BYLINE: Dave FinleyNational Radio Astronomy Observatory

Newswise — Astronomers have found only the second example of a highly active, repeating Fast Radio Burst (FRB) with a compact source of weaker but persistent radio emission between bursts. The discovery raises new questions about the nature of these mysterious objects and also about their usefulness as tools for studying the nature of intergalactic space. The scientists used the National Science Foundation's Karl G. Jansky Very Large Array (VLA) and other telescopes to study the object, first discovered in 2019.

The object, called FRB 190520, was found by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China. A burst from the object occurred on May 20, 2019, and was found in data from that telescope in November of that year. Follow-up observations with FAST showed that, unlike many other FRBs, it emits frequent, repeating bursts of radio waves.

Observations with the VLA in 2020 pinpointed the object's location, and that allowed visible-light observations with the Subaru telescope in Hawaii to show that it is in the outskirts of a dwarf galaxy nearly 3 billion light-years from Earth. The VLA observations also found that the object constantly emits weaker radio waves between bursts.

"These characteristics make this one look a lot like the very first FRB whose position was determined -- also by the VLA -- back in 2016," said Casey Law, of Caltech. That development was a major breakthrough, providing the first information about the environment and distance of an FRB. However, its combination of repeating bursts and persistent radio emission between bursts, coming from a compact region, set the 2016 object, called FRB 121102, apart from all other known FRBs, until now.

"Now we have two like this, and that brings up some important questions," Law said. Law is part of an international team of astronomers reporting their findings in the journal Nature.

The differences between FRB 190520 and FRB 121102 and all the others strengthen a possibility suggested earlier that there may be two different kinds of FRBs.

"Are those that repeat different from those that don't? What about the persistent radio emission -- is that common?" said Kshitij Aggarwal, a graduate student at West Virginia University (WVU).

The astronomers suggest that there may be either two different mechanisms producing FRBs or that the objects producing them may act differently at different stages of their evolution. Leading candidates for the sources of FRBs are the superdense neutron stars left over after a massive star explodes as a supernova, or neutron stars with ultra-strong magnetic fields, called magnetars.

One characteristic of FRB 190520 calls into question the usefulness of FRBs as tools for studying the material between them and Earth. Astronomers often analyze the effects of intervening material on the radio waves emitted by distant objects to learn about that tenuous material itself. One such effect occurs when radio waves pass through space that contains free electrons. In that case, higher-frequency waves travel more quickly than lower-frequency waves.

This effect, called dispersion, can be measured to determine the density of electrons in the space between the object and Earth, or, if the electron density is known or assumed, provide a rough estimate of the distance to the object. The effect often is used to make distance estimates to pulsars.

That didn't work for FRB 190520. An independent measurement of the distance based on the Doppler shift of the galaxy's light caused by the expansion of the Universe placed the galaxy at nearly 3 billion light-years from Earth. However, the burst's signal shows an amount of dispersion that ordinarily would indicate a distance of roughly 8 to 9.5 billion light-years.

"This means that there is a lot of material near the FRB that would confuse any attempt to use it to measure the gas between galaxies," Aggarwal said. "If that's the case with others, then we can't count on using FRBs as cosmic yardsticks," he added.

The astronomers speculated that FRB 190520 may be a "newborn," still surrounded by dense material ejected by the supernova explosion that left behind the neutron star. As that material eventually dissipates, the dispersion of the burst signals also would decline. Under the "newborn" scenario, they said, the repeating bursts also might be a characteristic of younger FRBs and dwindle with age.

"The FRB field is moving very fast right now and new discoveries are coming out monthly. However, big questions still remain, and this object is giving us challenging clues about those questions," said Sarah Burke-Spolaor, of WVU.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

###

 Release in Spanish:

Extraña ráfaga de radio suscita nuevas interrogantes

Un equipo de astrónomos y astrónomas detectó el segundo ejemplo de una ráfaga rápida de radio (FRB, en su sigla en inglés) junto con una compacta fuente de emisiones de radio débiles, pero persistentes, intercalada entre los destellos. El hallazgo plantea nuevas interrogantes sobre la naturaleza de estos misteriosos objetos y su utilidad para estudiar el espacio intergaláctico. Para observar el objeto, descubierto en 2019, el equipo científico usó el Karl G. Jansky Very Large Array (VLA), entre otros telescopios.

El objeto en cuestión, conocido como FRB 190520, fue descubierto por el telescopio FAST, un telescopio esférico de 500 metros de diámetro ubicado en China. El 20 de mayo de 2019 se produjo una ráfaga que se descubrió en los datos del telescopio en noviembre de ese año. Las observaciones realizadas posteriormente con el telescopio FAST revelaron que, a diferencia de muchas otras FRB, este objeto emite ráfagas reiteradas de ondas de radio. 

Las observaciones realizadas con el VLA en 2020 permitieron determinar la ubicación de la fuente y, posteriormente, observarla en frecuencias de luz visible con el telescopio Subaru, en Hawái. De esa forma, se descubrió que las ráfagas provienen de la zona periférica de una galaxia enana situada a casi 3.000 millones de años luz de la Tierra. Asimismo, las observaciones del VLA revelaron que el objeto emite unas tenues ondas de radio de forma reiterada entre las ráfagas. 

“Estas características se asemejan mucho a las de la primera ráfaga, cuya ubicación se logró determinar en 2016 (también gracias al VLA)”, señala Casey Law, de Caltech. En ese entonces, el hallazgo fue pionero en proporcionar información sobre el entorno y la distancia de una fuente de FRB. Sin embargo, la combinación de ráfagas reiteradas y emisiones de radio intercaladas provenientes de una zona compacta distinguía el objeto de 2016 (llamado FRB 121102) de los demás fenómenos de tipo FRB. Hasta ahora.

“Ahora conocemos dos objetos de este tipo, y eso plantea preguntas importantes”, afirma Casey Law, quien forma parte de un equipo internacional que publicó sus hallazgos en la revista Nature.

Las diferencias entre FRB 190520 y FRB 121102 y las demás fuentes de FRB avalan una teoría planteada anteriormente según la cual podría haber dos tipos distintos de FRB.  

“¿Las que se repiten son diferentes de las demás? ¿Y cómo explicar la persistente emisión de radio? ¿Es un fenómeno común?”, interroga Kshitij Aggarwal, estudiante de posgrado de la Universidad de West Virginia (WVU).

Según el equipo de investigación, las FRB podrían ser el resultado de dos mecanismos distintos, o bien los objetos que los generan podrían comportarse de forma diferente en distintas etapas de su evolución. El origen más probable de las FRB son estrellas de neutrones superdensas nacidas de la explosión de una supernova o bien estrellas de neutrones con campos magnéticos ultrafuertes, llamados magnetoestrellas.

Una característica de FRB 190520 pone en tela de juicio la utilidad de las FRB para estudiar el material presente entre ellas y la Tierra. Por lo general, la comunidad científica analiza el efecto de dicho material en las ondas de radio emitidas por objetos distantes con el fin de estudiar el material en cuestión. Uno de esos efectos se genera cuando las ondas de radio atraviesan el espacio que contiene electrones libres, donde las ondas de frecuencias más altas viajan más rápido que las de frecuencias más bajas.

Ese efecto, conocido como dispersión, puede medirse para determinar la densidad de los electrones en el espacio entre el objeto y la Tierra, o, si se conoce o presupone su densidad, para hacer un cálculo aproximado de la distancia hasta el objeto. Así es como suele calcularse la distancia hasta los pulsares.

En el caso de FRB 190520, este método no funcionó. Un cálculo independiente de la distancia basado en el efecto Doppler causado por la expansión del Universo en la luz de la galaxia arrojó una distancia de casi 3.000 millones de años luz de la Tierra. Sin embargo, la ráfaga presenta una cantidad de dispersión que normalmente equivaldría a una distancia de unos 8.000 a 9.500 millones de años luz.

“Esto significa que hay mucho material cerca de la FRB que perjudicaría cualquier intento de usarlo como parámetro para calcular la cantidad de gas existente entre las galaxias”, explica Kshitij Aggarwal. “De ser así en otros casos, no podríamos usar las FRB como instrumento cósmico de medición”, agrega.

El equipo señala que FRB 190520 puede ser una “recién nacida”, aún rodeada del denso material expulsado por la explosión de una supernova, de la que surgió la estrella de neutrones. A medida que se disipe ese material, la dispersión de las señales de la ráfaga también disminuiría. En este escenario, según plantean, las ráfagas reiteradas también podrían ser una característica de una FRB más joven y mermar con el tiempo. 

“El campo de la FRB está desplazándose muy rápido, y todos los meses hay hallazgos nuevos. Dicho esto, sigue habiendo grandes interrogantes, y este objeto nos está entregando pistas difíciles para responderlas”, afirma Sarah Burke-Spolaor, de WVU.

El Observatorio Radioastronómico Nacional de Estados Unidos (NRAO) es un establecimiento de la Fundación Nacional de Ciencia de Estados Unidos operado por Associated Universities Inc. en virtud de un acuerdo de cooperación.

###

Una ráfaga rápida de radio (FRB) reiterada y altamente activa suscita nuevas interrogantes sobre la naturaleza de estos objetos y pone en duda su utilidad como instrumento cósmico de medición.

###

LEYENDAS:

TÍTULO: Representación artística de una estrella de neutrones 

Representación artística de una estrella de neutrones con un campo magnético ultrafuerte, o magnetoestrella, emitiendo ondas de radio (en rojo). Las magnetoestrellas son las fuentes más probables de las ráfagas rápidas de radio.

Créditos: Bill Saxton, NRAO/AUI/NSF

--

TÍTULO: Ráfaga rápida de radio FRB 190520

Imagen del VLA donde se aprecia la ráfaga rápida de radio FRB 190520 (en rojo), combinada con una imagen óptica, en pleno destello.

Créditos: Niu et al.; Bill Saxton, NRAO/AUI/NSF; CFHT

 

--

 

TÍTULO: Imagen óptica de FRB 190520

Imagen óptica de la región de FRB 190520 mientras no se producen destellos.

Créditos: Niu et al.; Bill Saxton, NRAO/AUI/NSF; CFHT

--

 

TÍTULO: Imagen de FRB 190520 en luz visible

Región de FRB 190520, observada en luz visible, con una imagen de la ráfaga rápida de radio obtenida por el VLA, alternando entre momentos con y sin destellos.

Créditos: Niu et al.; Bill Saxton, NRAO/AUI/NSF; CFHT

###