Newswise — Over the past few decades, obesity has become increasingly common throughout the entire world. Since obesity often causes other diseases, including diabetes and various cardiovascular disorders, it represents an alarming social problem in both developed and developing countries. Although most of us know that a balanced diet and plenty of exercise are the best ways to prevent obesity, having drugs to effectively treat it would still come in handy if necessary.
Unfortunately, there are very few known substances or drugs that can help prevent or treat obesity and its dreaded secondary diseases. One problem is that some of the mechanisms of obesity-induced diseases are unclear. For example, there is some evidence showing that obesity increases oxidative stress (oxidation) in the body. In turn, some scientists suspect that increased oxidation is the reason why obesity paves the way for neurodegenerative disorders like Alzheimer’s disease. Taking this into account, it might be helpful if potential drugs for treating obesity also had strong antioxidant functions.
Against this backdrop, a Japanese research team led by Professor Koji Fukui from Shibaura Institute of Technology (SIT), Japan, set out to determine whether tocotrienols (T3s), a subtype of vitamin E, could be the compounds we are looking for. While T3s have been shown to suppress body weight gain in mice fed with a high-fat diet (HFD), we don’t know much about the underlying mechanisms, or how they do so. To shed some light on this issue, the team conducted various experiments on mice treated with either an HFD, an HFD plus T3s, or a control diet with or without T3s (Ctrl+T3s or Ctrl, respectively).
This study, which was first published online on 28 March 2022, and later in a special issue of MDPI’s Molecules, was co-authored by Dr. Yugo Kato from SIT, Mr. Yoshinori Aoki from Mitsubishi Chemical, and Professor Chikako Kiyose from Kanagawa Institute of Technology.
As expected, being fed an HFD for over 13 weeks caused mice to put on a lot of weight as compared to the control group. In contrast, mice treated with an HFD and T3s had a significantly lower body weight. The researchers found that T3s lowered the accumulation of white adipose tissue around the kidneys and protected the liver against damage from the HFD. Moreover, T3s helped reduce levels of low-density lipoprotein, or “bad cholesterol” in the blood without affecting levels of high-density lipoprotein, or “good cholesterol.” “Overall, our results suggest that a higher intake of tocotrienols from daily foods may be effective to prevent obesity,” remarks Prof. Fukui.
Previous studies have reported that obesity might cause cognitive dysfunction, so the researchers also conducted several experiments to check if T3s could help prevent brain oxidation and reduce the cognitive and behavioral changes caused by an HFD. In general, the researchers found no major differences across behavioral tests between mice treated with an HFD plus T3s and those treated with Ctrl plus T3s. In an open field test, too, there were no significant differences between mice who were treated with an HFD and those treated with HFD plus T3s (both groups displayed reduced activity). However, mice treated with an HFD alone seemed to move much lesser in the center of an open field test chamber; such behavior is generally considered to be related to anxiety or depression. In an attempt to clarify why an HFD had this effect, the team checked the levels of a few biomarkers that represent brain oxidation, and the expression of brain-derived neurotrophic factor, a protein which is crucial for the development of neurons and cognitive function. However, they found no notable differences between the HFD-alone and control groups, which leaves us in the dark about why HFDs influenced mice behavior the way they did.
While some of the effects of T3s on the body remain a mystery, this study surely shed light on the path towards drugs to help combat obesity. In this regard, Prof. Fukui states: “We hope our research stimulates further studies on anti-obesity substances such as tocotrienols and similar compounds. Our ultimate goal is to lower the amount of people suffering from obesity-related illnesses.”
Please keep in mind that even if effective anti-obesity substances are eventually found, a healthier weight always begins with an appropriate diet and enough physical exercise!
About Shibaura Institute of Technology (SIT), Japan
Shibaura Institute of Technology (SIT) is a private university with campuses in Tokyo and Saitama. Since the establishment of its predecessor, Tokyo Higher School of Industry and Commerce, in 1927, it has maintained “learning through practice” as its philosophy in the education of engineers. SIT was the only private science and engineering university selected for the Top Global University Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology and will receive support from the ministry for 10 years starting from the 2014 academic year. Its motto, “Nurturing engineers who learn from society and contribute to society,” reflects its mission of fostering scientists and engineers who can contribute to the sustainable growth of the world by exposing their over 8,000 students to culturally diverse environments, where they learn to cope, collaborate, and relate with fellow students from around the world.
Website: https://www.shibaura-it.ac.jp/en/
About Professor Koji Fukui from SIT, Japan
Dr. Koji Fukui serves as a Professor at the Graduate School of Engineering and Science at Shibaura Institute of Technology (SIT) in Japan. In 2003, he received his Ph.D. in Engineering from SIT. He studied abroad at the National Institute on Aging for a year from 2014 (P.I. Prof. de Cabo Rafael). His research focuses on oxidative stress and ageing, with a particular emphasis on Vitamin E as a therapeutic substance for neurodegenerative disorders. His goal is to figure out how the brain ages and develops neuro-diseases. Prof. Fukui is a Councilor of the Japan Oxidative Stress Society and an active member of the Japan Society for Bioscience and Biotechnology. He is also a director in the Japan Society for Biomedical Gerontology. He is actively involved in joint research with laboratories all around the world and has published several research articles. In February 2021, Prof. Fukui received the Japan Vitamin Society Topics Contribution Award. He was also awarded the prestigious Japan Oxidative Stress Society Academic Award in August 2020.