Abstract: COVID-19 is a respiratory disease affecting multiple organs including the central nervous system (CNS), with a characteristic loss of smell and taste. Although frequently reported, the neurological symptoms remain enigmatic. There is no consensus on the extent of CNS infection. Here, we derived human induced pluripotent stem cells (hiPSC) into neural progenitor cells (NPCs) and glutamatergic neurons to study their permissiveness to SARS-CoV-2 infection. Flow cytometry and western blot analysis indicated that NPCs and neurons do not express detectable levels of the SARS-CoV-2 receptor ACE2. We thus generated cells expressing ACE2 by lentiviral transduction to analyze in a controlled manner the properties of SARS-CoV-2 infection relative to ACE2 expression. Sensitivity of parental and ACE2 expressing cells was assessed with GFP- or luciferase- carrying pseudoviruses and with authentic SARS-CoV-2 Wuhan, D614G, Alpha or Delta variants. SARS-CoV-2 replication was assessed by microscopy, RT-qPCR and infectivity assays. Pseudoviruses infected only cells overexpressing ACE2. Neurons and NPCs were unable to efficiently replicate SARS-CoV-2, whereas ACE2 overexpressing neurons were highly sensitive to productive infection. Altogether, our results indicate that primary NPCs and glutamatergic neurons remain poorly permissive to SARS-CoV-2 across the SARS-CoV-2 variants inoculated, in the absence of ACE2 expression.

Journal Link: 10.1101/2022.07.25.501370 Journal Link: Publisher Website Journal Link: Download PDF Journal Link: Google Scholar