A team led by computer scientists at Cardiff University suggest that the challenge of judging a person's relative standing and deciding whether or not to cooperate with them has promoted the rapid expansion of human brain size over the last 2 million years.
In a study published in Scientific Reports today, the team, which also includes leading evolutionary psychologist Professor Robin Dunbar from the University of Oxford, specifically found that evolution favours those who prefer to help out others who are at least as successful as themselves.
Lead author of the study Professor Roger Whitaker, from Cardiff University's School of Computer Science and Informatics, said: "Our results suggest that the evolution of cooperation, which is key to a prosperous society, is intrinsically linked to the idea of social comparison - constantly sizing each up and making decisions as to whether we want to help them or not.
"We've shown that over time, evolution favours strategies to help those who are at least as successful as themselves."
In their study, the team used computer modelling to run hundreds of thousands of simulations, or 'donation games', to unravel the complexities of decision-making strategies for simplified humans and to establish why certain types of behaviour among individuals begins to strengthen over time.
In each round of the donation game, two simulated players were randomly selected from the population. The first player then made a decision on whether or not they wanted to donate to the other player, based on how they judged their reputation. If the player chose to donate, they incurred a cost and the receiver was given a benefit. Each player's reputation was then updated in light of their action, and another game was initiated.
Compared to other species, including our closest relatives, chimpanzees, the brain takes up much more body weight in human beings. Humans also have the largest cerebral cortex of all mammals, relative to the size of their brains. This area houses the cerebral hemispheres, which are responsible for higher functions like memory, communication and thinking.
The research team propose that making relative judgements through helping others has been influential for human survival, and that the complexity of constantly assessing individuals has been a sufficiently difficult task to promote the expansion of the brain over many generations of human reproduction.
Professor Robin Dunbar, who previously proposed the social brain hypothesis, said: "According to the social brain hypothesis, the disproportionately large brain size in humans exists as a consequence of humans evolving in large and complex social groups.
"Our new research reinforces this hypothesis and offers an insight into the way cooperation and reward may have been instrumental in driving brain evolution, suggesting that the challenge of assessing others could have contributed to the large brain size in humans."
According to the team, the research could also have future implications in engineering, specifically where intelligent and autonomous machines need to decide how generous they should be towards each other during one-off interactions.
"The models we use can be executed as short algorithms called heuristics, allowing devices to make quick decisions about their cooperative behaviour," Professor Whitaker said.
"New autonomous technologies, such as distributed wireless networks or driverless cars, will need to self-manage their behaviour but at the same time cooperate with others in their environment."
###
Notes to editors
1. For further information contact: Michael Bishop Communications & Marketing Cardiff University Tel: 02920 874499 / 07713 325300 Email: [email protected]
2. Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, University Chancellor Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning. Cardiff's flagship Research Institutes are offering radical new approaches to pressing global problems. http://www.cardiff.ac.uk