National Science Foundation environmental research partnership entitled "2001 Technology for a Sustainable Environment."

Research contact: Don Baird can be reached at (540)231-5988, or email [email protected].

###

MEDIA CONTACT
Register for reporter access to contact details