Abstract: Bioemulsions are attractive platforms for the scalable expansion of adherent cells and stem cells. In these systems, cell adhesion is enabled by the assembly of protein nanosheets that display high interfacial shear moduli and elasticity. However, to date, most successful systems reported to support cell adhesion at liquid substrates have been based on co-assemblies of protein and reactive co-surfactants, which limit the translation of bioemulsions. In this report, we describe the design of protein nanosheets based on two globular proteins, bovine serum albumin (BSA) and β-lactoglobulin (BLG), biofunctionalised with RGDSP peptides to enable cell adhesion. The interfacial mechanics of BSA and BLG assemblies at fluorinated liquid-water interfaces is studied by interfacial shear rheology, with and without co-surfactant acyl chloride. Conformational changes associated with globular protein assembly are studied by circular dichroism and protein densities at fluorinated interfaces are evaluated via surface plasmon resonance. Biofunctionalisation mediated by sulfo-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) is studied by fluorescence microscopy. On the basis of the relatively high elasticities observed in the case of BLG nanosheets, even in the absence of co-surfactant, the adhesion and proliferation of mesenchymal stem cells and human embryonic kidney (HEK) cells on bioemulsions stabilized by RGD-functionalized protein nanosheets is studied. To account for the high cell spreading and proliferation observed at these interfaces, despite initial moderate interfacial elasticities, the deposition of fibronectin fibers at the surface of corresponding microdroplets is characterized by immunostaining and confocal microscopy. These results demonstrate the feasibility of achieving high cell proliferation on bioemulsions with protein nanosheets assembled without co-surfactants and establish strategies for rational design of scaffolding proteins enabling the stabilization of interfaces with strong shear mechanics and elasticity, as well as bioactive and cell adhesive properties. Such protein nanosheets and bioemulsions are proposed to enable the development of new generations of bioreactors for the scale up of cell manufacturing.

Journal Link: 10.1101/2022.10.30.514404 Journal Link: Publisher Website Journal Link: Download PDF Journal Link: Google Scholar