“We looked at the jawbone area and found definitive proof that the two are not the same species,” de Ruiter says of the findings.
“Australopithecus sediba is unique in size, shape and pattern of growth, though it does share features with older australopiths, as well as later specimens referred to Homo erectus. It represents a transitional form between australopiths and Homo, the genus to which we humans belong, though it looks more like Homo than any other australopith ever found.”
Australopiths belong to Australopithecus, a genus of hominins now extinct. Ape-like in structure and lifeways, yet walking bipedally similar to modern humans, they are believed to have played a significant role in human evolution, and it is generally held among anthropologists that some form of Australopithecus eventually evolved into Homo. They are just not sure which form of Australopithecus, which is why Australopithecus sediba, with its unique arrangement of Homo-like features, is so intriguing.
“We examined the remains and found several distinct individuals – possibly representing a family group. They all seemed to have died suddenly in the same event about 1.98 million years ago, but the remains are in surprisingly good shape.”
de Ruiter adds that the findings “show very strong support of Darwin’s theory of evolution by natural selection.”
The team used a method called morphometrics that uses math and 3-D models to form a precise replica of the jawbones of species of Australopithecus and early Homo, but showing distinct differences in size and shape between them. In addition, they were able to demonstrate the growth trajectory from a juvenile to an adult form was unlike that of any other hominin species known, further supporting the unique appearance of Australopithecus sediba.
In 2012 several of these same researchers, including de Ruiter, proved that Australopithecus sediba had a forest-based diet of leaves, fruits, nuts and bark, one similar to that of a present-day chimp. The diet of early Australopithecus is a key component central to the study of human origins. The team’s work was funded by the South African National Research Foundation, the Palaeontological Scientific Trust, the L.S.B. Leakey Foundation Baldwin Fellowship, the National Geographic Society, the Institute for Human Evolution at the University of Witwatersrand in Johannesburg, the Program to Enhance Scholarly and Creative Activities and the International Research Travel Assistance Grant of Texas A&M, and the Ray A. Rothrock ’77 Fellows Program in the College of Liberal Arts at Texas A&M.
###About Research at Texas A&M University: As one of the world’s leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.
More news about Texas A&M University, go to http://tamutimes.tamu.edu/
Follow us on Twitter at http://twitter.com/tamu/