Abstract: The conversion of somatic cells back into induced pluripotent stem cells (iPSCs) or embryonic-like stem cells involves the introduction of four genes commonly called Yamanaka factors, i.e., Sox2, Oct4, Klf4, and c-Myc, into the cells. Because these genes and the viral vectors used to introduce them into cells have the potential to cause cancer, iPSC lines are not clinically useful. Most instances of direct reprogramming have achieved have been by the forced expression of defined factors using viral vectors. Here, we show that Metadichol® has the potential to generate iPSCs non-virally and may be helpful in clinical applications. Metadichol is a nanoformulation of long-chain alcohols derived from food. Quantitative real-time PCR (qRT-PCR) and western blotting showed that OCT4, SOX2, and Nanog are expressed when fibroblasts were treated with Metadichol at one picogram to 100 nanograms. Reverse-transcription PCR (RT-PCR) also revealed that OCT4, KLF4, Nanog, and Sox2 levels increased compared to controls by 4.01, 3.51 and 1.26, and 2.5-fold, respectively, in A549 cancer cells. In Colo-205 cells, OCT4, KLF4, and Sox2 were increased by 1.79, 13.17, and 2.25folds, respectively. Metadichol treatment with triple-negative primary breast cancer (HCAF-TNPBC) primary cancer cells led to multifold increases of OKSM factors by 19, 6, 8.07, 2.45, and 6.91folds in concentration ranges one picogram to 100 nano grams. Metadichol is a natural product that induces the expression of Yamanaka factors needed for reprogramming and Klotho, an anti-aging gene, and curbs the expression of the TP53 gene, which is critical for reprogramming somatic cells into IPSCs.Metadichol increases endogenous vitamin C levels, leading to the efficient reprogramming of somatic cells into iPSCs. Metadichol is nontoxic and commercially available as a nutritional supplement. Thus, it can be directly tested in vivo in human subjects to confirm that cells can indeed be programmed into a state of induced pluripotency and cause the mitigation of disease conditions.

Journal Link: 10.21203/rs.3.rs-1727437/v2 Journal Link: Publisher Website Journal Link: Download PDF Journal Link: Google Scholar