Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system affecting an estimated 400,000 people in the United States. MS is more prevalent in the Northwest region of the U.S. than almost anywhere else in the world. In the Northwest, the likelihood of being diagnosed with MS (2 in 1,000) is double that across the U.S. (1 in 1,000).
Under normal circumstances, effector T cells protect us from infection and cancer and it is the job of regulatory T cells to keep the effector T cells from attacking healthy tissue, thereby preventing autoimmune diseases such as MS. MS occurs when the immune system’s effector T cells mistakenly attack myelin, which surrounds and protects the central nervous system. When the myelin is damaged, nerve impulses are not transmitted quickly or efficiently, resulting in symptoms such as numbness, weakness, vision problems, cognitive impairment or fatigue, among others. In Relapsing Remitting MS (RRMS), individuals experience episodes of active disease, which include attacks of neurologic dysfunction, followed by periods of improvement.
Buckner’s group found that the T cells of RRMS patients with active disease were able to avoid suppression by regulatory T cells, while those from patients with mild or well controlled MS did not exhibit this resistance to suppression. These results suggest that the presence or absence of T cell resistance to regulatory T cells could provide patients and physicians with valuable information about an individual’s disease activity level and the potential for disease progression. The researchers also discovered that resistance to T cell suppression in RRMS patients was correlated with increased sensitivity to IL-6, a protein that is produced by the immune system that has been shown to contribute to the resistance of effector T cells to suppression. Buckner’s group demonstrated that the patient samples that exhibited T cell resistance to suppression also were more sensitive to IL-6. Furthermore, when the signals generated by IL-6 were blocked in these T cells, the resistance to suppression was reversed, suggesting that therapies targeting the IL-6 pathway could potentially be used to modulate T cell resistance to suppression.
“These findings are an exciting step toward better understanding why MS occurs. They will help us to better assess the degree of disease activity in MS patients and lead us to consider new therapeutic approaches for MS” noted Dr. Buckner. “Therapies that target the IL-6 pathway are already available for treatment of other autoimmune diseases and should now be tested in MS.”
Future research directions will include investigation of the role of T cell resistance to suppression and IL-6 signaling in MS onset and whether the IL-6 signaling components can be used as biomarkers to predict the severity of disease at the time of diagnosis or anticipate flares and disease progression. The samples used in this study were obtained through the BRI’s Translational Research Program’s Biorepository. Research funding was provided by Life Sciences Discovery Fund and JDRF.
About Benaroya Research Institute at Virginia Mason
Benaroya Research Institute at Virginia Mason (BRI), founded in 1956, is an international leader in immune system and autoimmune disease research, translating discoveries to real-life applications. Autoimmune diseases happen when the immune system, designed to protect the body, attacks it instead. BRI is one of the few research institutes in the world dedicated to discovering causes and cures to eliminate autoimmune diseases such as type 1 diabetes, multiple sclerosis, arthritis and many others. Visit BenaroyaResearch.org or Facebook.com/BenaroyaResearch for more information about BRI, clinical studies and the more than 80 different types of autoimmune diseases. BRI employs more than 250 scientists, physician researchers and staff with a research volume of more than $35 million in 2011, including grants from the National Institutes of Health, the National Science Foundation, the U.S. Department of Defense, JDRF, the American Heart Association and others. ###
MEDIA CONTACT
Register for reporter access to contact detailsCITATIONS
Science Translational Medicine (1/30/2013)