Abstract: Recurrent proximal 16p11.2 deletion (16p11.2del) is risk factor of diverse neurodevelopmental disorders (NDDs) with variable penetrance. Although previous human induced pluripotent stem cell (hiPSs) models of 16p11.2del confirmed disrupted neuron development, it is not known which gene(s) at this interval are mainly responsible for the abnormal cellular phenotypes and how the NDD penetrance is regulated. After haplotype phasing of 16p11.2 region, we generated hiPSCs for two 16p11.2del families with distinct residual haplotypes and variable NDD phenotypes. We also differentiated the hiPSCs to cortical neural cells and demonstrated MAPK3 as a driver signal of 16p11.2 region contributing to the dysfunctions in multiple pathways related to neuron development, which leads to altered morphological or electrophysiological properties in neuron cells. Furthermore, residual haplotype-specific MAPK3 expression was identified in 16p11.2del neuron cells, associating MAPK3 down-expression with the minor allele of the residual haplotype. Ten SNPs of the residual haplotype are mapped as enhancer SNPs (enSNPs) of MAPK3, eight enSNPs were functionally validated by luciferase assays, implying enSNPs contribute to residual haplotype-specific MAPK3 expression via cis-regulation. Finally, the analyses of three different patient cohorts showed that the residual haplotype of 16p11.2del is associated with variable NDD phenotypes.

Journal Link: bioRxiv Other Link: Download PDF Other Link: Google Scholar

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

bioRxiv; Download PDF; Google Scholar