Although the GBM genome and the mutated genes—or oncogenes—that drive the cancer have been extensively characterized, drugs selected on the basis of such analyses have yet to prove any benefit to GBM patients. Many of the targeted therapies evaluated so far in trials barely cross the blood-brain barrier and the poor dosing this causes often promotes drug resistance in the tumor.
“Researchers have been thinking about ways to deal with this problem,” says Mischel. “One such approach stems from the observation that oncogenes can rewire the biochemical pathways of cells in ways that make them dependent on proteins that are not themselves encoded by oncogenes. Targeting these ‘oncogene-induced co-dependencies’ opens up a much broader pharmacopeia, including the use of drugs that aren’t traditionally part of cancer drug pipelines but have better pharmacological properties.”
The brain’s unique systems for cholesterol regulation seemed to be a good place to start looking for such targets. About 20% of the body’s total cholesterol is found in the brain, but none of it comes from outside the organ. Instead, brain cells called astrocytes make most of the brain’s cholesterol, which is an important constituent of cell membranes and the insulation of nerve fibers, and a building block for many signaling molecules.
The researchers showed that GBM cells are extremely dependent on imported cholesterol, as they don’t make their own and they need lots of it to keep multiplying. The cancer cells make sure they keep getting it by shutting down their import controls.
When normal cells have sufficient cholesterol, they convert some of it into molecules known as oxysterols. These molecules activate a receptor in the cell’s nucleus called the liver X receptor (LXR), which helps halt the uptake of cholesterol.
“So when normal cells get enough cholesterol, they stop making it, stop taking it up and start pumping it out,” says Mischel. “We found that in GBM cells, this mechanism is completely disrupted. They’re like parasites of the brain’s normal cholesterol system. They steal cholesterol and don’t have an off switch. They just keep gobbling the stuff up.”
The researchers showed that GBM cells do this by suppressing the production of oxysterols, thus ensuring that their LXRs remain inactive.
Working with Ludwig’s Small Molecule Development team led by Andrew Shiau and including Tim Gahman, they identified an experimental metabolic disease drug candidate named LXR-623 that activates LXRs. After showing that it easily crosses the blood-brain barrier in mice, they examined its effect on GBM tumors derived from human patients that were implanted in mice.
“Disrupting cholesterol import by GBM cells caused dramatic cancer cell death and shrank tumors significantly, prolonging the survival of the mice,” says Mischel. “The strategy worked with every single GBM tumor we looked at and even on other types of tumors that had metastasized to the brain. LXR-623 also had minimal effect on astrocytes or other tissues of the body.”
The GBM treatment strategy they’ve devised, Mischel notes, could be implemented in trials using related drugs that are under development or in early clinical trials.
The study was supported by Ludwig Cancer Research, the National Cancer Institute, the National Institute for Neurological Diseases and Stroke, the National Brain Tumor Society, the Ben and Catherine Ivy Foundation and donations from the Ziering Family Foundation in memory of Sigi Ziering.
Paul Mischel is a member of the San Diego Branch of the Ludwig Institute for Cancer Research and Professor of Pathology at the University of California, San Diego. Genaro Villa, a graduate student in Mischel’s lab at the time of the study, is the lead author of the paper.
# # #
About Ludwig Cancer Research
Ludwig Cancer Research is an international collaborative network of acclaimed scientists that has pioneered cancer research and landmark discovery for more than 40 years. Ludwig combines basic science with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested $2.7 billion in life-changing science through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. To learn more, visit www.ludwigcancerresearch.org.
For further information please contact Rachel Steinhardt, [email protected] or +1-212-450-1582.